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Abstract: - The Chezy-Manning equation has long been the macroscopic description of flow in real channels, and 
its foundation is the balance of Newtonian mechanical forces. This Article presents the development and 
verification of a new equation of average velocity in the flow, defined this time in terms of electric forces (Van 
der Waals), having the same structure as the classical equation. Its application can be very broad, since in addition 
to having a new and powerful theoretical tool, in engineering practice it allows reducing the degree of uncertainty 
in the measurement of natural channels. The validity of the Elder equation, which links hydraulics and Dispersion, 
is analyzed here and an adjustment to its application is proposed, considering the Longitudinal Transport 
Coefficient as a function of time. 
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1. Introduction 

Environmental and Hydraulic Impact studies use 
advanced software models that require feeding with 
precise data that adequately represents the complex 
reality of natural channels. Although these models 
have advanced a lot, serious limitations persist in the 
quality and quantity of the data series, since the 
theoretical tools have not advanced at that pace, and 
isolated techniques and concepts are available, which 
are approximate in their domain. local” application, 
its general validity is limited and meager, especially 
in large channels. The foundations of the problem 
and an alternative model that can solve it are then 
presented. 
 

2. Problem Formulation. 
 

2.1 The problem of modeling environmental 

impacts: The basic concepts. 

 
Industrial Society generates an astronomical amount 
of waste of all types that in a certain percentage end 
up in natural channels, negatively impacting the 
quality of the resource. To characterize and control 
this, multiple efforts have been developed in the 
physics and chemistry of the evolution of pollutant 
transport in flows. 

A first result was Taylor's one-dimensional mass 
balance equation in 1954, where C and U are average 
values of the concentration and velocity over the 
cross section of the flow, Ayz, and D as the 
longitudinal dispersion coefficient. [1]: 
 

  𝜕𝐶

𝜕𝑡
+ 𝑈

𝜕𝐶

𝜕𝑋
= 𝐷

𝜕(
𝜕𝐶

𝜕𝑋
)

𝜕𝑋
                                   (1) 

 
Although it was accepted that the main cause of the 
dispersion of the pollutant was the variation of the 
elemental velocities over Ayz, thanks to the shear 
effect, the process could be approximated by a 
Fickian expression (including concentration 
gradients). Likewise, Taylor found that a value of D 
for the case of a long, straight tube, with Radius a, the 
density of water, ρ, and τo, as the “shear stress” 
(tangential tension of the edge in the viscous 
medium). 

 𝐷 ≈ 10.1 ∗ 𝑎 ∗ √
𝜏𝑜

𝜌
                               (2) 

  
Based on this analysis, in 1959, J.W. Elder[2], 
applying velocity variations on the vertical axis, Δvz, 
in accordance with the logarithmic (turbulent) 
definition of the velocity distribution in a viscous 
medium, according to Prandtl. [3][4]. Figure 1. 
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 Figura 1.- Perfil no lineal de velocidad 
  
Elder found for an open channel of infinite width, that 
D could be expressed as: 
 
 𝐷 ≈ 5.93 ∗ 𝑧 ∗ √𝑧 ∗ 𝑔 ∗ 𝑆                   (3) 
 
Where h is the average depth of the flow, S its slope, 
and g the acceleration due to gravity. 
Although Elder's definition could be applied to 
natural flows with some approximation, the 
experimental values in natural channels were 
dispersed in a ratio of 1 to 15, calling into question 
even the Fickian concept of mass transport in 
turbulence. Furthermore, if we consider that the 
analytical solution of the differential equation (1) is 
the basic Fick expression, with M as the mass 
suddenly poured into the flow, and Xo the 
observation distance from the injection point: 
 

 𝐶(𝑋, 𝑡) ≈
𝑀

𝐴𝑦𝑧∗√4𝜋∗𝐷∗𝑡
𝑒−

(𝑋𝑜−𝑈∗𝑡)2

4∗𝐷∗𝑡             (4) 
 
Despite the rigor of Taylor and Elder's previous 
arguments, it was verified that not only did the D 
values not correspond to those actually observed in 
natural channels, but that the asymmetric shape of the 
measured Fickian curve had an “abnormal” bias. 
Figure 2. 
 

               
 
 Figure 2.- Sesgo anormal en la respuesta real. 
 
To help solve this incongruence between theory and 
reality, many hypotheses and procedures were 
presented, with varying degrees of success (and 
failure), among them the method of H.B. Fischer 
[5][6] who considered, unlike Elder, that the primary 
cause of turbulent diffusion was not the vertical 

distribution of velocities, v(z), but the transverse 
distribution of velocities, v(y).  
 
 2.2 Vertical and transversal 

velocity distributions: Two sides of the same 

reality. 
A first consideration to solve the problem is to ask a 
simple first question: How different are the turbulent 
velocity distributions in the vertical axis (Elder) and 
those in the transverse axis (Fischer)? Or put another 
way: Is their nature really different? 
To resolve these questions, it must be observed that 
the basic mechanism for generating the “dispersion” 
itself is the “random separation” of pairs (contiguous) 
of fluid particles, due to a “fluctuation” (difference) 
in the velocities in that pair. of very close points, and 
that produces the separation at different distances of 
the two particles that were initially “united” (at the 
same point). That is, how the action of a du generates 
a dX. [7] Figure 3. 
 

           
Figure 3.- Random separation of a pair of particles  
 
If we idealize the longitudinal velocity field in the 
cross section of the flow, we can separate an average 
velocity, <U>, and the alterations (pulsations) that 
are an “indivisible” mixture between wave and 
turbulent motion, du, [8][9] 
 
 𝑈(𝑥) ≈< 𝑈 > +𝑑𝑢                                         (5) 
 
If it is considered that “the entire” systematic part of 
the water movement, and therefore equal, is 
concentrated in <U>, then the total variations will be 
concentrated in du. 
Since the part of this definition that generates the 
separation is du, the question now arises whether this 
differential will be different if it is placed on the Z 
axis or the Y axis. Clearly not, because the speed 
differentials are due only to turbulence, and if this  
is considered approximately homogeneous and 
isotropic [10], we have approximately that: 
 
 𝑑𝑢 ≈ 𝑑𝑌 ≈ 𝑑𝑍                                                (6) 
 
Therefore, the hypothesis of H.B. Fischer, an 
essential difference in the distribution of increases in 
turbulent velocity according to the axis, as a cause of 
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the theory-reality discrepancies for the movement of 
tracers, is not supported as an underlying reason. 
 
 2.3 The Longitudinal Diffusion Coefficient as a 

function of time. 

 
Now, although in the various developments proposed 
to solve the problem, the value of the Coefficient D 
itself is a function of certain parameters, as seen in 
equations (2) and (3), if these do not vary, it is 
assumed that D would not vary either. , that is, it is 
not considered a function of time, since this fact 
would introduce certain problems of interpretation of 
the dispersion mechanism, such as the idealization of 
the “uniform flow” condition [11][12]. An interesting 
idea that has been presented previously, but has not 
been developed in detail [13] is that the Coefficient 
D should be a function of time. 
If you see closely, the temporal nature of the 
Transport Coefficient is a no small issue from the 
point of view of Mechanics, it involves the notion of 
relative motion and its relationship with various 
inertial observers [14]. 
A first mobile observer located at the peak of the 
distribution, moving at speed U, does not compose it 
(U=0) and describes the Fickian dynamics of a 
symmetrical tracer plume, as shown in Figure 4. 
 

                 
Figure 4.- Symmetrical kinematic composition of the 
plume. 
 
A second fixed observer located on the bank of the 
channel does compose the velocity U, such that U>0, 
and describes the Fickian dynamics of an asymmetric 
tracer plume, as shown in Figure 5 
 

              
Figure 5.- Asymmetric kinematic composition of the 
plume. 
 
In this case, with the average velocity U, two other 
opposite velocities are composed: +vd and -vd, 

associated with the movement of diffusion, 
expanding to both sides of the central point of the 
mass injection. This composition leads to the initial 
segment of the Fickian curve being much steeper than 
the subsequent segment, generating the bias that is 
observed experimentally. 
The net velocity, composed kinematically as a 
function of time, can then be described: 
 
 𝑈(𝑡) =< 𝑈 > ∓𝑣𝑑                                          (7) 
 
Since the motion of the tracer is described as a 
Brownian one, it can be written in a general way as 
[15]: 
 

 𝑣𝑑 ≈
∆

𝜏
≈

√2𝐷𝜏

𝜏
≈ √

2𝐷

𝜏
                                      (8) 

 
Here, the “characteristic time”, τ, can be expressed as 
a function of the general time, t, in the following way, 
incorporating the Feigenbaum Number, δ, in such a 
way that the self-similar, chaotic nature of the 
phenomenon is manifested. [16] 
 
 𝜏 ≈

𝑡

𝛿
≈

𝑡

4.669
≈ 0.2142 ∗ 𝑡                              (9) 

 
And you can define a State Function, Φ(U,E,t), 
that complies with the following: 
 
 ∮𝑑𝛷 = 0                                                          (10) 
 
And 

      𝛷 ≈
𝑣𝑑

𝑈
≈

√
2𝐷

𝜏

𝑈
                (11) 

 
From here then, the average velocity is: 
 

 𝑈 ≈
1

𝛷
√
2𝐷

𝜏
                                                       (12) 

 
This equation has the same mathematical structure as 
the classical Chezy-Manning relationship, for the 
mean velocity of uniform flow, using mechanical 
quantities. [17]: 
 

 𝑈 ≈
𝑅
2
3

𝑛
√𝑆                                                       (13) 

 
In equation (13) the source magnitude of the 
movement is gravitation acting through the slope, S≈ 
dy/dx, while in equation (12) they are the electric 
forces (Van der Waals) acting through the state 
function , Φ. 
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This function reflects the exchange of energy 
between the mass of the tracer and its liquid 
environment, basically due to the expenditure of 
Enthalpy of formation, which is expelled as heat to 
the outside. As this process depends on the square 
root of the Concentration, √C, it can be shown that 
the expression of Φ depends on this factor.[18] 
Figure 6. 
 

              
  Figure 6.- State function Φ(t). 
 
Actually, what the Φ(t) curve represents is a phase 
transition, in which the solid tracer becomes a gas, 
which occurs at the point Φ≈0.38, at which almost all 
of the mass of the tracer is lost. their mutual 
interactions, and the description from there is 
properly of water in turbulence. This point is very 
important because the practical description of this 
state does not require the use of non-linear 
differential expressions.[19] 
 

2.1 Data obtained from the tracer curve. 
 
When a mass M of tracer is injected abruptly, a tracer 
concentration distribution is generated that 
corresponds to the solution of the Taylor equation 
(1), and is the Fick equation (4), only if we do not 
have consider that the Coefficient of Dispersion is a 
function of time, D(t), its development will not 
appropriately replicate the experimental data, in 
particular it will present incorrect bias. 
The way to correct this problem is to solve for D(t) 
from equation (12) and replace it in (4), as shown 
below, where to is the time measured after passing 
the peak of the distribution at the point of 
measurement: 
 
 𝐷 ≈

𝛷2∗𝑈2∗0.214∗𝑡𝑜

2
               (14) 

 
And then: 

 𝐶(𝑋, 𝑡) ≈
𝑀

𝑄∗𝛷∗𝑡∗1.16
𝑒
−

(𝑡𝑜−𝑡)2

2∗0.214∗(𝛷∗𝑡)2                (15) 
 
In this expression Q≈U*Ayz, is the flow rate (in l/s) 
and t is the general time. The validity of this equation 
is verified when the experimental curve agrees with 

the model, and the correct dispersive data are those 
that allow this coincidence: basically, the Φ(to) data, 
the flow rate and the average velocity, U(to), having 
the Xo data and the Mass, M in μg if a fluorescent 
tracer is used, such as Rhodamine WT or Fluorescein. 
These data are obtained from the special 
measurement equipment, FLUVIA F-1[20], but can 
also be calculated from the tracer curves of cases that 
have not been measured with said equipment. Figure 
7. 

                       
 
 Figure 7.- Tracer measurement equipment. 
 
2.3 Calculation of roughness and its 

verification with Elder's equation. 
 
The existence of a definition of the mean flow 
velocity that is based on Newton forces, the Chezy-
Manning equation (13), and also on Coulomb forces 
(12), allows the calculation and verification of 
hydraulic data (sometimes difficult to obtain) from 
Dispersion data (easier to achieve). In this way, a data 
such as the Roughness of a flow, n, can be stated by 
equating (12) and (13) as follows:  
 

 𝑛 ≈
𝛷∗𝑅

2
3∗√𝑆

√
2𝐷

𝜏

                                                      (16) 

 
3 Analysis of an experimental case. 
To apply the methodology explained here, an 
experiment carried out by H.B. Fischer in the Caltech 
calibrated channel, in 1966. Figure7. [21][22]  
 

         
 
    Figure 7.- Caltech Calibrated Channel. 
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Likewise, the two consecutive results of injecting a 
saline solution are shown, at Xo1=14.05 m and 
Xo2=25.06 m. [23] Figure 8 
 

             
 
Figure 8.- Salt tracer curves at two distances. 
 

3.1 Channel data.  

 
This experiment was carried out in the 40.0 m 
calibrated channel of the M. Keck Laboratory of 
hydraulics of CALTECH, especially the experiment 
called “Series 2700”, with adjustable slope and bed 
material. The geometric data of the channel are as 
follows, Table 1: 
 
                        Table 1: Channel data 

Specifications Characteristics Metrics. 
 

Shape Rectangular  Ayz≈0.140 m2 
Distance Xo1 linear Xo1=14.06 m 
Distance Xo2 linear Xo2=26.06 m 
Bottom Smooth Wide=1.09 m 
Sides Smooth Depth=0.128 m 
Slope Mechanical adj. S≈0.0002  min. 
Hydraulic radius Mean value of flow R≈0.104  m 

 
3.2 Datos de la Advección y dispersion y 

datos de la modelación con la ecuación (4). 
 
Los datos del transporte advectivo y dispersivo se 
muestran en el siguiente Table 2. 
 
 Table 2:  Tracer experiment two points data 

Specifications Characteristics Metrics. 
 

Mass of saline 
solution (NaCl). 

Ionic tracer to be 
measured with 
conductivimeter 

 M≈40500 mgr 

Time of observation 
at Xo1 

Measured in 
peak of 
distribution 

to1≈ 38.5 s 

Time of observation 
at Xo2 

Measured in 
peak of 
distribution 

to2≈ 68.8 s 

Mean Velocity Measured in 
peak of 
distribution 

 
U≈0.372 m/s 

Shear Velocity         ----- U*≈0.0159 m/s 
Discharge         ----- Q≈ 50.8 L/s 
State function at to1          ----- Φ1≈0.137 

State function at to2         ----- Φ2≈0.130 
Longitudinal 
Diffusion 
Coefficient at to1 

 
As time function  

 
D1≈0.0106 m2/s 

Longitudinal 
Diffusion 
Coefficient at to2 

 
As time function 

 
D2≈0.0169 m2/s 

 
The modeling of the two tracer curves using the 
“Modified Fick” equation (4) is shown below, 
superimposed on the experimental data, showing that 
the simulation is quite good, representing the 
asymmetries of the real curves. Figure 9. 
 

      
 
Figure 9.- Modeling of saline tracer curves at two 
distances. 
 

3.3    Calculation of the Manning Roughness of 

the channel from the new equation. 

 
The great advantage is that this experiment with a salt 
tracer is profusely documented, although the value of 
the channel roughness is not in the list of values, so it 
is interesting to calculate it with (16) and then review 
its probable value in a Table of roughness. 
Considering the initial data from both the channel and 
the tracer experiment, its value is solved according to 
equation (16). For the two measurement points, like 
this: 
 

𝑛1 ≈
𝛷1∗𝑅

2
3∗√𝑆

√
2𝐷1

𝜏1

≈
0.137∗0.104

2
3∗√0.0002

√
2∗0.0106

0.214∗38.5

≈ 0.0085             (17)                                    

 
And: 
 

𝑛2 ≈
𝛷2∗𝑅

2
3∗√𝑆

√
2𝐷2

𝜏2

≈
0.130∗0.104

2
3∗√0.0002

√
2∗0.0169

0.214∗68.8

≈ 0.0085             (18)  

                                   
The two values are coincident with the figure of 
n≈0.0085, a value that is the reference figure for 
artificial laboratory channels, in the text of V.T. 
Chow [24]. 
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 3.4  Verification of the Slope, S, with Elder's 

equation. 

 
Considering that Elder's equation is valid for all types 
of velocity distribution (vertical or transversal), it 
will be applied to this experiment for which the 
maximum depth, h≈0.128 m, and the shear velocity, 
U*≈0.0159 m/s, are known, therefore, for the two 
distances the Slope is solved: 
 
 𝑆 ≈

𝐷2

35.2∗ℎ3∗𝑔
                                                        (19) 

 
Then: 
 
 𝑆1 ≈

𝐷12

35.2∗ℎ3∗9.83
≈

0.01062

345.7∗0.1283
≈ 0.00016                (20)    

 
And:                                          
 
 𝑆2 ≈

𝐷22

35.2∗ℎ3∗9.83
≈

0.01692

345.7∗0.1283
≈ 0.0004              (21) 

 
The average value of these values is <S>≈0.00028, 
that is, with a percentage error of 40% but within the 
same order of magnitude. This error probably 
corresponds to the fact that, as Elder's formula for 
“D” is defined, this parameter does not depend on 
time, but as has been shown here, this dependence 
does exist, therefore the behavior of the Elder relation 
actually it should be expressed graphically as in 
Figure 9.  
 

              
Figure 9. Time dependence of the Elder equation.  
 
This means that Elder's equation must necessarily be 
interpreted as a function of time, and that there will 
be an “optimal observation time”, too. This time can 
be established with an “Estimation Function”, as 
expressed below. 
 

 𝐹 ≈ 𝛷2 ∗ 𝜏 ∗ (
𝐶2

2
) ∗ (

ℎ

𝑅
) ∗ √

𝑆

ℎ∗𝑔
        (22) 

 
Here for simplicity we have written “C” is the Chezy 
constant, which is: 
 

 𝐶 ≈
𝑅
1
6

𝑛
≈ 82.0                                          (23)                            

 
 This estimate is exactly F=5.93, for the optimal time, 
t=too. To determine this optimal time, interpolations 
of values of the time-dependent factor Φ2*τ are made 
(since the other values are not considered temporal 
functions with known values) and we have that 
F≈5.95 (with an error of 0.4%) with Φ ≈0.132 , too≈ 

46.4 s. and D(too)≈ 0.0121 m2/s. for S≈0.0002, in the 
Caltech channel experiment.  
 

3.5  Methodology to establish approximate 

values of hydraulics based on the average 

velocity equations and the Elder equation. 

 
With the tracer, Dispersion and Advection data are 
obtained, which can be approximately extrapolated 
from the development of the State Function. In this 
way, values can be proposed at a relatively large 
distance from Φ(t). Using an average value of the 
depth, h, and the average width, which are measured 
by bathymetry or by detailed observation, the slope 
of the channel, S, is obtained. , the Cross Section, 
Ayz, and from there we can solve for the Manning 
roughness, n. Figure 10.  
 

 
 
 Figure 10. Approximate measurement of “far” 
values of hydraulics and geomorphology by Φ(t). 
 
This extrapolation is possible as long as the channel 
is in “dynamic equilibrium”, when the production of 
entropy is minimal and the differences between the 
values have minimum variance.[25]. 
 
4. Conclusions 
 
1.- With a new equation for the average velocity of 
the flow in a non-uniform regime, it is possible to 
introduce a Longitudinal Transport Coefficient, D(t), 
as a function of time, which eliminates the errors that 
are introduced in the formation of the tracer plume 
model. allowing the experimental bias to be 
appropriately reproduced. 
 

EARTH SCIENCES AND HUMAN CONSTRUCTIONS 
DOI: 10.37394/232024.2024.4.10 Alfredo Jose Constain Aragon

E-ISSN: 2944-9006 93 Volume 4, 2024



2.- This temporal dependence of the longitudinal 
transport coefficient arises from the existence of a 
State Function that describes the evolution of the 
tracer in turbulence. This function describes the 
phase transition of the tracer in the flow, and its 
statistical coupling with it. 
 
3.- Historical objections to the validity of the Elder 
equation, which defines D(t) are not founded, since 
turbulence can be approximated as an isotropic 
phenomenon, and the nature of the vertical 
distribution of velocities is not distinguished in 
principle. of that of Lateral Distribution. 
 
4.- Using the Chezy-Manning (13), Van der Waals 
(12), and Elder (3) equations with adjustments, it is 
possible to propose a methodology for measuring 
parameters in natural channels, minimizing 
uncertainties. 
 
5.- This methodology is verified in the experiment 
carried out by H.B: Fischer in the Caltech calibrated 
channel in 1966, which was documented in great 
detail. 
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