
and
µ(α(log),β,γ)(f g)
≤max ρ(α(log),β,γ)(f), µ(α(log),β,γ)(g).(6)
Suppose now that µ(α(log),β,γ)(g)> ρ(α(log),β,γ)(f).
Considering that
T(r, g) = T(r, f +g−f)
≤T(r, f +g) + T(r, f) + ln 2(7)
and
T(r, g) = Tr, fg
f≤T(r, fg) + Tr, 1
f
=T(r, fg) + T(r, f) + O(1) .(8)
By (7), (8) and the same method as above we obtain
that
µ(α(log),β,γ)(g)
≤max µ(α(log),β,γ)(f+g), ρ(α(log),β,γ)(f)
=µ(α(log),β,γ)(f+g)
(9)
and
µ(α(log),β,γ)(g)
≤max µ(α(log),β,γ)(f g), ρ(α(log),β,γ)(f)
=µ(α(log),β,γ)(f g).
(10)
By using (5) and (9) we obtain µ(α(log),β,γ)(f+g) =
µ(α(log),β,γ)(g)and by (6) and (10), we get
µ(α(log),β,γ)(f g) = µ(α(log),β,γ)(g).
2 Main Results
Very recently the author and Biswas have investigated
the growth of solutions of equation (1) and established
the following two results.
Theorem 2.1. ([4]) Let A0(z), A1(z), ..., Ak−1(z)
be entire functions such that ρ(α,β,γ)[A0]>
max{ρ(α,β,γ)[Aj], j = 1, ..., k −1}. Then every
solution f(z)≡ 0of (1) satisfies ρ(α(log),β,γ)[f] =
ρ(α,β,γ)[A0].
Theorem 2.2. ([4]) Let A0(z), A1(z), ..., Ak−1(z)be
entire functions. Assume that
max{ρ(α,β,γ)[Aj], j = 1, ..., k −1}
≤ρ(α,β,γ)[A0] = ρ0<+∞
and
max{τ(α,β,γ),M [Aj] : ρ(α,β,γ)[Aj] = ρ(α,β,γ)[A0]>0}
< τ(α,β,γ),M [A0] = τM.
Then every solution f(z)≡ 0of (1) satisfies
ρ(α(log),β,γ)[f] = ρ(α,β,γ)[A0].
Theorems 2.1 and 2.2 concerned the growth prop-
erties of solutions of (1), when A0is dominat-
ing the others coefficients by its (α, β, γ)-order and
(α, β, γ)-type. Thus, the natural question which
arises: If A0is dominating coefficient with its lower
(α, β, γ)-order and lower (α, β, γ)-type, what can we
say about the growth of solutions of (1)? The follow-
ing results give answer to this question.
Theorem 2.3. Let A0(z), ..., Ak−1(z)be entire
functions.Assume that max{ρ(α,β,γ)[Aj] : j=
1, ..., k −1}< µ(α,β,γ)[A0]≤ρ(α,β,γ)[A0]<+∞.
Then every solution f≡ 0of (1) satisfies
λ(α(log),β,γ)[f−g] = µ(α,β,γ)[A0] = µ(α(log),β,γ)[f]
≤ρ(α(log),β,γ)[f] = ρ(α,β,γ)[A0] = λ(α(log),β,γ)[f−g],
where g≡ 0is an entire function satisfying
ρ(α(log),β,γ)[g]< µ(α,β,γ)[A0].
Theorem 2.4. Let A0(z), A1(z), ..., Ak−1(z)be en-
tire functions. Assume that
max{ρ(α,β,γ)[Aj] : j= 1, ..., k −1} ≤ µ(α,β,γ)[A0]
≤ρ(α,β,γ)[A0] = ρ < +∞(0 < ρ < +∞)
and
τ1=max{τ(α,β,γ),M [Aj] : ρ(α,β,γ)[Aj]
=µ(α,β,γ)[A0]>0}
< τ(α,β,γ),M [A0] = τ(0 < τ < +∞).
Then every solution f≡ 0of (1) satisfies
λ(α(log),β,γ)[f−g] = µ(α,β,γ)[A0] = µ(α(log),β,γ)[f]
≤ρ(α(log),β,γ)[f] = ρ(α,β,γ)[A0] = λ(α(log),β,γ)[f−g],
where g≡ 0is an entire function satisfying
ρ(α(log),β,γ)[g]< µ(α,β,γ)[A0].
Theorem 2.5. Let A0(z), ..., Ak−1(z)be entire
functions.Assume that max{ρ(α,β,γ)[Aj] : j=
1, ..., k −1} ≤ µ(α,β,γ)[A0]<+∞and
lim sup
r→+∞
k−1
P
j=1
m(r, Aj)
m(r, A0)<1.
Then every solution f≡ 0of (1) satisfies
λ(α(log),β,γ)[f−g] = µ(α,β,γ)[A0] = µ(α(log),β,γ)[f]
≤ρ(α(log),β,γ)[f] = ρ(α,β,γ)[A0] = λ(α(log),β,γ)[f−g],
where g≡ 0is an entire function satisfying
ρ(α(log),β,γ)[g]< µ(α,β,γ)[A0].
EQUATIONS
DOI: 10.37394/232021.2024.4.8