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Abstract: The aim of the present work was to study the thermal-convective instability of a composite 
rotating stellar atmosphere in the presence of a variable horizontal magnetic field  to include, separately, 
the effects of medium permeability and solute gradient. Following the linearized stability theory, 
Boussinesq approximation and normal mode analysis, the dispersion is obtained in each case. The 
criteria for monotonic instability in each case have been obtained which generalize the Defouw’s 
criterion derived for thermal-convective instability in the absence of above effects.  
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1 Introduction 

Defouw [1] has termed ‘thermal-convective 
instability’ as the instability in which motions 
are driven by buoyancy forces of a thermally 
unstable atmosphere. He has generalized the 
Schwarzschild criterion for convection to 
include departures form adiabatic motion and 
has shown that a thermally unstable atmosphere 
is also convectively unstable, irrespective of the 
atmospheric temperature gradient. 

Defouw [1] has found that an inviscid stellar 
atmosphere becomes unstable if 

𝐷 =
1

𝐶𝑝
(𝐿𝑇 − 𝜌𝛼𝐿𝜌) + 𝜅𝑘2 < 0  ,               (1) 

where 𝐿 is the heat-loss function (the energy lost 
minus the energy gained per gram per second) 
and 𝜌 , 𝛼 , 𝜅 , 𝐶𝑝 , 𝑘 , 𝐿𝑇 , 𝐿𝜌 denote, respectively, 
the density, the coefficient of thermal expansion, 
the coefficient of thermometric conductivity, the 
specific heat at constant pressure, the wave 
number of perturbation, the partial derivatives of 
𝐿 with respect to  𝑇 , 𝜌; both evaluated in the 
equilibrium state. In general, the instability due 
to inequality (1) may be either oscillatory or 
monotonic. The effects of a uniform rotation and 
a uniform magnetic field on thermal-convective 
instability of a stellar atmosphere have been  

 

 

 

studied, separately by Defouw [1] and 
simultaneously by Bhatia [2]. 

Quite frequently it happens that the plasma is not 
fully ionized but, instead, may be permeated 
with neutral atoms. Stromgren [3] has reported 
that ionized hydrogen is limited to certain rather 
sharply bounded regions in space surroundings, 
for example, O-type stars and clusters of such 
stars, and that the gas outside these regions is 
essentially non-ionized. As a reasonably simple 
approximation, the plasma may be idealized as a 
composite mixture of a hydromagnetic (ionized) 
component and a neutral component, the two 
interacting through mutual collisional 
(frictional) effects. Hans [4] made this 
simplified approximation and found that these 
collisions have a stabilizing effect on the 
Rayleigh-Taylor instability. The thermal 
hydromagnetic instability of a partially-ionized 
plasma, for incompressible and compressible 
cases, has been studied by Sharma [5] and 
Sharma and Misra [6]. Usually the magnetic 
field has a stabilizing effect on the instability. 
However, Kent [7] has studied the effect of a 
horizontal magnetic field which varies in the 
vertical direction on the stability of parallel 
flows and has shown that the system is unstable 
under certain conditions, while in the absence of 
magnetic field the system is known to be stable. 
The thermal and convective heat transfer in flat 
solar collectors have been studied by 
Amirgaliyev et al. [8]. In stellar interiors and 

EARTH SCIENCES AND HUMAN CONSTRUCTIONS 
DOI: 10.37394/232024.2022.2.17 Pardeep Kumar

E-ISSN: 2944-9006 140 Volume 2, 2022

mailto:pkdureja@gmail.com


atmospheres, the magnetic field may be variable 
and may altogether alter the nature of the 
instability. The Coriolis force also plays an 
important role on the stability of stellar 
atmospheres. 

A detailed account of thermal convection, under 
varying assumptions of hydrodynamics and 
hydromagnetics, has been given by 
Chandrasekhar [9]. Veronis [10] has considered 
the problem of thermohaline convection in a 
layer of fluid heated from below and subjected 
to a stable salinity gradient. In the stellar case, 
the physics is quite similar to Veronis [10] 
thermohaline configuration in that helium acts 
like salt in raising the density and in diffusing 
more slowly than heat. In thermosolutal-
convective instability problem, buoyancy forces 
can arise not only from density differences due 
to variations in temperature but also from those 
due to variations in solute concentrations. The 
conditions under which convective motions are 
important in stellar atmospheres are usually far 
removed from the consideration of a single 
component fluid and rigid boundaries and, 
therefore, it is desirable to consider one gas 
component acted on by solute concentration 
gradient and free boundaries. Marcu and Ballai 
[11] have studied the thermosolutal linear 
stability of a composite two-component plasma 
in the presence of Coriolis forces, finite Larmor 
radius, taking into account the collisions 
between neutral and ionized particles. The 
thermosolutal instability appears due to a 
material convection (thermosolutal convection) 
in a two component fluid with different 
molecular diffusivities which contribute in an 
opposing sense to a locally vertical density 
gradient. Jamwal and Rana [12] have studied the 
magnetohydrodynamic Veronis’s thermohaline 
convection.  

In recent years, the investigations of flow of 
fluids through porous media have become an 
important topic due to the recovery of crude oil 
from the pores of reservoir rocks. The study of 
the onset of convection in a porous medium has 
attracted considerable interest because if its 
natural occurrence and of its intrinsic 
importance in many industrial problems, 
particularly in petroleum exploration, chemical, 
and nuclear industries. The derivation of the 
basic equations of a layer of fluid heated from 
below in porous medium, using the Boussinesq 
approximation, has been given by Joseph [13]. 

The study of a layer of fluid heated from below 
in porous media is motivated both theoretically 
and by its practical applications in engineering 
disciplines. Among the applications in 
engineering disciplines one can find the food 
process industry, chemical process industry, 
solidification and centrifugal casting of metals. 
The development of geothermal power 
resources has increased general interest in the 
properties of convection in porous medium. 
When a fluid permeates an isotropic and 
homogeneous porous medium, the gross effect 
is represented by Darcy’s law. A great number 
of applications in geophysics may be found in 
the books by Phillips [14], Ingham and Pop [15], 
and Nield and Bejan [16]. Generally, it is 
accepted that comets consist of a dusty 
‘snowball’ of a mixture of frozen gases which in 
the process of their journey changes from solid 
to gas and vice versa. The physical properties of 
comets, meteorites, and interplanetary dust 
strongly suggest importance of porosity in 
astrophysical context (see McDonnel [17]). 
Purkayastha and Choudhury [18] have studied 
the Hall current and thermal radiation effect on 
MHD convection flow of an elastico-viscous 
fluid in a rotating porous channel. The porosity 
is important in several geophysical situations. 
Effects of permeability on double diffusive 
MHD mixed convective flow past an inclined 
porous plate have been studied by Uddin et al. 
[19]. Kumar and Singh [20] have considered the 
thermal convection of a plasma in porous 
medium to include simultaneously the effect of 
rotation and the finiteness of the ion Larmor 
radius (FLR) in the presence of a vertical 
magnetic field. 

Keeping such astrophysical and geophysical 
situations in mind, thermal-convective 
instability of  a composite rotating stellar 
atmosphere in the presence of a variable 
horizontal magnetic field is considered in the 
present paper to include, separately, the effects 
of medium permeability and solute gradient. 
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2 Presence of Porous Medium 

2A: Formulation of the Problem and 

Perturbation Equations 

Consider an infinite horizontal composite layer 
consisting of a finitely conducting 
hydromagnetic fluid of density 𝜌 and a neutral 
gas of density 𝜌𝑑 , which is in a state of uniform 
rotation Ω⃗⃗ (0,0, Ω), acted on by a variable 
horizontal magnetic field 𝐻⃗⃗ (𝐻0(𝑧), 0,0) and 
gravity force 𝑔 (0,0,−𝑔) through a porous 
medium of porosity 𝜀 and medium permeability 
𝑘1. This layer is heated such that a steady 
temperature gradient 𝛽(= 𝑑𝑇 𝑑𝑧⁄ ) is 
maintained. Regard the model under 
consideration so that both the ionized fluid and 
the neutral gas behave like continuum fluids and 
that the effects on the neutral component 
resulting from the presence of gravity and 
pressure are neglected. The magnetic field 
interacts with the ionized component only. 

Let 𝛿𝜌 , 𝛿𝑝 , 𝑞 (𝑢, 𝑣, 𝑤) and ℎ⃗ (ℎ𝑥 , ℎ𝑦 , ℎ𝑧) 
denote the perturbations in density 𝜌, pressure 𝑝, 
filter velocity, and magnetic field 𝐻⃗⃗ , 
respectively; 𝑔 , 𝜈 , 𝜂 , 𝑞𝑑⃗⃗⃗⃗  , and 𝜈𝑐 denote, 
respectively, the gravitational acceleration, the 
kinematic viscosity, the resistivity, the velocity 
of neutral gas, and the collisional frequency 
between the two components of the composite 
medium. Then the linearized perturbation 
equations governing the motion of the mixture 
of the hydromagnetic fluid and a neutral gas are 

𝜕𝑞 

𝜕𝑡
= −

𝜀

𝜌
∇𝛿𝑝 −

𝜈𝜀

𝑘1
𝑞 

+
𝜀

4𝜋𝜌
[(∇ × ℎ⃗ ) × 𝐻⃗⃗ 

+ (∇ × 𝐻⃗⃗ ) × ℎ⃗ ] + 𝑔 𝜀
𝛿𝜌

𝜌

+ 2(𝑞 × Ω⃗⃗ )

+
𝜌𝑑𝜈𝑐

𝜌
(𝑞𝑑⃗⃗⃗⃗ − 𝑞 )  ,              (2) 

∇. 𝑞 = 0   ,                                                            (3)  

∇. ℎ⃗ = 0   ,                                                            (4) 

𝜀
𝜕ℎ⃗ 

𝜕𝑡
= ∇ × (𝑞 × 𝐻⃗⃗ ) + 𝜀𝜂∇2ℎ⃗     ,                    (5) 

𝜕𝑞𝑑⃗⃗⃗⃗ 

𝜕𝑡
= −𝜈𝑐(𝑞𝑑⃗⃗⃗⃗ − 𝑞 )  .                                       (6) 

The first law of thermodynamics can be written 
as 

𝐶𝑣

𝑑𝑇

𝑑𝑡
= −𝐿 +

𝐾

𝜌
∇2𝑇 +

𝑝

𝜌2

𝑑𝜌

𝑑𝑡
  ,                  (7) 

where 𝐾 , 𝐶𝑣 , 𝑇 , and 𝑡 denote, respectively, the 
thermal conductivity, the specific heat at 
constant volume, the temperature, and the time. 
𝑑 𝑑𝑡⁄  is the convective derivative. 

Following Defouw [1], the linearized 
perturbation form of equation (7) is 

𝜕𝜃

𝜕𝑡
+

1

𝐶𝑝
(𝐿𝑇 − 𝜌𝛼𝐿𝜌)𝜃 − 𝜅∇2𝜃

= −
1

𝜀
(𝛽 +

𝑔

𝐶𝑝
)𝑤  ,                                          (8) 

where 𝜃 is the perturbation in temperature 𝑇. We 
have employed the Boussinesq approximation 
modified modified so as to apply to thin layers 
of compressible fluids (cf. Spiegel and Veronis 
[21]) and used the Boussinesq equation of state 

   𝜌 = −𝜌𝛼𝜃    , 

where we consider the case in which both 
boundaries are free and the medium adjoining 
the fluid is non-conducting. The case of two free 
boundaries is the most appropriate for stellar 
atmospheres (Spiegel [22]). 

The boundary conditions for the problem are (cf. 
Chandrasekhar [9]; Lapwood [23]): 

𝑤 =
𝜕2𝑤

𝜕𝑧2
= 𝜃 =

𝜕𝜁

𝜕𝑧
= 𝜉 = 0  ,                       (9) 

and ℎ𝑥  , ℎ𝑦 , ℎ𝑧 are continuous with an external 
vacuum field, where 𝜁 and 𝜉 denote the z-
components of vorticity and current density, 
respectively. 

2B: The Dispersion Relation 

        Analyzing in terms of normal modes, we 
seek solutions whose dependence on space- and 
time-coordinates is of the form 

sin 𝑘𝑧𝑧 exp(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑛𝑡) ,               (10) 

where 𝑛 is the growth rate and 𝑘𝑧 = 𝑠𝜋 𝑑⁄  , 𝑠 
being any integer and 𝑑 is the thickness of the 
layer and 𝑘 = (𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2)
1 2⁄  is the wave 

number of the perturbation. 
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If we eliminate 𝑞𝑑⃗⃗⃗⃗  between equations (2) and 
(6), Equations (8) and (2)-(6), using expression 
(10), we find that 

(𝑛′ +
𝜈𝜀

𝑘1
)∇2𝑤

= 𝑔𝛼𝜀∇1
2𝜃 − 2Ω⃗⃗ 

𝜕𝜁

𝜕𝑧

+
𝜀

4𝜋𝜌
∇1

2 {𝐻0 (
𝜕ℎ𝑧

𝜕𝑥
−

𝜕ℎ𝑥

𝜕𝑧
) − ℎ𝑥

𝜕𝐻0

𝜕𝑧
}

−
𝜀

4𝜋𝜌

𝜕

𝜕𝑧
{

𝜕

𝜕𝑥
(ℎ𝑧

𝜕𝐻0

𝜕𝑧
)

+ 𝐻0

𝜕

𝜕𝑦
(
𝜕ℎ𝑦

𝜕𝑥
−

𝜕ℎ𝑥

𝜕𝑦
)},                                (11) 

(𝑛′ +
𝜈𝜀

𝑘1
) 𝜁

= 2Ω⃗⃗ 
𝜕𝑤

𝜕𝑧
+

𝐻0𝜀

4𝜋𝜌

𝜕𝜉

𝜕𝑥

−
𝜀

4𝜋𝜌

𝜕

𝜕𝑦
(ℎ𝑧

𝜕𝐻0

𝜕𝑧
)  ,                                       (12) 

(𝜂 − 𝜂∇2)ℎ⃗ 

=
1

𝜀
{𝑖̂ (𝐻0

𝜕𝑢

𝜕𝑥
− 𝑤

𝜕𝐻0

𝜕𝑧
) + 𝑗̂𝐻0

𝜕𝑣

𝜕𝑥

+ 𝑘̂𝐻0

𝜕𝑤

𝜕𝑥
} ,                                             (13) 

(𝑛 + 𝐷)𝜃 = −
1

𝜀
(𝛽 +

𝑔

𝐶𝑝
)𝑤  ,            (14) 

where 

𝑛′ = 𝑛 (1 +
𝛼0𝜈𝑐

𝑛 + 𝜈𝑐
) ,   𝛼0 =

𝜌𝑑

𝜌
  ,     ∇1

2

=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 𝑎𝑛𝑑 ∇2

=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 . 

If we eliminate 𝜁, 𝜉 , 𝜃 , ℎ𝑥  , ℎ𝑦 and ℎ𝑧 from 
equations (11) – (14) and using (10), we obtain 
the dispersion relation 

𝑛7 + 𝐴6𝑛
6 + 𝐴5𝑛

5 + 𝐴4𝑛
4 + 𝐴3𝑛

3 + 𝐴2𝑛
2

+ 𝐴1𝑛 + 𝐴0 = 0  ,          (15) 

where  

𝐴6 = 𝐷 + 2𝜈𝑣1 + 𝛼0
̅̅ ̅̅ ̅̅ ̅̅ ̅ + 2 (

𝜈𝜀

𝑘1
+ 𝜂𝑘2) , 

𝐴0

= 𝜈𝑐 (𝑘𝑥
2𝑉𝐴

2

+
𝜈𝜀

𝑘1
𝜂𝑘2) [𝜂𝑘2𝜈𝑐 {

𝜈𝜀

𝑘1
𝐷 + Γ(𝛽 +

𝑔

𝐶𝑝
)}

+ 𝑘𝑥
2𝑉𝐴

2𝐷𝜈𝑐 (1 + 2
𝑘𝑧

2

𝑘2)]

+ 4𝜈𝑐
2𝜂2𝑘2𝑘𝑧

2Ω2𝐷  ,                                      (16) 

and 

Γ = 𝑔𝛼 (
𝑘𝑥

2 + 𝑘𝑦
2

𝑘2 ) ,       𝑉𝐴
2 =

𝐻2

4𝜋𝜌
 , 

𝐴1 to 𝐴5 having a large number of terms and 
being not needed in the discussion on instability, 
have not been written here. 

2C: Discussion 

Theorem 1:  A criteria for thermal-convective 
instability of a composite stellar atmosphere in 
the presence of a variable horizontal magnetic 
field, rotation and collisional effects through 
porous medium to be unstable if 

     𝐷 < 0    𝑎𝑛𝑑  |
𝜈𝜀

𝑘1
𝐷| > Γ (𝛽 +

𝑔

𝐶𝑝
). 

Proof: Taking the dispersion relation (15), when 

𝐷 < 0    𝑎𝑛𝑑  |
𝜈𝜀

𝑘1
𝐷| > Γ(𝛽 +

𝑔

𝐶𝑝
)  ,      (17)  

the constant term 𝐴0 in equation (15) is negative. 
Equation (15), therefore, involves at least one 
change of sign and, hence, contains one positive 
real root. The occurrence of positive root implies 
monotonic instability. We thus obtain the 
criteria for thermal-convective instability of a 
composite stellar atmosphere in the presence of 
a variable horizontal magnetic field, rotation and 
collisional effects through porous medium to be 
unstable if 

   

𝐷 < 0    𝑎𝑛𝑑  |
𝜈𝜀

𝑘1
𝐷| > Γ(𝛽 +

𝑔

𝐶𝑝
). 

Hence the result. 
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3 Presence of Solute Gradient 

3A: Formulation of the Problem and 

Dispersion Relation 

Here we consider the same configuration as in 
previous section except that the medium is non-
porous and that the system is acted on by a stable 
solute gradient 𝛽′(= |𝑑𝐶 𝑑𝑧⁄ |). The linearized 
perturbation equations governing the motion of 
the mixture of the hydromagnetic fluid and a 
neutral gas are 

𝜕𝑞 

𝜕𝑡
= −

1

𝜌
∇𝛿𝑝 + 𝜈∇2𝑞 

+
1

4𝜋𝜌
[(∇ × 𝐻⃗⃗ ) × ℎ⃗ 

+ (∇ × ℎ⃗ ) × 𝐻⃗⃗ ] + 𝑔 
𝛿𝜌

𝜌

+ 2(𝑞 × Ω⃗⃗ )

+
𝜌𝑑𝜈𝑐

𝜌
(𝑞𝑑⃗⃗⃗⃗ − 𝑞 ) ,                (18) 

𝜕𝛾

𝜕𝑡
= 𝛽′𝑤 + 𝜅′∇2𝛾  ,                                       (19) 

𝜕ℎ⃗ 

𝜕𝑡
= ∇ × (𝑞 × 𝐻⃗⃗ ) + 𝜂∇2ℎ⃗  ,                         (20) 

∇. 𝑞 = 0,          ∇. ℎ⃗ = 0  ,                                (21) 

𝜕𝑞𝑑⃗⃗⃗⃗ 

𝜕𝑡
= −𝜈𝑐(𝑞𝑑⃗⃗⃗⃗ − 𝑞 )  ,                                    (22) 

𝜕𝜃

𝜕𝑡
+

1

𝐶𝑝
(𝐿𝑇 − 𝜌𝛼𝐿𝜌)𝜃 − 𝜅∇2𝜃

= −(𝛽 +
𝑔

𝐶𝑝
)𝑤   ,                                          (23) 

together with the Boussinesq equation of state 
𝛿𝜌 = −𝜌(𝛼𝜃 − 𝛼′𝛾). 

 Here again we consider the case of two free 
boundaries and the medium adjoining the fluid 
to be non-conducting. Eliminating 𝑞𝑑⃗⃗⃗⃗  between 
equations (18) and (22), equations (18) – (23), 
using expression (10), give 

(𝑛′ − 𝜈∇2)∇2𝑤 = 𝑔∇1
2(𝛼𝜃 − 𝛼′𝛾) − 2Ω

𝜕𝜁

𝜕𝑧

+
1

4𝜋𝜌
∇1

2 {𝐻0 (
𝜕ℎ𝑧

𝜕𝑥
−

𝜕ℎ𝑥

𝜕𝑧
)

− ℎ𝑥

𝜕𝐻0

𝜕𝑧
} − 

−
1

4𝜋𝜌

𝜕

𝜕𝑧
{

𝜕

𝜕𝑥
(ℎ𝑧

𝜕𝐻0

𝜕𝑧
)

+ 𝐻0

𝜕

𝜕𝑦
(
𝜕ℎ𝑦

𝜕𝑥
−

𝜕ℎ𝑥

𝜕𝑦
)} , (24) 

(𝑛′ − 𝜈∇2)𝜁

= 2Ω
𝜕𝑤

𝜕𝑧
+

𝐻0

4𝜋𝜌

𝜕𝜉

𝜕𝑧

−
1

4𝜋𝜌

𝜕

𝜕𝑦
(ℎ𝑧

𝜕𝐻0

𝜕𝑧
)  ,                                       (25) 

(𝑛 − 𝜂∇2)ℎ⃗ 

= 𝑖̂ (𝐻0

𝜕𝑢

𝜕𝑥
− 𝑤

𝜕𝐻0

𝜕𝑧
) + 𝑗̂𝐻0

𝜕𝑣

𝜕𝑥

+ 𝑘̂𝐻0

𝜕𝑤

𝜕𝑥
  ,                                                         (26) 

(𝑛 + 𝐷)𝜃 = −(𝛽 +
𝑔

𝐶𝑝
)𝑤  ,                         (27) 

(𝑛 − 𝜅′∇2)𝛾 = 𝛽′𝑤  .                                     (28) 

If we eliminate ℎ𝑥  , ℎ𝑦 , ℎ𝑧 , 𝜁 , 𝜉 , 𝜃 , and 𝛾 from 
equations (24) – (28) and using (10), we obtain 
the dispersion relation 

𝑛8 + 𝐵7𝑛
7 + 𝐵6𝑛

6 + 𝐵5𝑛
5 + 𝐵4𝑛

4 + 𝐵3𝑛
3

+ 𝐵2𝑛
2 + 𝐵1𝑛 + 𝐵0 = 0 , (29) 

where 

𝐵7 = 𝐷 + 𝑘2(𝜅′ + 2𝜈 + 𝜂̅̅ ̅̅ ̅̅ ̅) + 2𝜈𝑐1 + 𝛼0
̅̅ ̅̅ ̅̅ ̅̅ ̅  , 

𝐵0

= 𝜈𝑐(𝑘𝑥
2𝑉𝐴

2

+ 𝜈𝜂𝑘4) [𝜂𝑘2𝜈𝑐 {(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐷

+ 𝜅′𝑘2Γ(𝛽 +
𝑔

𝐶𝑝
)}

+ 𝜈𝑐𝜅
′𝑘2𝑘𝑥

2𝑉𝐴
2 (1 + 2

𝑘𝑧
2

𝑘2)𝐷]

+ 4𝜈𝑐
2𝜅′𝑘4𝜂2𝑘𝑧

2Ω2𝐷 ,                                 (30) 

and 

Γ′ =
𝑔𝛼′(𝑘𝑥

2 + 𝑘𝑦
2)

𝑘2
  . 

Coefficients 𝐵1 to 𝐵6 having a large number of 
terms and being not needed in the discussion on 
stability, have not been written here. 

3B: Discussion 

Theorem 2: A criteria for thermosolutal-
convective instability of a composite stellar 
atmosphere in the presence of rotation, variable 
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horizontal magnetic field, stable solute gradient 
and collisional effects to be unstable if   

𝐷 < 0 𝑎𝑛𝑑 |(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐷|

> 𝜅′𝑘2Γ(𝛽 +
𝑔

𝐶𝑝
). 

Proof: Taking the dispersion relation (29), when 

𝐷 < 0 𝑎𝑛𝑑 |(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐷|

> 𝜅′𝑘2Γ(𝛽 +
𝑔

𝐶𝑝
)  ,                                       (31) 

the constant term in equation (29) is negative. 
Equation (29), therefore, involves one change of 
sign and, hence, contains one positive real root, 
meaning thereby monotonic instability. We 
have, therefore, obtained the criteria for 
thermosolutal-convective instability of a 
composite stellar atmosphere in the presence of 
rotation, variable horizontal magnetic field, 
stable solute gradient and collisional effects to 
be unstable if   

𝐷 < 0 𝑎𝑛𝑑 |(𝜈𝜅′𝑘4 + Γ′𝛽′)𝐷|

> 𝜅′𝑘2Γ(𝛽 +
𝑔

𝐶𝑝
)  . 

Hence the result. 

 

 

4 Conclusions 

The convective stability of a star has customarily 
been determined by Schwarzschild criterion and 
one of the fundamental assumptions used in 
deriving this criterion is that the motion is 
adiabatic. The Schwarzschild criterion in the 
interior of a star, where the photon mean free 
path is small, the assumption that the motion is 
adiabatic is justified. The departure from 
adiabatic motion may be significant in the outer 
layers of a stellar atmosphere, where the 
effective heat transfer is no longer prevented by 
opacity. The Schwarzschild criterion for 
convection has been generalized to include 
departures from adiabatic motion by Defouw 
[1]. 

The stellar chromospheres, coronae, and the 
interstellar medium may exhibit thermal-
convective instability. For such astrophysical 
situations the Coriolis force, the variable 
magnetic field, medium permeability, solute 

gradient, and collisional effects, play an 
important role. The thermal-convective 
instability of a composite rotating stellar 
atmosphere in the presence of a variable 
horizontal magnetic field is considered to 
include, separately, the effects of medium 
permeability and solute gradient. The criteria for 
monotonic instability in each case have been 
obtained which generalize the Defouw’s 
criterion derived for thermal-convective 
instability in the absence of above mentioned 
effects. 

 

References 

[1] Defouw, R.J., Thermal convective 
instability, Astrophys. J., Vol. 160, 1970, pp. 
659-669. 

[2] Bhatia, P.K., On thermal-convective 
instability in a stellar atmosphere, Publ. Astron. 

Soc. Japan, Vol. 23, 1971, pp. 181-184. 

[3] Stromgren, B., The physical state of 
interstellar hydrogen, Astrophys. J., Vol. 89, 
1939, pp. 526-546. 

[4] Hans, H.K., Larmor radius and collisional 
effects on the combined Taylor and Kelvin 
instabilities in a composite medium, Nucl. 

Fusion, Vol. 8, 1968, pp. 89-92. 

[5] Sharma, R.C., Thermal hydromagnetic 
instability of a partially ionized medium, 
Physica, Vol. 81C, 1976, pp. 199-204. 

[6] Sharma, R.C. and Misra, J.N., Thermal 
instability of a compressible and partially 
ionized plasma, Z. Naturforsch., Vol. 41a, 1986, 
pp. 729-732. 

[7] Kent, A., Instability of laminar flow of a 
perfect magneto fluid, Phys. Fluids, Vol. 9, 
1966, pp. 1286-1289. 

[8] Amirgaliyev, Y., Kunelbayev, M., 
Kalizhanova, A., Amirgaliyev, B., Kozbakova, 
A., Auelbekov, O. and Kataev, N., The study of 
thermal and convective heat transfer in flat solar 
collectors, WSEAS Transactions on Heat and 

Mass Transfers, Vol. 15, 2020, pp. 55-63. 

[9] Chandrasekhar, S., Hydrodynamic and 

Hydromagnetic Stability, Dover Publication, 
New York 1981. 

EARTH SCIENCES AND HUMAN CONSTRUCTIONS 
DOI: 10.37394/232024.2022.2.17 Pardeep Kumar

E-ISSN: 2944-9006 145 Volume 2, 2022



[10] Veronis, G., On the finite amplitude 
instability in thermohaline convection, J. 

Marine Res., Vol. 23, 1965, pp. 1-17.   

[11] Marcu, A. and Ballai, I., Thermosolutal 
stability of a two-component rotating plasma 
with finite Larmor radius, Proc. Rom. Acad., 

Series A, Vol. 8(2), 2007, pp. 111-120. 

[12] Jamwal, H.S. and Rana, G.C., On 
magnetohydrodynamic Veronis’s thermohaline 
convection, Int. J. Engng. Appl. Sciences, Vol. 
6(4), 2014, pp. 1-9.  

[13] Joseph, D.D., Stability of Fluid Motions, 
Springer-Verlag Berlin, Vol. I and II, 1976. 

[14] Phillips, O.M., Flow and Reaction in 

Permeable Rocks, Cambridge University Press, 
Cambridge, UK 1991. 

[15] Ingham, D.B. and Pop, I., Transport 

Phenomena in Porous Medium, Pergamon 
Press, Oxford, UK 1998. 

[16] Nield, D.A. and Bejan, A., Convection in 

Porous Medium (2nd edition), Springer New 
York 1999. 

[17] McDonnel, J.A.M., Cosmic Dust, John 
Wiley and Sons, Toronto, p. 330, 1978. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[18] Purkayastha, S. and Choudhury, R., Hall 
current and thermal radiation effect on MHD 
convective flow of an elastico-viscous fluid in a 
rotating porous channel, WSEAS Transactions 

on Applied and Theoretical Mechanics, Vol. 9, 
2014, pp. 196-205. 

[19] Uddin, Md. N., Chowdhury, M.M.K. and 
Alim, M.A., Effects of permeability on double 
diffusive MHD mixed convective flow past an 
inclined porous plate, Int. J. Engng. Appl. 

Sciences, Vol. 6(3), 2014, pp. 12-20. 

[20] Kumar, P. and Singh, G.J., Convection of a 
rotating plasma in porous medium, WSEAS 

Transactions on Heat and Mass Transfers, Vol. 
16, 2021, pp. 68-78. 

[21] Spiegel, E.A. and Veronis, G., On the 
Boussinesq approximation for a compressible 
fluid, Astrophys. J., Vol. 131,1960, pp. 442-446. 

[22] Spiegel, E.A., Convective instability in a 
compressible atmosphere, Astrophys. J., Vol. 
141, 1965, pp. 1068-1070. 

[23] Lapwood, E.R., Convection of a fluid in a 
porous medium, Proc. Camb. Phil. Soc., Vol. 
44, 1948, pp. 508-554 

 

  
Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

EARTH SCIENCES AND HUMAN CONSTRUCTIONS 
DOI: 10.37394/232024.2022.2.17 Pardeep Kumar

E-ISSN: 2944-9006 146 Volume 2, 2022




