
References:
[1] J.P. Den Hartog, Forced vibrations with Coulom-
b and viscous damping, Transactions of the
American Society of Mechanical Engineers 53,
1930, pp. 107–115.
[2] E.S. Levitan, Forced oscillation of a spring-mass
system having combined Coulomb and viscous
damping, Journal of the Acoustical Society of
America 32, 1960, pp.1265-1269.
[3] S.F. Masri, T.D. Caughey, On the stability of the
impact damper, ASME Journal of Applied Me-
chanics 33, 1966, pp.586-592.
[4] S.F. Masri, General motion of impact dampers,
Journal of the Acoustical Society of America 47,
1970, pp.229-237.
[5] V.I. Utkin, Variable structure systems with s-
liding modes, IEEE Transactions on Automatic
Control 22, 1976, pp.212-222.
[6] V.I. Utkin, Sliding modes and their application
in variable structure systems, Moscow:Mir 1978
[7] V.I. Utkin, Sliding regimes in optimization and
control problem, Moscow: Nauka 1981
[8] S.W. Shaw, On the dynamical response of a sys-
tem with dry-friction, Journal of Sound and Vi-
bration 108, 1986, pp.305-325.
[9] A.F. Filippov, Differential Equations with Dis-
continuous Righthand Sides, Kluwer Academic
Publishers, Dordrecht–Boston–London 1988.
[10] R.I. Leine, D.H. Van Campen, A.De. Kraker,
L. Van Den Steen, Stick-slip vibration induced
by alternate friction models, Nonlinear Dynam-
ics 16, 1998, pp.41-54.
[11] U. Galvanetto, S.R. Bishop, Dynamics of a sim-
ple damped oscillator undergoing stick-slip vi-
brations, Meccanica 34, 1999, pp.337-347.
[12] V.N. Pilipchuk, C.A. Tan, Creep-slip capture as
a possible source of squeal during decelerating
sliding, Nonlinear Dynamics 35, 2004, pp.258-
285.
[13] P. Casini, F. Vestroni, Nonsmooth dynamics of
a double-belt friction oscillator, IUTAM Sympo-
sium on Chaotic Dynamics and Control of Sys-
tems and Processes in Mechanics, 2005, pp.253-
262.
[14] A.C.J. Luo, A theory for non-smooth dynamical
systems on connectable domains, Communica-
tion in Nonlinear Science and Numerical Simu-
lation 10, 2005, pp.1-55.
[15] A.C.J. Luo, Imaginary, sink and source flows
in the vicinity of the separatrix of nonsmooth
dynamic system, Journal of Sound and Vibra-
tion 285, 2005, pp.443-456.
[16] A.C.J. Luo, Singularity and Dynamics on Dis-
continuous Vector Fields, Amsterdam: Elsevier
2006
[17] A.C.J. Luo, A theory for flow swtichability
in discontinuous dynamical systems, Nonlinear
Analysis: Hybrid Systems 2, 2008, pp.1030-
1061.
[18] A.C.J. Luo, Discontinuous Dynamical Systems,
Higher Education Press, Beijing and Springer-
Verlag Berlin Heidelberg 2012.
[19] A.C.J. Luo, B.C. Gegg, On the mechanism of
stick and non-stick periodic motion in a forced
oscillator including dry-friction, ASME Journal
of Vibration and Acoustics 128, 2006, pp.97-
105.
[20] A.C.J. Luo, B.C. Gegg, Stick and non-stick pe-
riodic motions in a periodically forced,linear os-
cillator with dry friction, Journal of Sound and
Vibration 291, 2006, pp.132-168.
[21] A.C.J. Luo, S. Thapa, Periodic motions in a sim-
plified brake dynamical system with a periodic
excitation, Communication in Nonlinear Science
and Numerical Simulation 14, 2008, pp.2389-
2412.
[22] A.C.J. Luo, Fuhong Min, Synchronization of a
periodically forced Duffing oscillator with a pe-
riodically excited pendulum, Nonlinear Analy-
sis: Real World Applications 12, 2011, pp.1810-
1827.
[23] A.C.J. Luo, Jianzhe Huang, Discontinuous dy-
namics of a non-linear, self-excited, friction-
induced, periodically forced oscillator, Nonlin-
ear Analysis: Real World Applications 13, 2012,
pp.241-257.
[24] Yanyan Zhang, Xilin Fu, On periodic motions of
an inclined impact pair, Commun Nonlinear Sci
Numer Simulat 20, 2015, pp.1033-1042.
[25] Xilin Fu, Yanyan Zhang, Stick motions and
grazing flows in an inclined impact oscillator,
Chaos, Solitons &Fractals 76, 2015, pp.218-
230.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
EARTH SCIENCES AND HUMAN CONSTRUCTIONS
DOI: 10.37394/232024.2022.2.7