Relative Strength of Common Fixed Point Theorem of Self-Mappings Satisfying Rational Inequalities in Real Valued Generalized Complete Metric Spaces

SURESH KUMAR SAHANI*1, SURENDRA KUMAR TIWARI², DEVNARAYAN YADAV³, MADHAV PRASAD POUDEL 4

¹Department of Science and Technology Rajarshi Janak University, Janakpurdham, NEPAL

^{2,3}Department of Mathematics Dr. C.V. Raman University, Bilaspur, INDIA

> ⁴School of Engineering Pokhara University, Pokhara, NEPAL

Abstract: - In this paper, we have introduced relative strength of common fixed point theorem of self-mappings satisfying rational type inequalities in real valued complete metric space. The purpose of this paper is to generalized and unify some of previous works.

Key-Words: - Common fixed points, Self-continuous mappings, Complete metric spaces.

Received: January 26, 2023. Revised: April 13, 2024. Accepted: June 12, 2024. Published: July 10, 2024.

1 Introduction

As you can see for the title of the paper you must The Banach contraction principle is a most powerful tool in solving existence problems in many branch of mathematics (see, e.g. [1]-[7]). The specific extension of this principle were obtained by generalizing the domain of signals or by extending the contractive condition on the signals [8-10]. As a consequence of those generalizations so many metric were introduced namely uniformly convex Banach spaces, cone metric spaces, pseudo metric spaces, B-metric spaces, fuzzy metric spaces, etc. A set of huge work have been done in this direction, for example, the recent works are see, [10-49] these

fixed point results are useful in establishing the uniqueness of the solution of non-linear differential and integral equation.

In recent paper author [4] proved some new results on fixed point and common fixed points under the specific condition of continuity of the signals. For this, let R^+ denote the set of nonnegative real numbers. Let χ be a family of signals such that $\zeta:(R^+)^5 \to R^+$ and $\zeta \in \chi$ is upper semi continuous and monotonically increasing in each coordinate variable. Also, we consider a new signal in such a way that M:

$$R^+ \rightarrow R^+$$
 and $M(z) = \zeta(z, z, p_1 z, p_2 z, z)$

E-ISSN: 2732-9976 7 Volume 4, 2024

where $3 = p_1 + p_2$.

Lemma ([4]): Let z be a positive real number and M(z) < I if and only if $\lim_{x \to \infty} M^x(z) = 0$.

Proof: It is clear that ζ and M are upper semi continuous.

Let
$$\lim_{x\to\infty} M^x(z) = F$$
 where $F \neq 0$.

Thus by hypothesis we may write

$$F = \lim_{x \to \infty} M^{x+1}(z) \le M \lim_{x \to \infty} M^{x}(z) = M(F) < F$$

 \therefore F < F which gives a contradiction. So, our supposition is wrong.

Then we must have F = 0

For converse part,

It is clear that ζ and M are monotonically increasing.

We have,
$$\lim_{x\to\infty} M^x(z) = 0$$
.

Suppose, if possible that M(z) > z for some $z \in \mathbb{R}^+$.

 $\Rightarrow M^{x}(z) > z$ for some $z \in R^{+}$ and x is natural number.

Thus by hypothesis, $\lim_{x\to\infty} M^x(z) \neq 0$.

Which gives a contradiction. So our supposition is wrong.

Then we must say that $M(z) \neq z$.

Again, we suppose M(z) = z for some $z \in R^+$ then by hypothesis

$$\lim_{x\to\infty} M^x(z) \to 0$$

Consequently, we many write M(z) < zM for some $z \in R^+$.

we prove the following theorem which is motivated by the work of the authors [41, 42].

Theorem 1: Let (x,d) be a complete metric space and F, f_1 and g_1 are continuous self-signals of X satisfying the following conditions having

(i)
$$f_1(x) \cap g_1(x) \supset F(x)$$

(ii) for $\zeta \in \chi$, obtaining

For $n, n_1 \in X$,

$$d(F(n_1), F(n_2)) \leq \zeta \{d(f_1(n), g_1(n_1)), d(f_1(n), F(n_1))\}$$

$$d(g_1(n_1), F(n)), d(g_1(n_1), F(n_1))\}$$

(iii) for all
$$z > 0$$
,
$$\zeta(z, z, p_1 z, p_2 z, z) < z$$
,

(iv)
$$(p_1, p_2) \in [(1,2), (2,1)]$$

(v) $[F, f_1]$ and $[F, g_2]$ are weakly commuting. Then there exist a point $n_0 \in X$ such that n_0 is a unique common fined point of continuous self-signals F, f_1 and g_1 .

Proof: Let m_0 be any point of X. Then, by lemma 1, we choose n_{2k+1} and n_{2k+2} in X such that $f_1(n_1) = F(n_0), f_1(n_3) = F(n_2), f_1(n_5) = F(n_4),$

$$f_1(n_7) = F(n_5), f_1(n_9) = F(n_7),$$

$,\cdots,f_1(n_{2k+1})=F(n_{2k})$		١
-----------------------------------	--	---

And
$$g_1(n_2) = F(n_1), g_1(n_4) = F(n_3),$$

$$g_1(n_6) = F(n_5), g_1(n_8) = F(n_7), \dots,$$

$$g_1(n_{2k+2}) = F(n_{2k+1}).$$

Let
$$d_0 = d(F(n_0), F(n_1)),$$

$$d_1 = d(F(n_1), F(n_2)),$$

$$d_2 = d(F(n_2), F(n_3)),$$

$$d_3 = d(F(n_3), F(n_4)),$$

$$d_k = d(F(n_k), F(n_{k+1})).$$

We have to show that $d_{2k} \le d_{2k-1} \forall k$.

Suppose, if possible that $d_{2k} > d_{2k-1}$ for some k

Now.

$$d_{2k} = d(F(n_{2k}), F(n_{2k+1}))$$

$$d(F(n_{2k+1}), F(n_{2k}))$$

$$\leq \zeta \{d(f_1(n_{2k+1}), g_1(n_{2k})),$$

$$d(f_1(n_{2k+1}), F(n_{2k+1})), d(f_1(n_{2k+1})),$$

$$F(n_{2k}), d(g_1(n_{2k}), F(n_{2k+1})),$$

$$d(g_1(n_{2k}), F(n_{2k})) = \zeta \{d(F(n_{2k}), F(n_{2k-1})),$$

$$d(F(n_{2k}), F(n_{2k+1})),$$

$$d(F(n_{2k}), F(n_{2k})), d(F(n_{2k-1})),$$

$$F(n_{2k+1}), d(F(n_{2k-1}), F(n_{2k}))$$

$$\leq \zeta (d_{2k-1}, d_{2k}, 0, d_{2k-1} + d_{2k}, d_{2k-1})$$

$$\leq \zeta(d_{2k}, d_{2k}, d_{2k}, 2d_{2k}, d_{2k})$$

$$< d_{\gamma_k}$$

i.e., $d_{2k} < d_{2k}$ gives a contradiction.

Thus
$$d_{2k} \leq d_{2k-1} \forall k$$
.

Similarly, we can show that

$$d_{2k+1} \le d_{2k}$$
 for $k = 0, 1, 2, ...$

 $\therefore \{d_k\}$ is monotonically decreasing sequence.

Then
$$d_1 = d(F(n_1), F(n_2))$$

$$\leq \zeta \{d(f_1(n_1), g_1(n_2)), d(F_1(n_1), F(n_1))\}$$

$$,d(f_1(n_1),F(n_2))$$

 $d(g_1(n_2),F(n_1)),d(g_1(n_2),F(n_2))$

$$= \varsigma \{ d(F(n_0), F(n_1)), d(F(n_0), F(n_1)) d(F(n_0), F(n_2))$$

$$, d(F(n_1), F(n_1)), d(F(n_1), F(n_2)) \}$$

$$\leq \zeta (d_0, d_0, d_0 + d_1, 0, d_1)$$

$$\leq \zeta\left(d_0, d_0, 2d_0, d_0, d_0\right)$$

$$=M\left(d_{0}\right) ,$$

similarly, we can show that

$$d_2 \le M^2 \left(d_0 \right)$$

$$d_3 \leq M^3 \left(d_0 \right)$$

$$d_4 \leq M^4 \left(d_0 \right)$$

$$d_k \leq M^k(d_0)$$
.

If $d_0 > 0$ then by lemma 1, $\lim_{k \to \infty} d_{k=0}$.

If for
$$d_0 = 0$$
, $\lim_{k \to \infty} d_{k=0}$.

Thus $d_{k=0}$ for each k.

We next show that $\{F(n_k)\}\$ is a Cauchy sequence.

It is sufficient show that $\{F(n_{2k})\}$ is a Cauchy sequence.

Suppose, if possible suppose that $\{F(n_{2k})\}$ is not a Cauchy sequence. Then for $\in > 0$, such that for even number 2k, k = 0, 1, 2, ..., there exists even integer 2k(a)and $2\ell(a), 2a \le 2k(a) < 2\ell(a)$ such that

$$d\Big(F\Big(n_{2\ell(a)}\Big), F\Big(n_{2\ell(a)}\Big)\Big) > \in \tag{1}$$

Let, for each integer $2a, 2\ell(a)$ be the least integer exceeding 2k(a) satisfying equation (1).

Thus
$$d\left(F\left(n_{2k(a)}\right), F\left(n_{2\ell(a)-2}\right)\right) \ge \in$$
 (2)

and
$$d\left(F\left(n_{2k(a)}\right), F\left(n_{2\ell(a)}\right)\right) > \in$$
 (3)

Then for each integer 2a,

$$\left\{ < d \left(F \left(n_{2k(a)}, F \left(n_{2\ell(a)} \right) < d \left(F \left(n_{2k(a)} \right), F \left(n_{2\ell(a)-2} \right) \right) \right) \right) \text{ By equation (5),}$$

$$+ d \left(F \left(n_{2\ell(a)-2}, F \left(n_{2\ell(a)-1} \right) \right) \right) + \lim_{k \to \infty} d_k = 0 \text{ , and obtain }$$

$$d\Big(F\Big(n_{2\ell(a)-1}\Big),F\Big(n_{2\ell(a)}\Big)\Big)$$

then by equation (2) and equation (3) and $d_{k\to 0}$,

we obtain

$$d\left(F\left(n_{2k(a)}\right), F\left(n_{2\ell(a)}\right)\right) \to \in \tag{4}$$

as $a \to \infty$.

Then by triangular inequality

$$\left| d(F(n_{2k(a)}), F(n_{2l(a)-1})) - d(F(n_{2k(a)}), F(n_{2l(a)}) \right|$$

$$\leq d_{2l(a)-1}$$

and

$$\left| d(F(n_{2l(a)+1}), F(n_{2l(a)-1})) - d(F(n_{2l(a)}), F(n_{2l(a)}) \right| \le d_{2l(a)-1} + d_{2(k)a}.$$

By equation (4), as $a \to \infty$

 $d\left(F\left(n_{2k(a)}\right),F\left(n_{2\ell(a)}\right)\right)\leq$

$$d\left(F\left(n_{2k(a)}\right), F\left(n_{2\ell(a)-1}\right)\right) \to \in \tag{5}$$

and

$$d\Big(F\Big(n_{2k(a)+1}\Big), F\Big(n_{2\ell(a)-1}\Big)\Big) \to \in \tag{6}$$

Again,

$$\leq d\left(F\left(n_{2k(a)}\right), F\left(n_{2k(a)+1}\right)\right) + d\left(F\left(n_{2k(a)+1}\right), F\left(n_{2\ell(a)}\right)\right)$$

$$\leq d_{2k(a)} + \zeta d\left(F\left(n_{2k(a)}\right)F\left(n_{2\ell(a)-1}\right)\right), d_{2k(a)},$$

$$\begin{split} &d\left(F\left(n_{2k(a)}\right),F\left(n_{2\ell(a)}\right)\right),\\ &d\left(F\left(n_{2\ell(a)-1}\right),F\left(n_{2k(a)+1}\right)\right),d_{2\ell(a)-1} \end{split}$$

 $\lim_{k\to\infty} d_k = 0$, and upper semi-continuity of ζ , we obtain

$$\in \leq \zeta \left(\in ,0,\in ,\in ,0\right)$$

$$\leq M(\in)$$

<∈

which gives a contradiction.

Therefore $\{F(n_k)\}$ is a Cauchy sequence and using completeness property of X, there is a point $c \in X$ such that $F(n_k) \rightarrow c$.

It is clear that $\{f_1(n_{2k+1})\}$ and $\{g_1(n_{2k})\}$ are subsequences of $\{F(n_{\nu})\}$ $\{f_1(n_{2k})\} \to c \text{ and } \{g_1(n_{2k+1})\} \to c.$

Consequently,

$$\{f_1g_1(n_{2k})\} \rightarrow f_1(c) \text{ and } \{g_1f_1(n_{2k+1})\} \rightarrow g_1(c)$$

as f_1 and g_1 are continuous signals.

Again, Let
$$d(f_1g_1(n_{2k}), g_1f_1(n_{2k+1})) =$$

$$d(f_1F(n_{2k-1}),g_1F(n_{2k}))$$

$$\leq d(f_1F(n_{2k-1}), Ff_1(n_{2k-1})) +$$

$$d(Ff_1(n_{2k-1}), Fg_1(n_{2k})) + d(Fg_1(n_{2k}), g_1F(n_{2k}))$$

using given conditions (i) and (ii),

$$d(f_1g_1(n_{2k}), g_1f_1(n_{2k+1})) \le$$

$$d(f_1(n_{2k-1}), F(n_{2k-1})) +$$

$$d(Ff_1(n_{2k-1}), Fg_1(n_{2k})) +$$

$$d(F(n_{2k}), g_1(n_{2k}))$$

$$\leq d\left(f_{1}\left(n_{2k-1}\right), F\left(n_{2k-1}\right)\right) + \zeta \left\{d\left(f_{1}^{2}\left(n_{2k-1}\right), g_{1}^{2}\left(n_{2k}\right)\right), \ d\left(f_{1}F\left(n_{2k+1}\right), Ff_{1}\left(n_{2k+1}\right)\right) + d\left(f_{1}^{2}\left(n_{2k-1}\right), Ff_{1}\left(n_{2k-1}\right)\right), d\left(f_{1}^{2}\left(n_{2k-1}\right), Fg_{1}\left(n_{2k}\right)\right) \ d\left(Ff_{1}\left(n_{2k+1}\right), F\left(c\right)\right)$$

$$d\left(g_{1}^{2}\left(n_{2k}\right), Ff_{1}\left(n_{2k-1}\right)\right),$$
 Again, by condition (iii),

$$\leq d(f_1(n_{2k-1}), F(n_{2k-1})) +$$

 $d(g_1^2(n_{2k}), Fg_1(n_{2k})) + d(F(n_{2k}), g_1(n_{2k}))$

$$\zeta\{d(f_1^2(n_{2k-1}),g_1^2(n_{2k})),$$

$$\begin{split} d\left(f_{1}^{2}\left(n_{2k-1}\right), f_{1}F\left(n_{2k-1}\right)\right) + \\ d\left(f_{1}\left(n_{2k-1}\right), F\left(n_{2k-1}\right)\right), \\ d\left(f_{1}^{2}\left(n_{2k-1}\right), g_{1}F\left(n_{2k}\right)\right) + \\ d\left(g_{1}\left(n_{2k}\right), F\left(n_{2k}\right)\right), d\left(g_{1}^{2}\left(n_{2k}\right), f_{1}F\left(n_{2k-1}\right)\right) \\ d\left(f\left(n_{2k-1}\right), F\left(n_{2k-1}\right)\right), d\left(g_{1}^{2}\left(n_{2k}\right), g_{1}F\left(n_{2k}\right)\right) \\ + d\left(g_{1}\left(n_{2k}\right), F\left(n_{2k}\right)\right) + d\left(F\left(n_{2k}\right), g_{1}\left(n_{2k}\right)\right). \end{split}$$

Let
$$d(f_1(c), g_1(c)) > 0$$
.

Then by using condition (iii),

$$d(f_1(c), g_1(c)) \le \zeta \{d(f_1(c), g_1(c)), 0,$$

$$d(f_1(c),g_1(c)),d(g_1(c),f_1(c)),0$$

$$\leq M\left(d\left(f_1(z),g_1(z)\right)\right)$$

$$\langle d(f_1(c),g_1(c))$$

i.e.
$$d(f_1(c), g_1(c)) < d(f_1(c), g_1(c))$$

which gives a contradiction

Thus,
$$f_1(c) = g_1(c)$$
.

We next show that $F(c) = f_1(c)$.

Let
$$d(f_1F(n_{2k+1}), F(c)) \le$$

$$d\left(f_1F\left(n_{2k+1}\right),Ff_1\left(n_{2k+1}\right)\right)+$$
$$d\left(Ff_1\left(n_{2k+1}\right),F\left(c\right)\right)$$

Again, by condition (iii),

$$d(f_{1}F(n_{2k+1}), F(c)) \leq$$

$$d(f_{1}(n_{2k+1}), F(n_{2k+1})) +$$

$$\zeta \{d(f_{1}^{2}(n_{2k+1}), g_{1}(c)),$$

$$\begin{split} d\left(f_{1}^{2}\left(n_{2k+1}\right), f_{1}F\left(n_{2k+1}\right)\right) + \\ d\left(f_{1}\left(n_{2k+1}\right), F\left(n_{2k+1}\right)\right), \\ d\left(f_{1}^{2}\left(n_{2k+1}\right), F\left(c\right)\right), \\ d\left(g_{1}(c), F\left(n_{2k+1}\right)\right) + d\left(f_{1}\left(n_{2k+1}\right), F\left(n_{2k+1}\right)\right), \end{split}$$

$$d(g_{1}(c), F(c))\}.$$

$$d(f_{1}(c), F(c)) \leq \zeta \{d(f_{1}(c), g_{1}(c)), d(f_{1}(c), f_{1}(c)), d(f_{1}(c), F(c)), d(g_{1}(c), F(c))\}$$

$$d(g_{1}(c), f_{1}(c)), d(g_{1}(c), F(c))\}$$

$$d(f_{1}(c), F(c)) = \zeta \{0, 0, d(f_{1}(c), F(c)), d(f_{1}(c), F($$

$$d(f_1(c), F(c))$$

$$\leq M(d(f_1(c), F(c))$$

$$< d(f_1(c), F(c))$$

$$\therefore d(f_1(c),F(c)) < d(f_1(c),F(c))$$

which gives a contradiction.

Thus
$$f_1(c) = F(c)$$

$$\therefore f_1(c) = F(c) = g_1(c).$$

Also
$$d(F(c),c) \leq \zeta \{d(f_1(c),c),$$

$$0,d(f_1(c),c),d(c,F(c)),0$$

$$\leq M d(F(c),c)$$

which also gives a contradiction.

Consequently,
$$F(c) = c = f_1(c) = g_1(c)$$
.

Thus c is only common fixed point of the continuous self-signals F, f_1 and g_1 .

Example (1):

Let X = [0,1] be a complete metric space.

We consider
$$F(n) = \frac{n}{n+2}$$
, $f_1(n) = \frac{n}{2}$,

and
$$g_1(n) = \frac{3n}{4} \quad \forall n \in X$$
.

Also, Let
$$\zeta(z_1, z_2, z_3, z_4, z_5) =$$

$$\frac{1}{5}(z_1 + z_2 + z_3 + z_4 + z_5)$$

Thus,

$$F(n) = \left[0, \frac{1}{3}\right] \subset \left[0, \frac{1}{2}\right] \cap \left[0, \frac{3}{4}\right] = f_1(n) \cap g_1(n).$$

Here,
$$Fg_1(n) = F(g_1(n))$$

$$=F\left(\frac{3n}{4}\right) = \frac{\frac{3n}{4}}{\frac{3n}{4} + 2}$$

$$=\frac{3n}{3n+8}$$
,

$$g_1 F(n) = g_1 \left(\frac{n}{n+2}\right)$$
$$= \frac{3}{4} \left(\frac{n}{n+2}\right)$$

$$=\frac{3n}{4n+8}$$

for $n \in X$,

$$d(Fg_1(n), g_1F(n)) = \left| \frac{3n}{8+3n} - \frac{3n}{8+4n} \right|$$

$$= \frac{3n^2}{(8+3n)(8+4n)}$$

$$\leq \frac{3n^2}{8+4n} \leq \frac{3n^2}{8+4n} + \frac{2n}{8+4n}$$

$$= d(F(n), g_1(n)).$$

Also, for $n, n \in [0,1]$, it is easy to verify the condition (ii) of our theorem.

Thus we must say that 0 is only a common fixed point of continuous self-mapping F, f_1 and g_1 .

Example (2):

Let X = R and define F, f_1 and $g_1: x \to X$ by

$$f(n) = \begin{cases} 2^{-1} & for & n > 1\\ n(n+1)^{-1} & for & 0 < n \le 1,\\ 0 & for & n \le 0 \end{cases}$$

$$f_1(n) = \begin{cases} 1 & for & n > 1 \\ n & for & 0 < n \le 1, \\ 0 & for & n \le 0 \end{cases}$$

and
$$g_1(n) = \begin{cases} n & \text{for } n > 0 \\ 0 & \text{for } n \le 0 \end{cases}$$
.

Let
$$\zeta: (R^+)^5 \to R^+$$
 by

$$\zeta(z_1, z_2, z_3, z_4, z_5) =$$

$$\begin{cases} z_1 (1+z_1)^{-1} & \text{for } 0 \le z_1 \le 1 \\ 2^{-1} z & \text{for } z_1 > 1 \end{cases}.$$

Then f_1 , g_1 and ζ are monotonically increasing and continuous signals.

Here,
$$A(n) = \left[0, \frac{1}{2}\right] \cap \left[0, 1\right] \cap \left[0, \infty\right]$$
$$= f_1(n) \cap g_1(n).$$

It can be noticed that

$$M(z) = \zeta(z, z, p, z, p, z, z) < z$$

and $p_1 + p_2 = 3$. For this,

case (i): If $n \le 0, n_1 \le 0$ then

$$d(F(n), F(n_1)) = 0 = M(d(f_1(n), g_1(n_1))$$

case (ii): If $n \le 0, 0 < n_1 \le 1$,

then
$$d(F(n), F(n_1)) = \frac{n_1}{1+n} = M(n_1)$$

= $M(d(f_1(n), g_1(n_1))$

case (iii): If $n \le 0, n_1 > 1$

then
$$d(F(n), F(n_1)) = \frac{1}{2} < \frac{n_1}{2}$$

= $M(d(f_1(n), g_1(n_1))$

case (iv): If $0 < n \le 1, 0 < n_1 \le 1$,

$$d(F(n), F(n_1)) = \left| \frac{n}{n+1} - \frac{n_1}{n_1 + 1} \right|$$

$$= \frac{|n_1 - n|}{(n+1)(n_1 + 1)} \le \frac{|n_1 - n|}{1 + |n_1 - n|}$$

$$= M(|n - n_1|)$$

$$= M(d(f_1(n), g_1(n_1))$$

$$\therefore |n - n_1| < |$$

case (v): If
$$0 < n \le 1$$
,
 $F(n) = \frac{n}{n+1}$, $F(n_1) = \frac{1}{2}$,
 $f_1(n) = n$, $g_1(n_1) = n_1$,
 $n+1 < 2 \Rightarrow \frac{1}{n+1} > \frac{1}{2}$
 $\Rightarrow \frac{n}{n+1} > \frac{n}{2}$
 $\Rightarrow \frac{-n}{n+1} < \frac{-n}{2}$
 $\Rightarrow \frac{1}{2} - \frac{n}{n+1} < \frac{1}{2} - \frac{n}{2} < \frac{-n}{2} = \frac{n}{2}$ where $n_1 > 1$
then for $n_1 - n > 1$, we deduce that $d(F(n), F(n_1)) = \frac{1}{2} - \frac{n}{n+1} < \frac{n_1 - n}{2} = \frac{n}{2}$
 $M(d(f_1(n), g_1(n_1))$
similarly, $\frac{n_1 - n}{1 + n_1 - n} \ge \frac{n_1 - n}{2}$
and $d(F(n), F(n_1)) = \frac{1}{2} - \frac{3}{n+1} < \frac{n_1 - n}{2} \le \frac{n_1 - n}{1 + n_1 - n} = \frac{1}{2}$
 $M(d(f_1(n), g_1(n_1)))$ where $n_1 \le n + 1$

$$<\begin{cases} \frac{n_{1}-1}{2} = M\left(d\left(f_{1}\left(n\right), g_{1}\left(n_{1}\right)\right) if & n_{1} \geq 2\\ \frac{n_{1}-1}{n_{1}} = \frac{n_{1}-1}{1+\left(n_{1}-1\right)} = M\left(d\left(f_{1}\left(n\right), g_{1}\left(n_{1}\right)\right) if & 1 < n_{1} < 2 \end{cases}$$

Therefore all assumptions of theorems are satisfied.

References

case (vi): If n > 1, $n_1 > 1$

 $d(F(n),F(n_1))=0$

- [1]. Banach, S: Sur les operations dans les ensembles abstraits et leur applications aux equations integrals, Fundam. Math. 3, 133-181 (1922).
- [2]. Abbas, M., Ali, Basit, and Romaguera; Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory and Applications, 2013, 2013:243, http://www.fixedpointtheoryandapplications.com/content/2013/1/243.

- [3]. Dix, JG, Karakostas, GL: A fixed point theorem for S-type operators on Banach spaces and its applications to boundary-value problems, Nonlinear Anal. 71, 3872-3880 (2009).
- [4]. Latrach, K Taodib, MA, Zeghaic A; Some fixed point theorems of the Schauder and Krasnoselskii type and application to nonlinear transport equation, J, Differ. Equ. 221, 256-271 (2006).
- [5]. Rousseau, C: Point fixe de Banach (in French). Accromath 5, hiver-print-emps (2010) (www.accromath.ca).
- [6]. Arandjelovic, I, Kadelburg, Z, Radenovic, S: Boyd-Wong-type common fixed point results in cone metric spaces, Appl. Math. Comput. 2017, 7167-7171 (2011).
- [7]. Bayd, DW, Wong, JSW: On nonlinear contractions Proc. Am. Math. Soc. 20, 458-464 (1969).
- [8]. Huang, LG, Zhang, X: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332, 1468-1476 (2007).
- [9]. Rakotch, E: A note on contractive mappings. Proc. Am. Math. Soc. 13, 459-465 (1962).
- [10]. Tarafdar, E: An approach to fixed point theorems on uniform spaces, Trans. Am. Math. Soc. 191, 209-225 (1974).
- [11]. Jungck, G: Compatible Mappings and Common Fixed Points. International Journal of Mathematics and Mathematical Sciences, Vol. 9. No. 4, 771-779 (1986). Doi:10.1155/5016117/286000935.
- [12]. Jungck, G: Commuting mappings and fixed points. Amer. Masth. Monthly. 83, 261-263 (1976).
- [13]. Jungck, G: Periodic and fixed points, and commuting mappings. Proc. Amer. Math. Soc. 76, 333-338 (1979).
- [14]. Jungck, G: Common fixed point theorems for semigroups of maps on L-spaces. Math. Japonica 26, 625-631 (1981).
- [15]. Park, S, and Bae, J: Extensions of a fixed point theorem of Meir and Keeler. Ark. Mat. 19, 223-228 (1981).
- [16]. Meir, A and Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 2, 526-529 (1969).
- [17]. Rhoades, B. E et al.: Some fixed point theorem for Hardy-Rogers type mappings. International Journal of Mathematics and Mathematical Sciences. Vol. 7. No. 1, 75-87 (1984).

- [18]. Baskaran, R, Subrahmanyam, P.V.: Common fixed points in metrically convex spaces. Jour. Math. Phys. Sci. 18, 565-570 (1984).
- [19]. Kasahara, S.: Iff fixed point criterion in L-spaces. Math. Sem. Notes. 4, 205-210 (1976).
- [20]. Singh, S. L.: On common fixed points of commuting mappings. Math. Se. Notes. 5, 131-134 (1977).
- [21]. Singh, S. L.: A none on the convergence of a pair of sequence of mappings. Arch. Math. 1. Scripta Fac. Sci. Nat. Vjep Brunensis. 15, 47-52 (1979).
- [22]. Singh, S. L. and Kulrestha, C.: Coincidence theorems in metric spaces. Ind. J. Phy. Nat. Sci. 2, Sec B., 19-22 (1982).
- [23]. Singh, S. L. and Paut, B. D.: Fixed point theorems for commuting mappings in probalistic metric spaces. Honan Journal. 5, 139-149 (1983).
- [24]. Das, K. M. and Naik, K. V. : Common fixed point theorems for commuting maps on metric spaces. Proc. Amer. Math. Soc. 77, 369-373 (1979).
- [25]. Rhoades, B. E., Singh, S. L., and Kulshrestha, C.: Coincidence theorems for some multivalued mappings. Int. J. of Math. 9, No. 8, 429-434 (1984).
- [26]. Chang, S. S.: A common fixed point theorem for commuting mappings. Proc. Amer. Math. Soc. 83, 645-652 (1981).
- [27]. Chang, C. C.: On a fixed point theorem of contractive type. Commentarii Mathematici. Univ. Socti. Pauli. 32, 15-19 (1983).
- [28]. Hadzic, O: Common fixed point theorems for family of mappings in complete metric spaces. Math. Japonica. 29, 127-134 (1984).
- [29]. Imdad, M. and Chauhan, S.: Employing common limit range property to prove Unified Metrical Common Fixed Point Theorems. International Journal of Analysis. Vol. 2013, Article ID 763261, 10 pages http://dx.doi.org/10.1155/2013/76326/.
- [30]. Kirk, W. A.: Some recent results in metric fixed point theory. Journal of Fixed Point Theory and Applications. Vol. 2 No. 2, 195-207 (2007).
- [31]. Azam, A., Fisher, B., and Khan, M: Common fixed point theorems in complex valued metric spaces. Numerical Functional Analysis and optimization. 32 (3), 243-253 (2011).

- [32]. Azam, A., and Arshad, M.: Common Fixed Points of generalized contractive maps in cone metric spaces, Bulletian of the Iranian Mathematical Society. 35 (2), 255-264 (2009).
- [33]. Bhatt, S., Chaukiyal, S., and Dimri, R. C.: A common fixed point theorem for weakly compatible maps in complex valued metric spaces, International Journal of Mathematical Sciences and Applications. 1 (3), 1385-1389 (2011).
- [34]. Bukatin, M., Koperman, R., Mathews, S, and Pajoohesh, H.: Partial metric spaces. American Mathematical Monthly. 116 (8), 708-718.
- [35]. Chandok, S., and Kumar, D.: Some common fixed point results for rational type contraction mappings in complex valued metric spaces. Journal of Operators, 2013. Article ID 813-707.
- [36]. Ciric, L., Samet, B., Aydi, H., and Vetro, C.: Common fixed points of generalized contractions on partial metric spaces and an application. Applied Mathematics and Computation, 2398-2406 (2011), doi:10.1016/j.amc.2011.07.005.
- [37]. Sintunavarat, W., and Kumar, P. Poom.: Generalized common fixed point theorems in complex valued metric spaces and applications. Journal of Inequalities and Applications. 84, 2012.
- [38]. Pragadeeswarar, V., and Marudia, M.: Fixed point theorems for mapping satisfying a contractive condition of rational expression on a ordered partial metric spaces. Thai Journal of Mathematics. 12 (3), 613-620 (2014).
- [39]. Rouzkard, F., and Imbdad, M.: Some common fixed point theorems on complex valued metric spaces. Computers and Mathematics with Applications. doi:10.1016/j.comwa.2012.02.063.
- [40]. Husain, S. A. and Sehgal, V. M.: On common fixed points for a family of mappings. Bull. Austral. Math. Soc. 13, 261-267 (1975).
- [41]. Singh, S. P. and Meade, B. A.: On common fixed point theorems. Bull. Austral. Math. Soc. 16, 49-53 (1977).
- [42]. Fisher, M.: Mappings with a common fixed point. Math. Sem. Notes. 7, 81-84 (1979).
- [43]. Karapınar, E., Fulga, A.: A fixed point theorem for Proinov mappings with a contractive iterate. Appl. Math. J. Chin.

- Univ. 38, 403–412 (2023). https://doi.org/10.1007/s11766-023-4258-y.
- [44]. A. Hussain, N. Hussain, and D. Ali, Estimation of newly established iterative scheme for genralized and nonexpansive mapping, J. Function Spaces 2021 (2021), 1–9. 10.1155/2021/6675979.
- [45]. 45. Ali, D., Hussain, A., Karapinar, E. & Cholamjiak, P.: Efficient fixed-point iteration for generalized nonexpansive mappings and its stability in Banach spaces. Open Mathematics, 20(1), 1753-1769, 2023. https://doi.org/10.1515/math-2022-0461
- [46]. Magadevan, P., Karpagam, S., & Karapınar, E. Existence of fixed point and best proximity point of p- cyclic orbital phicontraction map. Nonlinear Analysis: Modelling and Control, 27(1), 91-101,2022.
- [47]. Karapinar, E.: Revisiting Fixed Point Results with a Contractive Iterative at a Point. In: Hošková-Mayerová, Š., Flaut, C., Maturo, F. (eds) Algorithms as a Basis of Modern Applied Mathematics. Studies in Fuzziness and Soft Computing, Vol 404, 2021. Springer, Cham. https://doi.org/10.1007/978-3-030-61334-17
- [48]. Karapınar, E., Fulga, A. & Agarwal, R.P.: A survey: F-contractions with related fixed point results. J. Fixed Point Theory Appl . 22, 69 (2020). https://doi.org/10.1007/s11784-020-00803-7
- [49]. S.K. Sahani, Binay Kumar Pandey, Digvijay Pandey, Single-valued Sig-nals, Multi-valued Signals and Fixed-Point of Contractive Signals, Math-ematics Open, doi: 10.1142/S2811007224500020

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

The authors equally contributed in the present research, at all stages from the formulation of the problem to the final findings and solution.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 https://creativecommons.org/licenses/by/4.0/deed.en_US