
investigated for general non-linear oscillators,
beyond just Lienard oscillators, as the scope of the
paper [16] is broad.
As suggested exploring the potential combination of
artificial intelligence or computational intelligence
is an important future research direction.
The focus will be on extending the formulas and
homotopy from this study to develop
a general method for approximating and validating
oscillations with diverse behaviors, particularly in
neuroscience and power electronics, where non-
linear oscillators play a vital role.
Acknowledgement:
This work is supported by Universidad Tecnológica
Nacional-Facultad Regional Bahía Blanca,
Departamento de Ingeniería Eléctrica and GESE.
References:
[1] Carmen Chicone. Ordinary Differential
Equations with Applications. Springer. 2006,
Volume 34. ISBN: 978-0-387-30769-5
[2] Morris W. Hirsch, Stephen Smale, Robert L.
Devaney. Differential Equations, Dynamical
Systems, and an Introduction to Chaos.
Academic Press; 3rd edition. 2012.
[3] Kazem Meidani, Amir Barati Farimani.
Identification of parametric dynamical systems
using integer programming. Expert Systems
with Applications. 2023. Volume 219, ISSN
0957-4174.
https://doi.org/10.1016/j.eswa.2023.119622.
[4] Cveticanin L. Strong Nonlinear Oscillators.
Springer. 2018. ISBN : 978-3-319-58825-4
[5] Liu, C.-S.; Chang, C.-W.; Chen, Y.-W.; Chang,
Y.-S. Periodic Orbits of Nonlinear Ordinary
Differential Equations Computed by a
Boundary Shape Function Method. Symmetry
2022,14,1313.https://doi.org/10.3390/sym1407
1313
[6] A. García. Bounding periodic orbits in second
order systems. WSEAS TRANSACTIONS on
SYSTEMS and CONTROL. Vol. 17,
2022.DOI: 10.37394/23203.2022.17.55.
[7] Daniel S. Graça and Ning Zhong. Computing
the exact number of periodic orbits for planar
flows. Trans. Amer. Math. Soc. 375 (2022),
5491-5538
[8] Steve Smale. Mathematical Problems for the
Next Century. Mathematical Intelligencer. 20
(2): 7–15. 1998. CiteSeerX 10.1.1.35.4101.
doi:10.1007/bf03025291. S2CID 1331144.
[9] Santana, M.V.B. Exact Solutions of Nonlinear
Second-Order Autonomous Ordinary
Differential Equations: Application to
Mechanical Systems. Dynamics 2023, 3, 444-
467.
https://doi.org/10.3390/dynamics303002
[10] Kwari, L.J.; Sunday, J.; Ndam, J.N.; Shokri,
A.; Wang, Y. On the Simulations of Second-
Order Oscillatory Problems with Applications
to Physical Systems. Axioms 2023, 12, 282.
[11] L. D. Landau and E.M. Lifshitz. Mechanics.
Elsevier. Vol. 1. 1982.
[12] El-Dib YO. A review of the frequency-
amplitude formula for nonlinear oscillators and
its advancements. Journal of Low Frequency
Noise, Vibration and Active Control. 2024.
doi:10.1177/14613484241244992
[13] First Integrals vs Limit Cycles.
arXiv:1909.07845 [math.DS]. Andrés García.
2019.
[14] Investigation of the properties of the period for
the nonlinear oscillator ẍ+(1+x2)x=0. R.E.
Mickens, Journal of Sound and Vibration, 292,
1031-1035, 2006.
[15] Truly nonlinear oscillations: Harmonic balance,
parameter expansions, iteration, and averaging
methods. R. E. Mickens. World Scientific.
2010.
[16] J. H. He and A. García. The simplest
amplitude-period formula for non-conservative
oscillators. Reports in Mechanical Engineering,
2(1), 143–148. 2021.
https://doi.org/10.31181/rme200102143h
[17] D-N Yu, H-J He and A. Garcıa. Homotopy
perturbation method with an auxiliary
parameter for nonlinear oscillators. Journal of
Low Frequency Noise, Vibration and Active
Control. Vol. 38 (3-4):1540-1554. 2019.
doi:10.1177/1461348418811028
[18] B. van der Pol. A theory of the amplitude of
free and forced triode vibrations, Radio
Review, Vol. 1, pp. 701–710, 754–762. 1920.
[19] H. Giacomini and S. Neukirch. On the number
of limit cycles of the Liénard equation.
PHYSICAL REVIEW E, Vol.56, 1997.
[20] Kenzi Odani. On the limit cycle of the Liénard
equation. Archivum Mathematicum, Vol. 36 1,
pp. 25-31. 2000.
[21] Voglhuber-Brunnmaier, T. and Jakoby, B.
Understanding Relaxation Oscillator Circuits Using
Fast-Slow System Representations. 2023. IEEE
Access.
EQUATIONS
DOI: 10.37394/232021.2024.4.3