
A Compact Gradient Based Neural Network for
Capon Spectral Estimation

Abderrazak Benchabane, and Fella Charif

Abstract—This paper describes the use of a novel gradient based
recurrent neural network to perform Capon spectral estimation.
Nowadays, in the fastest algorithm proposed by Marple et al., the
computational burden still remains significant in the calculation of
the autoregressive (AR) Parameters. In this paper we propose to
use a gradient based neural network to compute the AR parameters
by solving the Yule-Walker equations. Furthermore, to reduce the
complexity of the neural network architecture, the weights matrix-
inputs vector product is performed efficiently using the fast Fourier
transform. Simulation results show that proposed neural network and
its simplified architecture lead to the same results as the original
method which prove the correctness of the proposed scheme.

Keywords—Gradient-based neural networks, Toeplitz systems,Fast
Fourier Transform, Spectral estimation. AR model.

I. INTRODUCTION

SPECTRAL estimation has been widely used in many
practical applications such as radar, speech and com-

munication, to mention a few [1]. Over the last century, a
great effort has been made to develop new techniques for
high performance spectral estimation. Broadly, the developed
techniques can be classified in two categories: nonparametric
and parametric methods [2]. The non parametric spectral esti-
mation approaches are relatively simple and easy to compute
via the Fast Fourier Transform (FFT) algorithm. However,
these methods require the availability of long data records
in order to yield a a higher frequency resolution. For the
parametric approaches, we first design a model for the process
of interest which is described by a small number of parameters.
Based on this model, the spectral density of the process can
be obtained by substituting the estimated parameters of the
model in the theoretical expression of the spectral density [2].
If the assumed model fits the data well, the parametric methods
yield more accurate spectrum with higher resolution than the
former. However, if the model does not satisfy the data which
is mostly encountered in practice, the parametric methods will
inevitably lead to an incorrect estimate. Minimum Variance
Spectral Estimation (MVSE), referenced also as the Capon
spectral estimation, is one of the nonparametric methods which
have a great interest in recent years[3]. It can be interpreted as
an adaptive filter-bank spectral estimation due to the fact that
it uses data-dependent bandpass filters. To compute directly
the capon spectrum, we need to invert the correlation matrix
of the available data samples; consequently, a huge amount
of computation is required when the dimension of the matrix
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is large. This may not be practical for real-time processing.
Nowadays, the only implementation in practice employs the
fast algorithm developed by Musicus exploiting the Toeplitz
structure of the covariance matrix[4]. this algorithm proceeds
in three steps; the computation of the autoregressive coeffi-
cients using the Levinson-Durbin algorithm, the computation
of the correlation of these parameters and then the evaluation
of the spectral density using the fast Fourier transform.
In an attempt to further reduce the computational complexity,a
super-fast algorithm was proposed in [5]. In this algorithm
the power spectral density is only done in two stages, the
first is used to compute the AR coefficients as in Musicus
algorithm. The second step allows to evaluate the power
spectral density using the fast Fourier transform. The main
advantage in this algorithm is that the computation of the
correlation AR parameters is avoided. We note that in the two
algorithms, the main computational burden is the computation
of the AR parameters using the Levinson-Durbin algorithm
which requires O(p2) flops for a model of order p.
Neural networks have been widely investigated in spectral
estimation [6], [7], [8]. The major advantage of neural network
over other methods resides in their capability to perform
more complex calculation in real times due to their parallel-
disturbed nature [9], [10], [11]. The neural network consists
of a large number of simple devices; each one computes
little more than weighted sums. Consequently the complexity
of computation can be dramatically reduced and the total
computation time is comparable to the response time of a
single processor which can be very small [7]. By considering
these advantages, we investigate to use a gradient based
recurrent neural networks to compute the AR parameters from
the Yule-Walker equations. As well known, the activation of
neural networks is based on the computation of a full matrix by
vector multiplication where the matrix contains the connection
weights and the vector contains the activation values. More-
over, for the same connection matrix, the multiplication has
to be done in every iteration with a new vector input. In such
cases, one seeks to identify special properties of the connection
matrix in order to reduce the complexity computation.
The paper is organized as follows. In section 2, existing
schemes for power spectral density estimation are presented
. Section 3 presents the online spectral estimation using the
discrete gradient neural network which is followed by a novel
architecture of the DGNN in section 4. Section 5 is devoted
to simulation studies. Finally , the conclusions are presented
in Sect. 6.
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II. EXISTING SCHEMES

A. Standard Algorithm

We consider a data sequence of a stationary signal is
available. Let Rp is the p × p autocorrelation matrix of the
data samples. The MVSE in its standard form is as follow
[3]:

p(f) =
1

eH(f)R−1
p e(f)

(1)

where e(f) is the frequency vector . in this standard formula-
tion, the MVSE requires order p3 computations.

B. Fast Algorithm

To avoid the direct computation of MVSE in its stan-
dard form which is not computationally efficient, Musicus
has proposed a fast algorithm using the Gohberg-Semencul
formula and the fast Fourier transform. The MVSE in its new
formulation is given by [4]:

p(f) =
1∑p

k=−p µ(k)e
−j2πfk (2)

where

µ(k) =


1
δp

∑p−k
i=0 (p+ 1− k − 2i)ap(i)a

∗
p(k + i),

k = 0, ..., p
µ∗(−k), k = −p, ...,−1

(3)

The terms ap(i) are the AR parameters computed with Levin-
son Recursion.

C. Super-Fast Algorithm

In [5], the authors have proposed a super-fast algorithm,
in which the fast Fourier transform is fully exploited and
the calculation of the autocorrelation of the AR parameters
is avoided. The expression (2) in this case is rewritten as [5]:

p(f) =
1

(p+ 1)A(f)A∗(f)−A(f)B∗(f)−A∗(f)B(f)
(4)

where

A(f) =

p∑
n=0

ap(n)e
−j2πfn (5)

B(f) =

p∑
n=0

nap(n)e
−j2πfn (6)

The two terms A(f), B(f) are evaluated using the FFT.

III. DISCRETE BASED GRADIENT NEURAL NETWORK FOR
SPECTRAL ESTIMATION

As mentioned in subsection 2.3, the spectral estimation
using the super-fast algorithm is performed in two steps; firstly
we compute the AR parameters using the Levinson-Durbin
algorithm, and then we evaluate of the expression (4) using
the FFT algorithm. we note here that the main computational
burden of the super-fast algorithm is the step one, which
requires order p2 operations. in this paper, we propose to use
the Gradient Neural Network (GNN) to perform the first step
of the super-fast algorithm in just O(plogp) operations.

A. AR parameters estimation using neural networks

Consider the parameter estimation problem of the noisy AR
signal system [1], [6]:

x(n) = −
p∑
i=1

aix(n− i) + e(n) (7)

where ai, i = 1, ..., p are the unknown AR parameters,
x(n− i), i = 1, ..., p are the p last data samples; e(n) is white
Gaussian process with variance σ2

e . The AR parameters to be
estimated using the noisy observations are the solution of the
Yule-Walker equations given by [1]:

Ra = r (8)

where

R =


rx(0) rx(−1) · · · rx(−p+ 1)
rx(1) rx(0) · · · rx(−p+ 2)

...
...

. . .
...

rx(p− 1) rx(p− 2) · · · rx(0)

 (9)

a =
[
a1 a2 · · · ap

]T
(10)

r = −
[
rx(1) rx(2) · · · rx(p)

]T
(11)

with:

rx(k) =

{
1
N

∑N−1−k
n=0 x∗(n)x(n+ k), k = 0, ..., p

r∗x(−k), k = −p+ 1, ...,−1 (12)

The GNN system design is based on the set of linear
equations Ra− r = 0 . To do this, the parameters estimation
problem must be transformed to a minimization problem
suitable for dynamic neural networks processing [6], [7]. Con-
ventional gradient-based neural networks have been developed
and widely investigated for online solution of the linear system
[12], [13], [14], [15].
Consider the scalar-valued norm-based energy function

E =
1

2
‖Ra− r‖22 (13)

with ‖.‖2 denoting the two-norm of a vector. The minimum
of this cost function is the solution of the above linear system
Ra = r. To reach this minimum let us taking the negative of
the gradient of the energy function

−∂E
∂a

= −RT (Ra− r) (14)

By using a typical continuous-time adaptation rule, equation
(6) leads to the following differential equation (linear GNN)

da

dt
= −∂E

∂a
= −γRT (Ra(t)− r) (15)

where γ > 0 is a design parameter used to scale the GNN
convergence rate. We could obtain the general nonlinear GNN
model by using a general nonlinear activation function f(·) as
follows [12]:

ȧ(t) = −γRT f (Ra(t)− r) (16)
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Fig. 1. Architecture of DGNN model

A discrete model of GNN can be obtained by the use of the
forward-difference rule to compute ȧ(t) .

ȧ(t = kh) ≈ (a((k + 1)h)− a(kh)) /h (17)

where h denotes the sampling interval. For presentation con-
venience, we use ak = a(t = kh). Thus the presented DGNN
model (14) can be reformulated as:

ak+1 = ak − τRT f (Rak − r) (18)

with τ = γh. Figure (1) shows the architecture of the discrete
neural network. As we can see, we have 2p2 weighting
function, p adders of p elements, p adders of p+ 1 elements
and p time-delays.

B. Spectrum estimation using DGNN model and the FFT
algorithm

In this subsection, we describe the spectrum estimation
procedure using both the DGNN model and the super-fast
algorithm proposed in [5]. As mentioned below, in the exres-
sion (4), the terms A(f) and B(f) may be evaluated by the
use of the FFT algorithm. Instead of using the Levinson-
Durbin algorithm to compute the AR parameters, we see that
the DGNN constitutes a good alternative to compute these
parameters. So, the proposed spectrum estimation algorithm
can be described as follow: ones the AR parameters are
computed using the DGNN model, we compute the two terms
A(f) and B(f) using the FFT algorithm and finally we need
some algebric operators to compute the spectrum. The figure
(2) shows the diagram of the proposed scheme.

IV. COMPACT ARCHITECTURE OF THE DGNN

By settig z1 = Rak , z2 = f (z1 − r) and z3 = RT z2, the
dynamic of the neural network can be rewritten in a compact
form as:

ak+1 = ak − γhz3 (19)

Fig. 2. Diagramm of the proposed model

This equation consists of two Toeplitz matrix-vector products
z1 = Rak and z3 = RT z2 which can be computed efficiently
using the following algorithm.

A. Fast matrix-vector product computation

Since R is a Toeplitz matrix which is fully defined by its
first column and first row, thus it depends only on 2p − 1
parameters rather than p2 . To compute the product z1 , the
Toeplitz matrix R can be first embedded into a circulant matrix
C ∈ R 2p×2p as [16], [17]:

C =

[
R S
S R

]
(20)

where

S =


0 rx(p− 1) · · · rx(1)

rx(1− p) 0 · · · rx(2)
...

...
. . .

...
rx(−1) rx(−2) · · · 0

 (21)

The matrix S never needs to be formed explicitly as C is
simply a Toeplitz matrix with columns described by a circular-
shift of the first column of the matrix given by:

c1 = [rx(0)rx(1) · · · rx(p− 1)0rx(1− p)rx(2− p)
· · · rx(−1)]

(22)

Now we form a new matrix-vector product as:

C ·
[
ak
0n

]
=

[
R S
S R

]
·
[
ak
0n

]
=

[
Rak
Sak

]
(23)

Note that the vector
[
ak 0n

]T
is simply the vector ak zero

padded to the length of c1 and will be noted xp . Then the
equation (21) will be rewritten as:

C · xp =
[
Rak
Sak

]
(24)

The product Rak can be computed efficiently using the
following algorithm [16]:
- Compute Xp = FFT (xp).
- Compute w = FFT (c1) .
- Compute the element wise vector-vector product H =
Xp � w.
- Compute z = IFFT (H).
The p first elements of the vector z constitute the product Rak.
since the FFT algorithm can be done in O(plogp) operations,
the product Rak can be also obtained in O(plogp) operations
[16], [17]. Figure (3) shows the block diagram illustrating the
fast matrix-vector multiplication.

  ISSN: 2692-5079

Volume 1, 2019 99



Fig. 3. Block diagram illustrating the fast matrix-vector multiplication

Fig. 4. Block diagrams of the CDGNN model

B. Proposed architecture of CDGNN

To compute the product z3 = RT z2 , we just replace R
by RT and ak by z2 . We note here that the matrix RT is
Toeplitz, then it can be generated only by its first row and first
column. Furthermore the Teoplitz matrix RT can be embedded
into a circulant matrix CT . Let c̃1 be the first column of the
matrix CT and w̃ its Fourier transform. The block diagram
realizing and the detailed architecture of the proposed neural
network are shown in the figures (4) and (5) respectively. As
we can see, the FFTs of the column c1 and c̃1 constitutes the
connection weighting of the neural network. So we have just
4p weighting function instead of 2p2 in the original DGNN.
The entire circuit contains 4 blocks FFT/IFFTs, 2p adders of
2 elements, p time-delays, and 4p weighted connections.

Fig. 5. Architecture of the proposed neural network

C. Complexity and Comparison

The complexity of a neural network is defined as the total
number of multiplications per iteration. Since the FFT/IFFT
algorithm using p points requires 0.5plogp multiplications,
then it can be seen that the proposed neural network model
requires 5p + 4plog2p multiplications per iteration instead
of 2p2 + p for the original DGNN model. As result, the
computational complexity of the proposed neural network is
reduced to O(plogp) multiplications.
Concerning the memory storage, in addition to O(plogp)

memory required for the FFT/IFFT blocks, we need to store
the 6n elements of the vectors c1,c̃1,b , and the outputs, thus
only O(plogp) elements need storage in the proposed CDGNN
model instead of O(p2) elements in the original model.

Fig. 6. Computational complexity of the two networks

V. COMPUTER SIMULATIONS

Computer simulations have been performed to assess the
performance of the proposed method in term of accuracy and
computational complexity. In the first experiment,we will show
the effectiveness of the CDGNN model for the AR parameters
estimation. While in the second experiment,we will consider
the estimation of a stationary process consisting of a mixture
of two complex sinusoids corrupted by an additive zero-mean
Gaussian noise.

A. AR parameters estimation

Let x(n) an AR(4) process given by

x(n) = 2.0371x((n−1)−2.4332x(n−2)+1.7832x(n−3)
− 0.7019x(n− 4) + e(n) (25)

where the input process e(n) is a white Gaussian process with
zero mean and variance σ2

e . In this example, we let the number
of process samples N = 64 , and h = 10−4 and γ = 195000.
Figures (7)and (8) show the convergence behaviour of the
original network and its simplified version. As we can see
from figure (7), starting from a random initial state a0 , the two
networks converge in the same manner to the true parameters
which implies the correctness of the proposed scheme. In the
figure (8), we show the convergence error of the two networks,
the residual error for the two networks is about 10−14 after
convergence.

B. Spectrum estimation

The data used in this example consists of two sinusoids
embedded in noise.

x(n) =
2∑
k=1

Ak cos(2πfkn) + e(n), n = 1, 2, · · · , N (26)
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Fig. 7. Convergence behaviour of the state trajectory.

Fig. 8. Convergence error of the two neural networks.

The added noise e(n) is white Gauusian. The amplitudes and
frequencies of sinusoids A1, A2, f1andf2 were chosen as
1,1.5,0.1 and 0.3 respectively. The data samples we used in
this simulation was 256. The neural network parameters were
chosen as h = 10−4,γ = 500, the model order p = 8 and the
number of the FFT points is 512. Figure (9) shows the power
spectral densities obtained by the use of the original method
cited in [5] and the proposed one. As we can see, the two
Methods lead to a similar results.

VI. CONCLUSION

Recurrent neural networks are very useful as computational
models for solving computationally intensive problems due to
their inherent nature of parallel and distributed information
processing. The Toeplitz structure of the correlation matrix
allows us to design a compact implementation of the gradient
based neural network for solving Toeplitz systems using the
fast Fourier transform to compute the neural network activa-
tion. The proposed reduced neural network is very suitable
for estimating the AR parameters of models with large order.

Fig. 9. Spectral density estimation using the proposed scheme

Computer simulations show that the proposed algorithm is
very suitable for AR parameters and spectral density estima-
tion.
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[10] P.S.Stanimirović ,M.D.Petković and D. Gerontitis ,Gradient neural net-
work with nonlinear activation for computing inner inverses and the
Drazin inverse, Neural Process. Lett. , 48, 109–133, 2018.
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