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Abstract: - This paper presents a ready-to-use formula for determining the number and approximate location of 
periodic orbits in second-order Lienard systems. As a result of the exact closed-form derived in [16], in which 
an ordinary differential equation (ODE) must be solved to determine the existence and location of periodic 
orbits for general non-conservative oscillators, a homotopy functional is defined for Lienard-type systems. This 
provides a closed-form and ready-to-use polynomial formula with roots as an approximation of the periodic 
orbit's amplitude. 
In addition, some examples are analyzed, along with conclusions and future plans. 
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1 Introduction 

It is well known that dynamical systems 
written as a single or a collection of ordinary 
differential equations (ODEs) need to be evaluated 
to determine their parametric properties (see for 
instance [1], [2] and [3]). 

Oscillations and periodic orbits are key behaviors of 
general ODEs ([4]). Determining periodic orbits can 
be complex and sometimes impossible using closed-
form or accurate approximate formulas or reduced-
order models ([5], [6]). 

Even second-order ODEs in the plane can exhibit 
intricate periodic patterns that defy closed-form 
analysis (see [7]).  
Simplified versions of these systems have been 
proposed as toy models for such complexity ([8]). 
Two key studies in this field are discussed in [9]: 

 Determine all possible periodic orbits 
with a given initial amplitude 

 Time parameterization in time 

The first case involves determining a single number, 
the period, while the second case is more complex 
and intricate. See references [4] and [10] for further 
details. 

It is well-known that a second-order oscillator has a 
non-differential relation between its period and 
amplitude known as a first- integral (see for instance 
[11] and [12]). However, computing this first-
integral can be challenging due to complex 
integrals.  

In [13], a reduced dynamics approach was 
introduced to calculate a subset of periodic orbits by 
solving an equivalent first-order ODE. Applying 
this method to Mickens’ oscillator (referenced in 
[14]-[15]) yields a closed-form formula for their 
amplitude-period relation ([16]). 

Solving the reduced order ODE presented in [16] 
provides a complete solution to upper bound the 
number of limit cycles for Lienard systems ([6]). 
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However, estimating the location and amplitudes of 
periodic orbits remains challenging. 

This paper presents a formula for identifying the 
number and location of periodic orbits in second -
order Lienard systems. It introduces a homotopy and 
a reduced order ODE from a previous study, 
offering a polynomial formula with roots to 
approximate the amplitude of the periodic orbits. 

This paper is organized as follows: Section 
2 outlines the method with an appropriate 
homotopy, Section 3 provides application examples, 
Section 4 discusses precision and the potential 
Artificial Computational Intelligence extensions, 
and Section 5 offers some conclusions and future 
research directions. 

2 The Homotopy-First Integral 

method 

According to [13] and [16], given a second 
order ODE: 

𝑥̈(𝑡) = 𝑓(𝑥(𝑡), 𝑥̇(𝑡)) 
 
Where 𝑥̇ means time derivatives, a periodic orbit of 
amplitude A exists if and only if the following first 
order ODE possess solution for 𝑥 ∈ [0, 𝐴]: 
 

𝑑𝜙(𝑥)

𝑑𝑥
=
𝑓(𝑥, 𝜙(𝑥))

𝜙(𝑥)
, 𝜙 ∈ ℝ,𝜙(𝐴) = 0 

 
If we restrict ourselves to the Lienard’s case: 
 

𝑓(𝑥, 𝑥̇) = −𝑥 −
𝑑𝐹(𝑥)

𝑑𝑥
∙ 𝑥̇ 

 
Then, it is possible to define an homotopy (see for 
instance [17]): 
 

 

 

( )1 ( )

( ) ( )( ) ( ) 0, 0,1

dF x
p x

dx

dF x d x
p x x x p

dx dx




 

 
    

 

 
        

 

      (1) 

Assuming the classical series representation for (x) 

([17]): 

𝜙(𝑥) = ∑ 𝑝𝑖 ∙ 𝜙𝑖(𝑥)
∞
𝑖=1       (2) 

Replacing (2) into (1), the homotopy equation to 
solve leads: 

𝑑𝐹(𝑥)

𝑑𝑥
∙ ∑ 𝑝𝑖 ∙ 𝜙𝑖(𝑥)

∞
𝑖=1 + 𝑝 ∙ (𝑥 + ∑ 𝑝𝑖 ∙ 𝜙𝑖(𝑥)

∞
𝑖=1 ∙

∑ 𝑝𝑗 ∙
𝑑𝜙𝑗(𝑥)

𝑑𝑥
∞
𝑗=1 ) = 0, 𝑝 ∈ [0,1]    (3) 

To maintain the equality with zero, every all 
coefficients in this series must be zero: 

𝒑𝟏 

𝑑𝐹(𝑥)

𝑑𝑥
∙ 𝜙1 + 𝑥 = 0 ⟹ 𝜙1(𝑥) = −

𝑥

𝐹(𝑥)′
    

Where 𝐹(𝑥)′ = 𝑑𝐹(𝑥)

𝑑𝑥
. 

𝒑𝟐 

𝑑𝐹(𝑥)

𝑑𝑥
∙ 𝜙2 = 0⟹ 𝜙2(𝑥) = 0 

𝒑𝟑 

𝑑𝐹(𝑥)

𝑑𝑥
∙ 𝜙3(𝑥) + 𝜙1(𝑥) ∙ 𝜙1(𝑥)

′ = 0⟹ 

𝜙3(𝑥) = −
𝜙1(𝑥) ∙ 𝜙1(𝑥)′

𝐹(𝑥)′
 

Where 𝜙1(𝑥)′ =
𝑑𝜙1(𝑥)

𝑑𝑥
. The sequence can be 

continued, by adding more terms, but (2) can be also 
truncated at i=3: 

𝜙(𝑥) ≅ 𝜙1(𝑥) + 𝜙3(𝑥) = −
𝑥

𝐹(𝑥)′
−

𝜙1(𝑥)∙𝜙1(𝑥)′

𝐹(𝑥)′
=

−
(𝑥−(

𝑥

𝐹(𝑥)′
)∙𝜙1(𝑥)′)

𝐹(𝑥)′
,  𝜙(𝐴) = 0        (4) 

Equation (4) can be further developed: 

2
( ) ' ( ) ''

( ) ' ( ) '
( ) , ( ) 0

( ) '

x F x x F x
x

F x F x
x A

F x
 

   
    

   
 
 
 

  (5) 

Then, replacing x=A in (5): 
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2

2

( ) ' ( ) ''
( ) ' ( ) ' ( ) ' ( ) ''0 0

( ) ' ( ) ' ( ) '

A F A A F A
A

F A F A A F A A F A
A

F A F A F A

   
    

              
 
 

 (6) 

Where 𝐹(𝐴)′ = 𝐹(𝑥)′|𝑥=𝐴 and 𝐹(𝐴)′′ =
𝐹(𝑥)′′|𝑥=𝐴. It is important to note that: 

If ( )' 0 (3) does not depend on ( )F A F x   

Finally, from (6) with 𝐹(𝐴)′ ≠ 0: 

𝐹(𝐴)′3 = −𝐹(𝐴)′ + 𝐴 ∙ 𝐹(𝐴)′′  (7) 

3 Application examples 

Using (7), we can predict the presence of limit 
cycles and estimate their amplitudes. 

Example 1 

Considering the well-known Van der Pol’s oscillator 
([18]): 

𝑓(𝑥, 𝑥̇) = −𝑥 − (3 ∙ 𝑥2 − 1) ∙ 𝑥̇ 

Equation (7) leads: 

𝐹(𝐴)′3 = −𝐹(𝐴)′ + 𝐴 ∙ 𝐹(𝐴)′′ ⟺ (3 ∙ 𝐴2 − 1)3

= −(3 ∙ 𝐴2 − 1) + 𝐴 ∙ 6 ∙ 𝐴 

That is 𝐴 = 0.96443. In numerical simulations, this 
oscillator’s the amplitude is approximately A=1.16. 

Example 2 

In [19], the following Lienard system was 
considered: 

𝑓(𝑥, 𝑥̇) = −𝑥 − (0.8 ∙ 𝑥 − 4 ∙ 𝑥2 + 0.32 ∙ 5 ∙ 𝑥4) ∙ 𝑥̇ 

In other words: 

3 5

2 4

3

4( ) 0.8 0.32
3

'( ) 0.8 4 0.32 5
"( ) 8 0.32 20

F x x x x

F x x x

F x x x


     


     


     



 

Then, equation (7) yields: 

 
12 10 8

3

6

4 2

( ) ( ) ' ( )"

4.096 30.72 82.944 94.72

36.672 3.68 1.312 0

'F A F A A F A

A A A A

A A

    

       

    

 

Finding the real roots: 

 

1

2

1.72721
0.803071

A

A



  

Based on the values provided in [19]: 
1 21.8, 1A A  , the accuracy obtained is around 

80% in the worst case. 

Example 3 

For instance, in [19], the paper introduces the 
following parameterized system: 

𝑓(𝑥, 𝑥̇) = −𝑥 − (20 ∙ 𝑥3 − 6 ∙ 𝜇 ∙ 𝑥) ∙ 𝑥̇ 

Two limit cycles are present for µ>2.5, while no 
limit cycles are observed for µ<2. Applying 
equation (7): 

 

3 5

2 4 2

3

32 2

( )
'( ) 1 3 5 Replacing 
"( ) 6 20

1 3 5 15 3 1

F x x x x

F x x x A y

F x x x

y y y y







 

    


        


     

           

 

 Obtaining Fig. 1 and Fig. 2: 

 

Figure 1: Parametric curve for Example 2 
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Figure 2: Zoom in the parametric curve 

 
Clearly, for µ>0.55 two limit cycles exist. 

Example 4 

Building on the previous discussion in paper [19], 
we can now consider a final example: 
 

6 4 2

( , )
7 ( 11.1143 29.6914 13.1657)

x f x x

x x x x x

 

         

 
Again, equation (7) yields: 
 

     

 

 

2 2 2 2

6 4 2

5 3

1 2 3

( ) 1.6 4 9

'( ) 7 11.1143 29.6914 13.1657

"( ) 42 7.40952 9.89714

0.7701, 1.8380, 2.7133

F x x x x x

F x x x x

F x x x

A A A

       



       


    

   

 
Figures 3 and 4 in Matlab illustrate a potential limit 
cycle with an approximate amplitude of 3.1 in x(t). 
In this way, the homotopy-first integral serves as 
both a numerical method for approximating periodic 
orbit amplitudes and an upper bound for the number 
of limit cycles.  
 
Based on the conjecture from reference [18] of a 
single limit cycle without specifying its amplitude, 
the method in this paper approximates this 
amplitude value with A3 above, suggesting a 
possible maximum of three limit cycles. 
 

 
 

Figure 3: Limit cycle in x(t) 

 

 
Figure 4: Limit cycle’s phase portrait 

 

Example 5 

Practical applications utilizing oscillation circuits in 
power electronics, including DC-DC, DC-AC, and 
LED drivers, can be achieved through the use of 
relaxation oscillator circuits [21]: 

𝑓(𝑥, 𝑥̇) = −𝑥 − 𝜆 ∙ (𝑥2 − 1) ∙ 𝑥̇ 

An harmonic oscillator is obtained when λ=0 in 
equation (7): 

𝐴 = −1 
 
The polynomial approximation is inaccurate for 
pure harmonic oscillators due to the third-order 
truncation in equation (7). However, for λ≠0, the 
condition for periodic orbits can be determined: 
 

1
27

   

The amplitude obtained wit the border value λ=1/27 
using equation (7) is A=5.3805. This value is higher 
than the conjectured value in [20] which falls 
between 2 and 2.0235, indicating an error of more 
than double. The following section will provide 
insights into the accuracy issue. 
 
4 Discussion 
 

4.1 Approximation accuracy 
 
To assess the accuracy of our approximation 
formula (7), we can analyze the classical Van der 
Pol equation in more depth: 

𝑓(𝑥, 𝑥̇) = −𝑥 − 𝜇 ∙ (𝑥2 − 1) ∙ 𝑥̇ 

According to [20] pp.7, the unique limit cycle has 
an amplitude between 2 and 2.0235 for all µ>0. 
When formula (7) is applied: 
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   
33 2 2 21 1 2A A A            

 
In other words: 
 

  
 

2
2

32

1

1

A

A






                       (8) 

 
Plotting the curve µ-A as shown in Fig. 5: 
 

 
Figure 5: A-µ curve using (7) 

 
Figure 6: Figure 5 zoom 

 

The conjectured interval 𝐴 ∈ [2,2.0235] is 
approximated by the curve in Fig. 5 with 𝜇 ∈
[0.416,0.43]. 
 
On the other hand, for A<10, an interval 𝜇 ∈
[0.01,∞) is covered. Furthermore, by calculating 
the estimated amplitude using equation (8) and 
comparing it to the minimum amplitude suggested 
in [20], we observe that near-zero or zero error is 
achieved when µ values are close to unity (refer to 
Figures 7 and 8). It is also beneficial 
to compare the small values approximation in [20]: 
(𝐴 ≈ 2 + 7/96 ∙ 𝜇2) with equation (8), as illustrated 
in Figure 9. 
 

 
Figure 7: Relative error 

 

 
Figure 8: Figure 7 zoom 

 

 
 
Figure 9: Comparison with reference [20] for small 

values of µ 
4.2 Artificial/Computational Intelligence 

extensions 

 
Possible extensions to a broader scope include 
utilizing Deep Neural Networks (DNN) for 
simulations based on collected data from the non-
linear oscillator ([22] and [23]). This approach can 
help focus on central points for more accurate 
results. 
 
5 Conclusion 
 

This paper presents a method for determining 
periodic orbits of general nonlinear oscillators by 
using closed-form reduced order ODEs derived in a 
previous study. An homotopy approach is developed 
to combine with the resulting polynomial from 
applying the reduced order ODE to Lienard systems. 
 
By defining a classical infinite sum as a solution for 
the homotopy and truncating it around its third term, 
formula (7) offers a quick and efficient way to 
determine both: 

 Approximate number of periodic orbits 
 Approximate amplitude of periodic orbits 

The real roots of the polynomial indicate the 
locations and quantities of periodic orbits in a 
Lienard system. 
 
In future work, a higher truncation order will be 
used in the homotopy defined in this paper. The 
extensions discussed here will be further 

EQUATIONS 
DOI: 10.37394/232021.2024.4.3 Andrés García

E-ISSN: 2732-9976 21 Volume 4, 2024



investigated for general non-linear oscillators, 
beyond just Lienard oscillators, as the scope of the 
paper [16] is broad. 
 
As suggested exploring the potential combination of 
artificial intelligence or computational intelligence 
is an important future research direction.  
 
The focus will be on extending the formulas and 
homotopy from this study to develop 
a general method for approximating and validating 
oscillations with diverse behaviors, particularly in 
neuroscience and power electronics, where non-
linear oscillators play a vital role. 
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