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Abstract: Nuclear reactors serve approximately 10% of the world’s energy usage, and over 430 Nuclear Power 
Plants (NPP) are currently built globally. They are safety-critical systems as neutron flux density in the nuclear 
reactor core has to be critically controlled within limits. The parameters of a reactor core should be monitored 
and optimally regulated to increase the performance of the system. Also, any fault in an NPP system may 
potentially compromise plant safety. Thus, implementing early Fault Detection and Diagnosis (FDD) techniques 
becomes crucial. With considerable advancements in computational speed and electronics becoming cost-
effective, Artificial Intelligence (AI) has grown implausible in recent times. This review article discusses on few 
AI techniques to optimally control the neutron flux density and design an effective fault diagnosis algorithm to 
detect sensor faults in the nuclear reactor core. 

Keywords: Fault diagnosis; Neural Networks; Artificial Intelligence; Optimization Techniques; Nuclear reactor, Swarm 
Inteligeence
Received: March 11, 2024. Revised: August 9, 2024. Accepted: September 13, 2024. Published: October 17, 2024.  

 
 

 

1. Introduction 
Power regulation and early fault detection are 

crucial in a safety-critical process like a nuclear 
reactor. Whether nuclear energy is produced 
independently or in a combined cycle with other 
renewables, artificial intelligence may play a critical 
role in proceeding with innovation regardless of the 
future guidelines enacted to satiate the world's 
energy demand. Computational intelligence has long 
been considered to have a variety of uses in the 
nuclear sector. Artificial intelligence has progressed 
tremendously in recent years due to computing 
power and cheaper hardware developments. 
Approximately 10% of the world's electricity is at 
present produced by nuclear reactors, and more 
nuclear power stations are enthusiastically being 
built across the globe. However, the nuclear sector 
was under pressure to innovate following a few 
nuclear accidents like Fukushima, Three-mile Island 
and Chernobyl, particularly in affluent nations.  

The paper by Suman [1] briefly overviews the AI 
techniques reported in the literature for application in 
the nuclear power sector. The author highlights AI 
algorithms like Neural Networks [2,3], Genetic 
Algorithms [4,5,6], Particle Swarm Optimization 
[7,8], Ant Colony Optimization [9,10], Artificial Bee 

Colony Optimization [11,12], Simulated annealing 
[13] and Support vector machine [14,15] which are 
applied to the nuclear energy sector. The author also 
mentions the following AI application areas: 

 Load following operation 
 Fuel management 
 Fault diagnosis in nuclear power plant 
 Identification of nuclear power plant 

transients 
 Identification of accident scenario 
The nuclear energy industry is driven to 

innovate, and new reactor designs are marketed as 
inherently safe, reliable, cost-effective, and versatile. 
Current nuclear reactors aim to increase safety, 
maintain availability, and lower operating and 
maintenance costs. The studies focusing on 
integrating the capabilities of artificial intelligence in 
the nuclear industry have come a long way and the 
time has come to teach this in upcoming advanced 
nuclear power plants [90]f 

. The objective of this paper is to investigate two 
such areas in NPP where AI techniques can be 
implemented. They are as follows: 

 Utilization of Swarm Intelligence 
algorithms for the design of optimal PID 
controller that regulates neutron density.  
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 Utilization of Neural Networks for state 
estimation and fault detection in Pressurized 
Water Reactor core.  

An extensive literature survey is carried out to 
gain insights into the above two technologies. 
Abbreviations used in this article are listed in Table 
1.  
 

Table 1: Abbreviations 
AI Artificial Intelligence 
ACO Ant Colony Optimization 
AGR Advanced gas-cooled reactor 
ART1 binary Adaptive Resonance 

Network 
AVR Automatic Voltage Regulator 
BRNN Bayesian Recurrent Neural 

Network 
BWR Boiling water reactor 
CAN Controller Area Network 
EKF Extended Kalman filter 
FDD Fault Detection and Diagnosis 
FDI Fault Detection and Isolation 
FEM Finite Element Method 
FNR Fast neutron reactor 
GM Gain Margin 
HTGR High temperature gas-cooled reactor  
IAE Integral Absolute Error 
IAEA International Atomic Energy 

Agency 
IMC Internal Model Control 
ISE Integral Square Error 
ITAE Integral Time Absolute Error  
KNN K-Nearest Neighbors 
LRNN Locally Recurrent Neural Network 
LWGR Light water graphite reactor 
MSE Mean Square Error 

NARX Nonlinear Autoregressive Network 
with Exogenous Inputs 

NPP Nuclear Power Plant 
PCA Principal Component Analysis 
PID Proportional-Integral-Derivative 
PHWR Pressurized heavy water reactor 
PM Phase Margin 
PSO Particle Swarm Optimization 
PWR Pressurized Water Reactor 
RBF-
NN 

Radial Basis Function Neural 
Network 

RNN Recurrent Neural Networks 
SISO Single Input Single Output 
SVM Support Vector Machine 
TEP Tennessee Eastman Process 
UKF Unscented Kalman Filter 

 

2. System Description 

2.1 Nuclear reactor  

In a nuclear reactor, energy is released by 
splitting atoms of radioactive elements. This energy 
is captured as heat in either a gas or water and is 
utilised to generate steam. It is released from the 
regular fission of the fuel's atoms. The steam powers 
the electricity-generating turbines (as in most fossil 
fuel plants). Among the several nuclear reactor types, 
Pressurized Water Reactors (PWR) are the most 
prevalent, as depicted in Table 1.1 (Source: 
www.iaea.org). According to the International 
Atomic Energy Agency's (IAEA) nuclear power 
status report [16] approximately 308 PWR-type 
nuclear reactors are providing 294.8 GW of power 
worldwide. 

 

Table 2 Operable Nuclear Power Plants 

Reactor Type Number  Power 

(GWe) 

Fuel Coolant Moderator 

Pressurized water reactor (PWR)  308 294.8 Enriched UO2 Water Water 

Boiling water reactor (BWR) 61 61.9 Enriched UO2 Water Water 

Pressurized heavy water reactor 
(PHWR) 47 24.3 Natural UO2 Heavy water Heavy 

water 

Light water graphite reactor (LWGR) 11 7.4 Enriched UO2 Water Graphite 
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Advanced gas-cooled reactor (AGR) 8 4.7 Natural U,  
Enriched UO2 CO2 Graphite 

Fast neutron reactor (FNR) 2 1.4 PuO2 and 
UO2 

Liquid 
sodium None 

High temperature gas-cooled reactor 
(HTGR) 1 0.2 Enriched UO2 Helium Graphite 

 
Pressurized Water Reactors utilizes water as 

both moderator and coolant. The design is eminent 
by a primary cooling unit which flows water via the 
core of the reactor with very high pressure, and a 
secondary unit which produces steam to drive the 
turbine [17]. This PWR is also known as water-water 
energetic reactors (VVER) in Russia. A PWR has 
vertically arranged fuel assemblies with 200-300 
enriched uranium filled fuel rods. 

Since the water in the reactor core attains a 
temperature of around 325°C, it must be reserved 
under a pressure of nearly 150 times that of the 
atmosphere to avoid boiling. In a pressurizer as seen 
in Figure 1.5 [18], steam preserves the pressure.  
Water serves as a moderator in the primary cooling 
circuit. If any of it went to steam, the fission reaction 
would be slowed. This is the negative feedback 
effect. The fission reaction can be controlled or shut 
down by the use of control rods. Control rods are the 
chief control element of the reactor core. Water boils 
in the heat exchangers, which acts as steam 
generators, in the secondary unit due there is less 
pressure there. The steam condenses and returns to 
the heat exchangers in contact with the primary 
circuit after powering the turbine to generate 
electricity [88]. 

2.2 Pressurized water reactor model 

The reactor power model is built on point kinetic 
equations with three groups of delayed neutrons  
cri, i = 1,2,3; and reactivity feedback is affected by 
changes in fuel and coolant temperatures [19, 89]. 
There are seven state variables in this SISO model. 
The following are the equations for a Pressurized 
water nuclear reactor core:  

The three groups' delayed neutrons-based point 
kinetic equations are 
d𝑛𝑟

d𝑡
=

𝜌𝑡−𝛽

Λ
𝑛𝑟 + ∑  3

𝑖=1
𝛽𝑖

Λ
𝑐𝑟𝑖                                            (1) 

d𝑐𝑟𝑖

d𝑡
= 𝜆𝑖𝑛𝑟 − 𝜆𝑖𝑐𝑟𝑖, 𝑖 = 1,2,3                                        (2) 
 

 

 

Figure 1 Layout of Pressurized Water Reactors [18] 

Where 𝑛𝑟 is normalized neutron density, 𝑐𝑟𝑖 
is ith group normalized delayed neutron precursor 
density. Delayed neutrons are neutrons produced 
during the radioactive decay of certain neutron-rich 
fission fragments. They are produced within a few 
milliseconds to seconds after the fission reaction.  
These delayed neutrons are grouped into three or six 
groups. 
The reactor’s thermal-hydraulic model is given by, 
d𝑇𝑓

d𝑡
=

𝑓𝑓𝑃0

𝜇𝑓
𝑛𝑟 −

Ω

𝜇𝑓
𝑇𝑓 +

Ω

2𝜇𝑓
𝑇𝑖𝑛 +

Ω

2𝜇𝑓
𝑇out              (3) 

d𝑇𝑐

d𝑡
=

(1−𝑓𝑓)𝑃0

𝜇𝑐
𝑛𝑟 −

(2𝑀+Ω)

2𝜇𝑐
𝑇out +

(2𝑀−Ω)

2𝜇𝑐
𝑇in       (4) 

Where 𝑇𝑓 is Fuel average temperature and 
𝑇𝑐  is Coolant average temperature. 𝑇𝑖𝑛, 𝑇out  are 
coolant inlet and outlet temperatures respectively.  

Nuclear reactors use the essential term 
"reactivity" to describe when a reactor system 
deviates from criticality. A shift toward 
supercriticality is indicated by addition of small 
positive value. A shift toward subcriticality is 
indicated by addition of small negative value. This 
reactivity changes as the speed of the control rod 
variations, as does the total reactivity is 
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d𝜌rod 
d𝑡

= 𝐺𝑟𝑍𝑟                     (5) 

𝜌𝑡 = 𝜌𝑟𝑜𝑑 + 𝛼𝑓(𝑇𝑓 − 𝑇𝑓0) + 𝛼𝑐(𝑇𝑐 − 𝑇𝑐0)        (6) 
𝜌rod is the reactivity induced due to control 

rods and 𝜌𝑇 is the reactivity induced due to fuel and 
coolant temperatures. 𝜌𝑡 is total reactivity. Also 
𝜇𝑐 , 𝑀, Ω, 𝛼𝑓,and 𝛼𝑐are related to initial equilibrium 
neutron density (𝑛𝑟0). The following equations 
demonstrate the dependency. 

𝜇𝑐 = (
160

9
) 𝑛𝑟0 + 5                                               (7) 

Ω = (
5

3
) 𝑛𝑟0 + 4.9333                                          (8) 

𝛼𝑓 = (𝑛𝑟0 − 4.24) × 10−5                                   (9) 
𝛼𝑐 = (−4𝑛𝑟0 − 17.3) × 10−5                            (10) 
The reactor power is expressed as,  
𝑝𝑡 = 𝑝0𝑛𝑟(𝑡)                                                       (11) 
The reactor model's parameters and values are listed 
in Table 2 and Table 3. 

 

Table 2. Parameters in PWR model 

P0 Full core power, MW 

nr 
Normalized neutron density (relative to neutron density at rated power 
P0) 

cri 
ith Group normalized precursor density (relative to density at rated 
power) 

Tf Fuel average temperature, oC 
Tf0 Fuel average temperature at the initial condition, oC 
Tc Coolant average temperature, oC 
Tc0 Coolant average temperature at the initial condition, oC 
Tin Coolant inlet temperature, oC 
Tout Coolant outlet temperature, oC 
𝜌𝑡 Total reactivity, 𝛿K/K 

𝜌𝑟𝑜𝑑 Reactivity due to control rod movement, 𝛿K/K 
𝜌𝑇 Temperature reactivity feedback, 𝛿K/K 
Zr Control rod speed, fraction of core, length/s 
Gr Control rod total reactivity, 𝛿K/K 
𝛽 Effective delayed neutron fraction 
𝛽𝑖 ith group effective delayed neutron fraction 
𝛼𝑐 Coolant temperature coefficient, (𝛿K/K) / oC 
𝛼𝑓 Fuel temperature coefficient, (𝛿K/K) /  oC 
𝛬 Neutron generation time, s 
𝜆𝑖 ith Delayed neutron group decay constant, s-1 
𝛴𝑓 Macroscopic thermal neutron fission cross-section, cm-1 
𝑣 Average number of neutrons produced per fission of 235U 
G Useful thermal energy liberated per fission of 235U, MW-s 
V Core volume, cm3 
ff Fraction of reactor power deposited in the fuel 

𝜇𝑓 Fuel total heat capacity, MW.s/ oC 
𝜇𝑐 Coolant total heat capacity, MW.s/ oC 
M Mass flow rate time heat capacity of water, MW/ oC 
𝛺 Coefficient of heat transfer between fuel and coolant, MW/ oC” 

Table 3 Values of parameters used in reactor model 
Parameters Values 

Thermal power 3000 MW 
Core height 400 cm 

Core radius 200 cm 
Σ𝑓 0.3358 cm-1 
𝐺 3.2 × 10−11 MW ⋅ s 
𝐺𝑟 14.5 × 10−3 𝛿K/K 
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𝑇in 290∘C 
𝜇𝑓 26.3 𝑀𝑊 𝑠/∘C 
𝑓𝑓 0.92 
𝛬 10−4 s 
𝛽 0.0065 
𝛽1 0.00021 
𝛽2 0.00225 
𝛽3 0.00404 
𝜆1 0.0124 s−1 
𝜆2 0.0369 s−1 
𝜆3 0.632 s-1 

 

3. Review of swarm intelligence 

algorithms for control 
Swarm Intelligence is one of the progressive 

research areas in the domain of Artificial 
Intelligence, which has become prevalent in solving 
various optimization problems and thus has a wide 
range of applications. Specifically in the control 
domain, it has become one of the useful methods for 
optimally tuning the controller parameters to 
achieve efficient control [12].  Swarm Intelligence is 
driven by the cohesive nature of the social insect 
territories or other animal communities [104]. 

Optimization is the procedure of finding the best 
inputs u* in obtaining the optimal output y* with 
minimum cost J*. Optimization problem is solved 
by choosing the design parameter, then formulating 
the constraints and defining a cost function. The aim 
of the cost function is to determine a value for 
chosen design parameter satisfying the given 
constraint that delivers the optimum response. With 
respect to controller tuning, optimization algorithms 
will provide optimal controller tuning parameters 
that minimize the error and control effort [23].  

Around 90% of control loops in the process 
industries use the PID control algorithm. This wide 
application is because of its simple structure that 
could be effortlessly understood by process 
operators. A typical structure for a regular PID 
controller comprises three components namely: 
proportional gain kp, integral gain ki and derivative 
gain kd. The derivative gain develops the 
control action according to the rate of change of 
error, the integral gain develops the control action in 
response to the sum of all past errors, and the 
proportional gain produces the control action for 

present error. PID controller tuning is done either by 
trial and error using the operator’s process 
knowledge or by conventional tuning methods.  

The frequently used traditional PID tuning 
techniques, like Cohen-Coon and Ziegler-Nichols, 
may not provide effective tuning parameters due to 
changing process dynamics and inaccurate process 
models [82]. The optimal controller gains for good 
performance can be attained via swarm intelligence 
which is measured in terms of fitness functions such 
as integral square error, absolute error, mean square 
error, etc. These optimization algorithms are simple, 
flexible to search randomly and also avoid local 
optima [24]. 

3.1 Framework 

Essentially, swarm intelligence algorithms are 
iterative stochastic search procedures, where 
heuristic data is shared to perform the search. Figure 
2 shows a general framework for swarm intelligence 
algorithms. It is compulsory to define the parameter 
values prior to the initialization process. 
Initialization and the ensuing strategies set off the 
evolutionary process. A termination condition is set 
to stop the iteration process which may be a single 
condition or a combination of two criteria. The 
fitness function, which can be either one basic 
metric or a combination, is responsible for 
evaluating the search agents. Agents are updated by 
the algorithm until the preceding termination 
condition is met. The best search result is then 
obtained. The execution of each step may occur in a 
varied order for a given swarm intelligence 
algorithm, and some processes may be repeated 
multiple times inside a single iteration. 

3.1.1 Classification 

Swarm Intelligence algorithms mimic the 
collective behaviour of birds or fish or insects that 
are prevalent throughout the ecosystem. As these 
algorithms are widely applied in various engineering 
domains, classifications by various collective 
behaviour were proposed by researchers [25]. The 
rough classification of such algorithms is illustrated 
in Figure 3. A detailed literature study is carried out 
for PSO and ACO algorithms in this article.  
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Figure 2 General Framework of Swarm Intelligence 

Algorithm 

 
 

 
Figure 3 Classification of Swarm Intelligence 

Algorithms 

3.1.2 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a 
popular metaheuristic optimization technique 
inspired by the social behaviour of bird flocking or 

fish schooling [92]. Introduced by Dr. James 
Kennedy and Dr. Russell Eberhart, PSO is widely 
used for solving various optimization problems in 
diverse domains, including engineering, economics, 
medicine, and machine learning (Kennedy 2006). 
PSO has been used in various applications of 
automatic control systems that heavily rely on PID 
controllers.  

Particle swarm optimization simulates the 
behavioural patterns of swarming birds or schooling 
fish. The flowchart of PSO is as shown in Figure 4 
[26]. Each particle/bird has its own position and 
velocity. These particles adjust their velocities to 
alter their position in order to seek meal, avoid 
danger, or identify best possible environmental 
parameters. Furthermore, each particle remembers 
the best location that it has identified. Each particle 
conveys this information about the best location to 
the other particles. The velocity of such particles is 
then updated based on the particle's or the group's 
flying experience. 

 
Figure 4 Flow diagram for Particle Swarm 

Optimization 
 

Gaing provided a thorough explanation of 
how to use the PSO method to quickly find the ideal 
PID controller parameters for an Automatic Voltage 
Regulator (AVR) system [27]. The suggested 
method exhibited excellent characteristics, such as 
simple implementation, consistent convergence 
behaviour, and good computational efficiency. The 
proposed method proved effective and reliable in 
increasing the step response of an AVR system when 
compared to the Genetic Algorithm (GA). 
Moreover, the PSO algorithm is also employed to 
design a fractional order PID controller for an AVR 
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system [29]. In this work, a novel cost which is a 
function of Overshoot, rising time, settling time, 
steady state error, Gain Margin (GM) and Phase 
Margin (PM) is used. 

To execute the optimisation of the 
controller gains and enhance the performance of a 
single-shaft Combined Cycle Power Plant, a 
fractional order fuzzy-PID (fuzzy-FoPID) controller 
based on the PSO algorithm is presented [23]. In 
order to increase the response during frequency 
drops or changes in loading, the proposed controller 
is employed in speed control loops. The simulation 
results demonstrate the performance and efficacy of 
the suggested strategy for frequency decrease or 
loading modification.  

Using PSO, Zeng et al optimized an IMC 
PID controller to stabilise the core power of the 
Molten Salt Breeder Reactor [29]. A control 
technique based on a process mathematical model 
for controller design is known as Internal Model 
Control (IMC). IMC's principle of design is to add 
the inverse of the minimum phase component of the 
model for a single variable system to the system, 
approximate the dynamic inversion of the model by 
the controller, and parallelize the object model with 
the actual object.  

The tuning problem of digital Proportional-
Integral-Derivative (PID) variables for a dc motor 
controlled via the Controller Area Network (CAN) 
was examined by (Qi et al. 2020) [30]. PSO 
technique was introduced to optimally tune the PID 
controller's parameters for systems susceptible to 
stochastic delays. To deal with the stochastic 
characteristics, the optimisation method includes a 
stability requirement for time-delayed systems and 
proposes an objective function with an average 
value for the PSO algorithm. Similarly, much 
research in PSO for tuning controller gains is 
reported in the literature [7,31,32,33]  

 

3.1.3 Ant Colony Optimization 

An algorithm known as Ant Colony 
Optimisation (ACO) was inspired by how ants 
forage. It was initially proposed by Marco Dorigo to 
address the Travelling Salesman Problem and other 
combinatorial optimisation problems. Ants in nature 
interact with one another and build pathways 

between their nests and food sources via 
pheromones. The pheromone trail gets stronger the 
more ants move along a particular path. The quickest 
routes between the nest and the food supply are 
formed by ants generally following the routes with 
higher pheromone levels. This idea is used by the 
ACO algorithm to locate efficient solutions to 
optimisation issues [34, 83]. This principle can be 
used to tune PID controllers.   

Ant colony optimization is a probability – based 
technique in which the optimal route in a plot is 
sought observing the behaviour of ants looking to 
find a path between their colony and a food source. 
The ants find the best route to any distanced food 
source. Refer to Figure 5 to understand the 
mechanisms behind this [26]. First, an ant leaves the 
hives in looking for food and finds it in a particular 
location; the leftover ants will follow the 
pheromones left by the first ant. If there are different 
routes to the same source, the pheromones on the 
quickest route will last longer than the pheromones 
from the other paths, causing the quickest route more 
rewarding for new ants emerging from the nest, The 
pheromone intensity on that path will rise, while the 
pheromone intensity on the longest path will drop. 

 
Figure 5 Flow diagram for Ant Colony 

Optimization 

 

Hsiao et al. (2004) obtained good load 
disturbance response by minimizing the integral 
absolute control error [35]. At the same time, a good 
transient response is guaranteed by minimizing the 
time domain specifications. This study proposes a 
solution algorithm based on the ant colony 
optimization technique to determine the parameters 
of the PID controller for getting good performance 
for a given plant. The proposed method was 
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implemented and tested on several plants with 
promising results that compare with known methods. 

Multiobjective ant colony optimisation was 
utilised by Chiha et al.  to fine-tune PID controllers 
[36]. To find the Pareto-optimal solution, 
multiobjective ant algorithms are required. Results 
from simulations show that the new tuning method 
employing multiobjective ant colony optimisation 
outperforms both the traditional "Ziegler-Nichols" 
approach and genetic algorithms in terms of control 
system performance. Youssef Dhieb et al. employed 
an ACO-tuned PID to eliminate the induction motor's 
harmonics and speed ripple [37]. Using the finite 
element method (FEM), the parameters of this motor 
were determined. Two distinct tuning methods based 
on manual and ACO tuning of PID-controller 
parameters have been presented. 

The control of a levitating object in a magnetic 
levitation plant using a fractional order PID (FoPID) 
controller is presented in [9]. The parameters of this 
FoPID controller have been updated using the 
Ziegler Nichols method and the Ant Colony 
Optimisation (ACO) algorithm. For comparison 
study, the output results of the FoPID controller are 
compared to those of the conventional PID 
controller. In comparison to the conventional PID 
controller, the FoPID controller has demonstrated 
incredibly effective outcomes due to its additional 
parameters.  

Arun & Manigandan constructed an Ant colony 
Optimization-based PID controller for a zeta 
converter [38]. The higher-order zeta converter 
system is reduced to second order using three distinct 
reduction techniques. Then, the ACO-based PID 
controller is designed for a reduced-order process 
and is matched with the full-order zeta converter. 
The results show that the designed controller for the 
zeta converter gives a good response for both 
models, the controller gives good performance 
indices based on ISE, IAE, and ITAE.  Similarly, 
Karami used ACO-tuned PID to Micro-Robot 
Equipped with a Vibratory Actuator [39] and 
Rahman used it for vibration control of a wind 
turbine tower [40] 

4. Fault Detection and Diagnosis 

Techniques  

       Faults are unpermitted deviations from the 
typical behaviour of the process or its 
instrumentation. It is classified as process faults, 
sensor faults and actuator faults conditional on the 
site it arises. Identifying the location of the fault and 
determining its magnitude is called fault diagnosis. 
With the huge demand for complex processes and 
automation, innumerable procedures were proposed 
to detect and locate the fault [41, 82]. An unobserved 
fault in the process may have catastrophic effects 
such as environmental hazards or safety risks. The 
primary stage in treating a failure is determining its 
location, which is vital for conserving the plant's 
ideal conditions [80]. 

The fault detection and isolation (FDI) 
methods are broadly classified into Model-free and 
Model-based approaches [85]. The subcategories 
are shown in Figure 6. 

 
Figure 6 Methods in Fault Detection and Isolation 

4.1 Model-free Approaches 

Model-free approaches are FDD techniques that 
do not depend on explicit mathematical models of 
the problem under consideration. Few such model-
free approaches are discussed here [42]. 

 In physical redundancy, many measuring 
devices are mounted to read the same 
physical entity. Any inconsistencies 
amongst the sensor readings will show a 
sensor fault. At least three sensors are 
needed to detect a fault in the sensor using 
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this method. 
 The limit-checking technique compares 

process measurements with a threshold 
value. Surpassing this threshold specifies a 
fault.  Thresholds must be clearly defined as 
measurements will fluctuate even during 
normal load variations. 

 Under ordinary operating circumstances, 
the majority of process measurements 
display a conventional frequency spectrum. 
Every departure from this is a sign of 
abnormality. 

 In the logical reasoning technique, process 
information is analyzed qualitatively using 
tools such as if-then rules. These qualitative 
approaches can process inaccurate and 
inadequate information to reach a fault 
decision. Two prevalent techniques are 
expert systems and fuzzy logic.  

 Data-driven approaches practice 
multivariate statistical techniques and 
machine learning algorithms to find a fault. 
They also count on associations amongst 
correlated measurements in a process but 
utilize them subtly by examining fault-free 
training data attained during standard 
operations. Thus, these methods are also 
denoted as process history-based 
approaches. Principal Component Analysis, 
Artificial neural networks are extensively 
utilized for Fault diagnosis [93, 96, 97]. 

4.2 Model-based Approaches  

Analytical redundancy is the main idea behind 
model-based fault diagnosis methods. In model-
based FDD, the standard behaviour of a process is 
characterized by a mathematical model which can be 
an input-output model or a state space model. Sensor 
outputs are predicted analytically by means of the 
model that defines their associations. The concept 
can be extended to predict new quantities 
analytically, such as model parameters and system 
states. Residuals are the variations between the 
analytically predicted values and the 
true measurements. Faults lead to violations of the 
normal relationships represented by the model, 
which causes the residuals to fluctuate abnormally. 
Therefore, faults can be found by statistically 

examining these residuals. The processes of model-
based FDD can be separated into the succeeding 
subsystems: residual generation, residual evaluation 
and decision making. The model-based FDD 
scheme is shown in Figure 7. 

 

 
Figure 7 Model-based FDD scheme 

 
An approximate mathematical model of the 

monitored process is obtained by first principle 
modelling or state and parameter estimation 
methods. Residuals produced are then evaluated to 
provide fault isolation decisions. Even when there is 
no fault, residuals are not zero because of the noise 
and modelling mistakes. Threshold margins are set 
in no-fault circumstances [42]. A structural 
framework's residual analysis can be utilized to 
regulate the fault's nature and position. The methods 
of residue generation are as follows: 
 Kalman Filter: This filter's prediction error can 

be applied as a residual for fault detection. If 
there is any fault, the residuals violate the 
threshold value. This technique is useful for 
finding additive errors. It can handle stochastic 
disturbances in the system. The filter equations 
are as follows: 
�̂�(𝑡 + 1 ∣ 𝑡) = 𝐴�̂�(𝑡 ∣ 𝑡) + 𝐵𝑢(𝑡)  (12) 
𝑥(𝑡 ∣ 𝑡) = 𝑥(𝑡 ∣ 𝑡 − 1) + 𝐾′(𝑡)𝑒(𝑡) (13) 
𝑒(𝑡) = 𝑦(𝑡) − 𝐶𝑥( 𝑡∣∣𝑡 − 1 )                                (14) 

       where 𝐾′(𝑡) is Kalman gain 
 
 Nonlinear Filters: Filters like Extended Kalman 

filter, Unscented Kalman filter, Particle filter 
can be used to generate residues for a highly 
nonlinear process [91,98,102].  

 Neural Networks: Neural network models can 
be built using input-output data of the process. 
These models are then utilized for state 
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estimation. Different architectures of neural 
networks are available and they can be chosen 
based on the process data [86, 95]. A multilayer 
Feedforward NN includes one input layer, one 
or more hidden layers, and one output layer. 
Each component of the input vector 𝐼 =

[𝑖1, 𝑖2, … , 𝑖𝑘] is weighted by its weight matrix 
𝑊. The neuron bias 𝑏 is summated to give the 
net input 

          𝑛 = ∑  𝑘
𝑗=1 𝑤𝑗𝑖𝑗 + 𝑏                                (15) 

Then, an activation function f is utilized to 
produce the neuron output o. Similarly, many 
topologies of neural networks are available.  
 Parameter Estimation: It is used to detect and 

isolate multiplicative faults that arise due to the 
plant’s underlying parameters. Physical 
coefficients shall be estimated for diagnosis.  It 
requires significant online computations and 
high input excitation. The least-square 
parameter estimator equation is  

        𝜃 = [Ψ𝑇Ψ]−1Ψ𝑇𝑌                              (16) 
where 𝜃 is an estimation of 𝜃, Ψ is a matrix    
consisting of 𝜓𝑇(𝑡).  𝑌 is a vector consisting of 
𝑦(𝑡). 

 Diagnostic Observers: Similar to state and 
parameter estimators, the observer innovations 
can also be utilized for fault detection. Observer 
equation is  

        �̂�(𝑡 + 1) = 𝐴�̂�(𝑡) + 𝐵𝑢(𝑡) + 𝐿(𝑦(𝑡) − 𝐶�̂�(𝑡))       (17) 
         𝑒(𝑡) = 𝑦(𝑡) − 𝑥(𝑡)                         (18) 

where 𝑥 is an estimate of 𝑥, and 𝐿 is is the 
observer feedback matrix.  

 Parity Equations: They are reorganized direct 
input-output model equivalences subjected to 
linear dynamic transformation. The residuals 
from the transformed model aid for fault 
detection.  

         𝑒(𝑡) = 𝐺(𝑧)𝑢(𝑡) − 𝐻(𝑧)𝑦(𝑡)                        (19) 
       where 𝑒(𝑡) is residual. 

4.3 Review of FDD Techniques 

Hardware or analytical redundancies are used 
to monitor and isolate the fault. The magnitude of 
the fault can also be found. Though hardware 
redundancy is reliable, it increases cost, space and 
weight of the process. Analytical redundancy is a 
model-based fault detection method wherein states 
are estimated analytically from other correlated 

measurements using the model or plant data [43]. 
The residuals are the differences between the 
analytically estimated quantities and the actual 
measurements. When the residual signal crosses the 
threshold, a fault is indicated. Upon assessing the 
residual trend, faults can be classified as additive or 
multiplicative. Instant fault isolation can be 
achieved via structured or directional residuals.   

The survey papers [44, 45] on model-based, 
signal-based and knowledge-based fault diagnosis 
give a complete overview of the fault diagnosis 
methods and their applications. The merits and 
limitations of each technique were discussed. 
Model-based FDD techniques are reviewed for 
deterministic, stochastic systems. Signal-based FDD 
techniques are classified based on time and 
frequency domain. Knowledge-based FDD methods 
are on extracted quantitative or qualitative data. The 
books by Janos Gertler in 1998 [42] and Rolf 
Isermann in 2006 [43] features the model-based 
approach to fault detection and diagnosis in process 
industries and systems. 

Safarinejadian & Kowsari used an Extended 
Kalman Filter (EKF) and Unscented Kalman Filter 
(UKF) with Gaussian processes to detect faults in 
highly non-linear dynamical aviation tracking 
systems [47]. For 2-D systems defined by the 
Fornasini & Marchesini (F-M) model, a 2-D Kalman 
filter based fault detection was proposed by (Wang 
& Shan [48]. A residual is produced using a 
recursive 2-D Kalman filter. The residual is 
explicitly tied to faults inside the evaluation window 
based on the residual model across a 2-D evaluation 
window. An intelligent particle filter for real-time 
fault detection on a three-tank system was proposed 
by Yin & Zhu [49]. A genetic operators-based 
approach is used to overcome particle 
impoverishment problems in general PF. Kumar et 
al tries to estimate and identify the types of faults in 
centrifugal pumps using a system identification 
approach [50]. These papers are examples of where 
model-based FDD techniques are used. 

 
Based on the acoustic measurement of current 

amplitude, [51] presented a new Fault Detection and 
Diagnostics (FDD) control approach for current 
sensors of permanent magnet synchronous machine 
drives in field-oriented control mode. The suggested 
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scheme does not require an exact system model with 
specific parameters, unlike the traditional observer-
/model-based fault detection methods for current 
sensors. Instead, it simply needs data on three-phase 
currents and the location of the motor rotor. The goal 
of [52] is to detect faults in belt conveyor idlers 
using an acoustic signal-based approach. Mel 
Frequency Cepstrum Coefficients and Gradient 
Boost Decision Tree are used to extract and classify 
features in a novel manner. These two publications 
serve as illustrations of the application of signal-
based FDD approaches. 

A fault detection method based on the 
calculation of sets of parameters for a photovoltaic 
module under various operating conditions, using a 
neuro-fuzzy methodology, was proposed by [53]. 
The evaluation and comparison of norms based on 
the aforementioned criteria, along with threshold 
values, determine the condition of the PV system. 
The Support Vector Machines (SVMs) classification 
approach described by [54, 87] is used for fault 
detection in wireless sensor networks, which are 
vulnerable to a variety of problems, including 
hardware, software, and communication faults. [55] 
use supervised algorithms like support vector 
machines and the K-Nearest Neighbour method to 
anticipate boiler problems in power plants. These 
papers serve as illustrations of the application of 
knowledge-based FDD methodologies. 

FDD methods are also demanded in nuclear 
power sectors to improve their safety and reliability. 
Ma & Jiang presented the various FDD that can be 
utilized for the following applications in NPPs: 
Monitoring of device calibration, dynamic 
performance, equipment, reactor core, loose parts 
and transient recognition [56]. Neural networks can 
be applied to all the above-mentioned applications 
[57, 3, 58]. This article focuses on the review of 
Neural networks for nonlinear state estimation. 

4.3.1 Neural Networks for Nonlinear State 

Estimation 

Robotics, control systems, and signal 
processing are just a few of the areas where neural 
networks have been successfully used to solve state 
estimation challenges. The neural network 
architecture and training method must be specifically 
designed for state estimation purposes. Additionally, 

gathering enough pertinent training data is essential 
for neural network applications in state estimation 
tasks.  

Rumelhart et al. (1986) presented the 
backpropagation algorithm for training neural 
networks [59]. While not directly focused on state 
estimation, it laid the basis for applying neural 
networks to various nonlinear tasks, including state 
estimation. Nielsen in 1996 explored the use of 
neural networks for modelling and predicting 
nonlinear dynamic systems [60]. It delivers insights 
into how neural networks can be used for state 
estimation in such systems. The Radial Basis 
Function Neural Network (RBF-NN) is applied to 
match an Extended Kalman filter (EKF) in a data 
assimilation scenario.  

By constraining the state estimator to adopt the 
topology of a multilayer feedforward network, 
Parisini & Zoppoli developed a novel method for 
solving the optimal state estimation problem using 
neural networks [61, 84]. It is possible to convert the 
original functional problem into a nonlinear 
programming problem by using non-recursive and 
recursive estimating strategies, which are both taken 
into consideration. Quantitative findings on the 
accuracy of such approximations are presented. 

The use of artificial neural networks to estimate 
and predict bioprocess variables was examined by 
Karim & Rivera [62]. Two case studies were carried 
out on ethanol generation by Zymomonas mobilis. 
Results for various training sets and training 
strategies are shown. It is demonstrated that the 
neural network estimator offers accurate online 
estimations of the bioprocess state. The design of an 
artificial neural network-based model for centrifugal 
pumping system fault detection was described by 
Rajakarunakaran et al [63]. The binary Adaptive 
Resonance Network (ART1) and feed-forward 
network with a backpropagation algorithm are the 
two artificial neural network approaches used for 
developing the fault detection model. Seven different 
categories of centrifugal pumping system anomalies 
were examined to determine the effectiveness of the 
designed backpropagation and ART1 models.  

Using 1-D convolutional neural networks with 
an inherent adaptive design, Turker Ince proposed a 
quick and precise motor condition monitoring and 
early fault-detection system to combine the feature 
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extraction and classification phases of motor fault 
detection into a single learning body [64]. The 
suggested method instantly applies to the raw data 
(signal), which eliminates the need for a separate 
feature extraction algorithm and leads to faster and 
more hardware-efficient systems. The usefulness of 
the suggested strategy for real-time motor condition 
monitoring has been demonstrated by experimental 
findings acquired utilising actual motor data. 

Sun et al suggested a unique deep learning 
methodology that uses Bayesian Recurrent Neural 
Networks (BRNNs) with variational dropout to 
discover and identify probabilistic faults [2]. 
Complex nonlinear dynamics can be modelled using 
the BRNN. In addition to producing uncertainty 
estimates, the suggested BRNN-based technology 
enables simultaneous fault detection of chemical 
processes, direct fault diagnosis, and fault 
propagation analysis. With reference to the industry 
standard Tennessee Eastman Process (TEP) and an 
actual dataset from the chemical production sector, 
the method's performance is shown and compared to 
that of (dynamic) principal component analysis. 

4.3.2  State Estimation for Fault Diagnosis in 

PWR 

One of the most popular analytical redundant 
methods for fault detection is state estimation. To 
estimate the state of a nonlinear Pressurized water 
reactor, several conventional nonlinear state 
estimators, namely the Ensemble Kalman filter, 
Unscented Kalman filter, and Particle filter, have 
been proposed in the literature. They do, however, 
require prior knowledge of the system's 
nonlinearities. Neural network estimators, on the 
other hand, are data-driven and rely solely on the 
input-output measurement of the process. The 
capabilities of neural networks for nonlinear state 
estimation have been investigated in various 
literatures [65] both in offline and online 
environments. 

A pressurized water reactor is a safety-critical 
system that requires early fault detection, which can 
be accomplished via the use of analytical redundancy 
components. In analytical redundancy, the states are 
estimated analytically from other correlated 
measurements using the model or plant data [41] . 
The residuals are the differences between the 

analytically estimated quantities and the actual 
measurements. When the residual signal crosses the 
threshold, a fault is indicated. Upon assessing the 
residual trend, faults can be classified as additive or 
multiplicative. Instant fault isolation can be achieved 
via structured or directional residuals.   

The dynamics of the PWR are stated in [66]. 
Among the state variables, Neutron flux, Fuel 
average temperature, Coolant average temperature 
are measurable via sensors. These sensor 
measurements can be compared with the analytical 
redundant component output value to identify faults. 
Due to the lack of suitable sensors, variables like 
reactivity and delayed neutron precursor 
concentrations can only be measured inferentially. 
Thus, state estimation becomes critical for control 
and fault detection in NPPs.  

Racz recommended the Kalman filtering 
method to estimate reactivity for minor changes in 
reactivity [67]. Dong presented a Robust Kalman 
filter to estimate various state variables of a reactor, 
with the performance of the designed robust Kalman 
filter outperforming the Ensemble Kalman filter 
[68]. Shimazu & van Rooijen compared the 
qualitative performance of IPK and EKF techniques 
[69]. Zahedi & Ansarifar speculated using the EKF 
technique to estimate poison concentrations in PWR 
nuclear reactors based on reactor power 
measurements [70]. Mishra et al explored Adaptive 
Unscented Kalman Filtering for NPP Reactivity 
Estimation [71]. EKF and Kullback–Leibler 
divergence were observed by Gautam et al for sensor 
incipient fault detection and isolation of NPP [72]. 
The main limitation of the methods described above 
is the requirement for a precise mathematical model 
whose underlying parameters do not vary 
significantly and whose initial states are known. This 
cannot be guaranteed for a large reactor core. 

The use of neural networks for nonlinear state 
estimation is impressive in this AI era [1]. Mehrdad 
Boroushaki et al. proposed a multi-NARX structure 
for estimating the core of a nuclear reactor [73]. 
Hatice Akkurt described a neural network estimator 
for predicting pressurized water reactor system 
parameters during transients [74]. Cadini et al. 
suggested a Locally Recurrent Neural Network 
(LRNN) for approximating a simplified nuclear 
reactor's nonlinear dynamic system model [75]. 
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Aside from that, several artificial intelligence 
techniques such as SVM, PCA [76], and neural 
networks [77,2] are used in NPP fault detection and 
condition monitoring.  

Kumar et al. compared different AI techniques 
for system identification and state estimation which 
outworths the promising nature of NN for dynamic 
estimation [78]. Though the neural network is 
claimed as a good nonlinear state estimator that 
works on input-output data [79], the comparative 
study on different topologies of NN to analyze the 
suitable network for state estimation in water 
reactors is not presented in the literature. 

5. Conclusion 
The prime motive of this review article is to 

investigate the uses of intelligent techniques to 
enhance safety in Pressurized water reactor core. The 
major contributions of this article are twofold: 
Utilization of Swarm Intelligence algorithms for the 
design of optimal PID controller that regulates 
neutron density and Utilization of Neural Networks 
for state estimation and fault detection in PWR core. 
Moreover, Intelligent techniques can also be applied 
to Fuel management, accident scenario, digital twin, 
fault tolerant schemes and nuclear power plant 
transients. 
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