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1 Introduction

As you can see for the title of the paper you must The
Banach contraction principle is a most powerful
tool in solving existence problems in many
branch of mathematics (see, e.g. [1]-[7]). The
specific extension of this principle were obtained
by generalizing the domain of signals or by
extending the contractive condition on the
signals [8-10]. As a consequence of those
generalizations so many metric were introduced
namely uniformly convex Banach spaces, cone
metric spaces, pseudo metric spaces, B-metric
spaces, fuzzy metric spaces, etc. A set of huge
work have been done in this direction, for
example, the recent works are see, [10-49] these
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fixed point results are useful in establishing the
uniqueness of the solution of non-linear
differential and integral equation.

In recent paper author [4] proved some new
results on fixed point and common fixed points
under the specific condition of continuity of the

signals. For this, let R™ denote the set of non-
negative real numbers. Let 7 be a family of

signals such that é’:(R+ )5 —R" and {€y is

upper semi continuous and monotonically
increasing in each coordinate variable. Also, we
consider a new signal in such a way that M:

R">R" and M (2)=¢ (2,2, p,2, p,2,2)
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where3=1p, +p,.

Lemma ([4]): Let z be a positive real number and
M (z)<1 ifand only if lim M*(z)=0.
X—0o0

Proof: It is clear that { and M are upper semi

continuous.

Let lim MX(Z)zF where F #0.

X—>00

Thus by hypothesis we may write

F =lim M*'(z)<Mlim M*(z)=M (F)<F

X—0 X—>0

. F < F which gives a contradiction. So, our
supposition is wrong.

Then we must have F =0

For converse part,

It is clear that { and M are monotonically

increasing.

We have, lim M*(z)=0.

X—0

Suppose, if possible that M(z)>z for some
zeR".

= M*(z) >z forsome Z € R" and X is natural

number.
Thus by hypothesis, lim M*(z)=0.

Which gives a contradiction.
So our supposition is wrong.

Then we must say that M (z)#z.

Again, we suppose M (z)=z for some Z € R

then by hypothesis
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limM*(z2) =0

X—>00

Consequently, we many write M (z)<zM for

some Z€R".

we prove the following theorem which is
motivated by the work of the authors [41, 42].

Theorem 1: Let (x,d) be a complete metric

space and F,f and g, are continuous self-

signals of X satisfying the following conditions
having

(1) f.(x)ng,(x)>F(x)

(i)  for { €, obtaining

For n,n, € X ,
d(F(n),F(n))<gtd(f,(n),g,(n)),
d(f(n),F(n)).d(f,(n).F(n))
d(g:(n),F(n)).d (g, (m).F(m))

(iii) forall z>o0,

¢(z,z,p2,p,2,2)< 2,

i) (popy)e[(12),(21)]

) [F.f] and [F,g,] are

commuting. Then there exist a point N, € X

weakly

such that n; is a unique common fined point of

continuous self-signals F, f, and ¢,.

Proof: Let m, be any point of X. Then, by

lemma 1, we choose n,,,, and n,,, in X such
that f.(n)=F(n,). f(n)=F(n,),
f.(ns)=F(n,),

f.(n,)=F(ny),f (n)=F(n,),
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o (N ) = F(ny) <¢(d,y.d,.d,,2d,,.,d,,)

And g,(n,)=F(n).g,(n,)=F(n,), <d,,

9 () =F(ns), 9, () =F(n;).---, ie., d,, <d,, gives a contradiction.
91 (N2 ) = F (o) Thus d,, <d,, VK.

Let d,=d (F (ny), F(m, )) ’ Similarly, we can show that

dlzd(F(nl)’F(nz))’ d,., <d,, for k=0,1,2,...
dz :d(F(nz)’F(n3))’
d3 :d(F(n3)>F(n4))’

d =d(F(n,).F(n.,))-

-.{d,} is monotonically decreasing sequence.
Then d, =d(F(n,).F(n,))

<¢td(fi(m), 0, (np)).d(F(n), F(n))
We have to show that d, <d,, VK.

Ld(f,(n,), F(n,)
Suppose, if possible that d,, >d,, , for some k d (91 (n,),F(n, )),d (91 (n,).F (nz))}

Now, =c{d(F(n,), F(n,)),d(F(n,), F(n,)d(F(n,),F(n,))

d,, :d(F(nzk)’F(nzkH)) ,d(F(nl),F(nl)),d(F(nl),F(nz))}

d(F(ny.,).F(ny)) <¢(d,.d,.d,+d,,0,d,)
<¢(d,,d,,2d,,d,,d,)

<4 (F (N ) 81 (o)) =M (d,),

d ( fi (Nt )> F (Mo )),d ( f, (n2k+1)) > similarly, we can show that

F(nzk)ad(gl(nzk)oF(nzkH))’ d2 SMz(do)

d(g,(ny)sF(n ) =¢4d (F(ny ), F(ny ), G =M7(dy)
d(F(ny),F(ny.))s d, <M*(d,)
d (F (1) F (n))-d (F () d, <M“(d,).
F (N )»d (F (N )s F (M) )t If d, >0 then by lemma 1, lim d, .

<& (dyyy5054,0,d,,  +0,,, 0y ) If for d, =0, il_rgdkzo .
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Thus d,_, for each k.

We next show that {F(nk)} is a Cauchy

sequence.

It is sufficient show that {F (N, )} is a Cauchy

sequence.

Suppose, if possible suppose that {F(n,, )} is
not a Cauchy sequence. Then for > 0, such that

for even number 2K,K=0,1,2,..., there exists

even integer 2k (a) and
2¢(a),2a<2k(a)<2¢(a) such that
d(F (M- F (M) ) > (1)

Let, for each integer 2a,2/(a) be the least
integer exceeding 2k(a) satisfying equation

(1).
Thus d (F (N )-F (nﬂ(a)fz)) >c

and d (F (nzk(a)), F (nM(a)» >e

Then for each integer 2a,

2)

€)

(<d (F(nzk(a), F(

+d (F (nzf(a)Z’ F (n”(a)*l ))) "
d (F (”zaa)A ) F (n”(a) ))

then by equation (2) and equation (3) and d, ,,,

we obtain

d (F (”2k<a>)’ F (”M(a))) —€

as a —> 0,

(4)
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Then by triangular inequality

A (F (M) F (M) ) = A(F (N 0)), F (N

< d2|(a)—1

and

A (F (Mg ay,0)s F (Mg 1)) = A (F (Mg ), F Ny
< dzl(a)—l + dz(k)a.

By equation (4), as a -

4 (F (M) F (Mo ) > (5)
and

d (F (nZk(a)+1 )’ F (nM(a)—l )) —€ (6)
Again,

d (F (e )- F (”zaa))) =
=d (F (n2k<a>)’ (n2k<a>+l))+ d (F (“2k<a>+l ) F (”M(a) ))

F
<d,, +§d( ( 2k(a)) F (nzé(a)fl ))’dzk(a) ’

( 2k(a) z,e(a) )) J

d (F (nzg(a)_] ): F (nzk(a)+l )) ’ d2f(a)—1

M a) ) <d (F (nzk(a))’ F <n2£(a)—2 )))) By equation (5),

lim d =0, and upper semi-continuity of { we

k—o0

obtain

€< (e,0,¢,€,0)
<M(e)
<e

1e. e<e

which gives a contradiction.
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Therefore {F(n,)} is a Cauchy sequence and
using completeness property of X, there is a

point ¢ e X such that F(n,) —>c.
It is clear that {f (n,.,)} and {gl(nZK)} are

of {F(nk)}

{ f (nzk)} —c and {g1 (N )} N

subsequences and hence

Consequently,

{ flgl (nzk )} - f1 (C) and {gl f1 (n2k+1 )} — 0, (C)

as f, and g, are continuous signals.
Again, Let d ( .0, (). 9, f (N, )) =
d(fiF(nyet)s9iF ()
<d(f,F(n,,).Ff(ny,))+

d (Ffl (nzk—1)7 Fg, (nzk ))+d (Fgl (nzk)7 9,F (nzk ))
using given conditions (i) and (ii),

d(flgl(nzk)’gl fl (nzk-ﬁ—l))S

d(fl(n2k—1)’|:(n2k—l))+

d (Ffl (Ny1)> Fg, (0 ))+

d(F(ny)-9,(ny))
d(fl(n2k ). F(
( 12(n2k1 Ffl(n2k 1))ad(f12< 2k- 1) Fgl( ))

(gf(nzk Ff, (N 1))
' (

( g; (), Fo, nzk))}+d(

Sd(fl(n2k 1) F(nzk 1))"'

S (£ (s )- 07 ()

o o o

2k)’ g, (nzk ))
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f2(n

( My 1))"‘
(fi (M 1) F(nzk )
(f12 2k1 2k))+
(0

(f(

d

2k1

g,(n ) d(gl( <) le(nZK—l))

f(n 2k 1)) d(gl (n k)’glF(nZK))
+ (gl(nﬂ) F(mk))}+d( (N24)> 91 (n20)) -

g,(c))>0.

Then by using condition (iii),

d(f(c),g,(c))<<td(fi(c).9,(c)).0,

d(fi(c).9,(c)).d(gi(c). fi(c)).0}
M (d(f,(2),9,(2))

<d(f,(c).g,(c))

ie. d(fi(c),0,(c))<d(fi(c).q,(c))

d
d
d
d
d(f ()

Let d(f,(c),

which gives a contradiction

g,(c).

We next show that F(c)= f (c).

Thus, f,(c)=

Let d ( fiF (., ). F (C)) =

d ( le (n2k+1 )> I:fl (n2k+1 )) +

d(Ff, (n,.,).F(c))

Again, by condition (iii),

d(f,F (nu).F(c))=
d(f, (M )s F (Mo ) +
Sid( (M) 0,(€).
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q ( f12 (n2k+1 ), fF (n2k+l )) + Consequently, F(c)=c=f (c)=g,(c).

d(f (Nyert),F (n )) Thus c is only common fixed point of the
A continuous self-signals F, f, and ¢,.

d ( le (n2k+1)’ F (C))’ Example (1):

d(9,(c).F(Nye))+d (f, (Nyey ), F(nyy)), Let X =[0,1] bea complete metric space.

4(8, (01 FO)- We comsider (1) =7 05 603,
A1 LFE)sc(feha ). @ o= vnex.
4(1(0). (0.4 (1,0).F (). Also, Lot ¢(5,2,.2,.202,) -
(8,(0):1,(0))d (81 (). F(0) ornnsnin)
4(1,(0)-F (0) - hus

d(f,(c).F(c)) [0 3}
<M (d(f,(c).F(c))

<d(f,(c).F(c))

3n

d(f,(c).F(c))<d(f(c).-F(c) _ F(%ﬂj __
which gives a contradiction. 4 2
Thus f (c)=F(c) =3r?ng’

f(c)=F(c)=g,(c).

o (m)=0, -]
Also d(F(c),c)<¢{d(f (c).c),
0,d(f,(c).c).d(c,F(c)),0} :%(n—ZJ
<M d(F(c).0) _3n
4n+8

which also gives a contradiction.
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for ne X,
3n 3n |
d(F F(n))= -
(gl(n),gl (n)) 8+3n 8-+4n|
B 3n?
_(8+3n)(8+4n)
2
< 3n < 3n’ . 2n
8+4n 8+4n 8+4n
zd(F(n),gl(n)).

Also, for n,ne[0,1], it is easy to verify the

condition (ii) of our theorem.

Thus we must say that 0 is only a common fixed

point of continuous self-mapping F, f, and ¢,.

Example (2):
Let X =R and define F, f, and g,:x— X by
27 for n>1

n(n+1)71 for 0<n<l,
0 for n<o0

f(n)=

1 for n>1
f(n)=4n for 0<n<I,
0 for n<0

nforn>0
0forn<o0’

and gl(n):{
Let £:(R') R’ by

5(21,22,23,24,25) =

{ZI(H—ZI)_I foro<z <1

2z for z,>1

E-ISSN: 2732-9976
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Then f,, g, and ¢ are monotonically increasing

and continuous signals.
Here, A(n) = {O,%}G[O,l]ﬁ[o,w]

=f (n)ng,(n).
It can be noticed that
M(z)=¢(z,2,p,2,p,2,2) <1
and p,+p, =3. For this,

case (i) : If n<0,n, <0 then

d(F(n).F(n))=0=M(d(f,(n).g,n))
case (i) : [f n<0,0<n, <1,
nl

then d(F(n),F(n))= = M (n,)

=M (d(f,(n).q,m))

case (iii) : If n<0,n, >1
1
then d(F(n),F(nl))=E<_l

=M (d(fl (n)’gl(nl))

case (iv): If 0<n<1,0<n <1,

n n
d(F(n).F(n))= n+1 n -Ii-l
1
|n1—n| |n1—n|

(n+1)(n,+1)  1+|n,—n|

=M(|n—n1|)

=M (d(fl(n),gl(nl))

wn=n|<]
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case (V) : If 0<n<1,

n 1
F(n)=——,F(n)==,
(n) n+1 (m) 2
f.(n)=n,g,(n)=n,,
n+1<2:>L>l
n+1 2
n _n
_>_
n+1 2
n _-n
__<_
n+1 2
:>1—L<l—ﬂ<_—n=E where n, >1

2 n+1 2 2 2

then for n,-n>1, we deduce that

1 n n —n

4(F(n).F(n)= 3= < P50 -

2 n+l1 2

M (d(fl(n),gl(nl))

o n-n _n-n
similarly, >
1+n,-n 2

1
and d(F(n),F(n))=
1 3 N-no n-n
2 I+n,—n

2 n+l
M (d(fl(n),gl(nl)) where N, <n+1

case (vi): If n>1, n, >1
d(F(n),F(n))=0

n —1 .

szM(d(fl(n),gl(nl)) if n,>2

< n-1_ n-1
n 1+(n-1)

=M (d(f,(n),g,(n,)) if 1<n <2

Therefore all assumptions of theorems are
satisfied.

References

[1]. Banach, S: Sur les operations dans les
ensembles abstraits et leur applications aux
equations integrals, Fundam. Math. 3, 133-
181 (1922).

[2]. Abbas, M., Ali, Basit, and Romaguera; Fixed
and periodic points of generalized
contractions in metric spaces, Fixed Point
Theory and Applications, 2013, 2013:243,
http://www.fixedpointtheoryandapplications
.com/content/2013/1/243.

E-ISSN: 2732-9976 14

Suresh Kumar Sahani, Surendra Kumar Tiwari,
Devnarayan Yadav, Madhav Prasad Poudel

[3]. Dix, JG, Karakostas, GL: A fixed point
theorem for S-type operators on Banach
spaces and its applications to boundary-value
problems, Nonlinear Anal. 71, 3872-3880
(2009).

[4]. Latrach, K Taodib, MA, Zeghaic A; Some
fixed point theorems of the Schauder and
Krasnoselskii type and application to
nonlinear transport equation, J, Differ. Equ.
221, 256-271 (2006).

[5]. Rousseau, C: Point fixe de Banach (in
French). Accromath 5, hiver-print-emps
(2010) (www.accromath.ca).

[6]. Arandjelovic, I, Kadelburg, Z, Radenovic, S:
Boyd-Wong-type common fixed point
results in cone metric spaces, Appl. Math.
Comput. 2017, 7167-7171 (2011).

[7]. Bayd, DW, Wong, JSW: On nonlinear
contractions Proc. Am. Math. Soc. 20, 458-
464 (1969).

[8]. Huang, LG, Zhang, X: Cone metric spaces
and fixed point theorems of contractive
mappings. J. Math. Anal. Appl. 332, 1468-
1476 (2007).

[9]. Rakotch, E: A note on contractive mappings.
Proc. Am. Math. Soc. 13, 459-465 (1962).

[10]. Tarafdar, E: An approach to fixed
point theorems on uniform spaces, Trans.
Am. Math. Soc. 191, 209-225 (1974).

[11]. Jungck, G: Compatible Mappings
and Common Fixed Points. International
Journal of Mathematics and Mathematical
Sciences, Vol. 9. No. 4, 771-779 (1986).
Doi:10.1155/5016117/286000935.

[12]. Jungck, G: Commuting mappings
and fixed points. Amer. Masth. Monthly. 83,
261-263 (1976).

[13]. Jungck, G: Periodic and fixed points,
and commuting mappings. Proc. Amer.
Math. Soc. 76, 333-338 (1979).

[14]. Jungck, G: Common fixed point
theorems for semigroups of maps on L-
spaces. Math. Japonica 26, 625-631 (1981).

[15]. Park, S, and Bae, J: Extensions of a
fixed point theorem of Meir and Keeler. Ark.
Mat. 19, 223-228 (1981).

[16]. Meir, A and Keeler, E: A theorem on
contraction mappings. J. Math. Anal. Appl.
2, 526-529 (1969).

[17]. Rhoades, B. E et al.: Some fixed
point theorem for Hardy-Rogers type
mappings. International Journal of
Mathematics and Mathematical Sciences.
Vol. 7. No. 1, 75-87 (1984).

Volume 4, 2024



EQUATIONS
DOI: 10.37394/232021.2024.4.2

[18]. Baskaran, R, Subrahmanyam, P.V.:
Common fixed points in metrically convex
spaces. Jour. Math. Phys. Sci. 18, 565-570
(1984).

[19]. Kasahara, S. Iff fixed point
criterion in L-spaces. Math. Sem. Notes. 4,
205-210 (1976).

[20]. Singh, S. L.: On common fixed
points of commuting mappings. Math. Se.
Notes. 5, 131-134 (1977).

[21]. Singh, S. L.. A none on the
convergence of a pair of sequence of
mappings. Arch. Math. 1. Scripta Fac. Sci.
Nat. Vjep Brunensis. 15, 47-52 (1979).

[22]. Singh, S. L. and Kulrestha, C.:
Coincidence theorems in metric spaces. Ind.
J. Phy. Nat. Sci. 2, Sec B., 19-22 (1982).

[23]. Singh, S. L. and Paut, B. D.: Fixed
point theorems for commuting mappings in
probalistic metric spaces. Honan Journal. 5,
139-149 (1983).

[24]. Das, K. M. and Naik, K. V. :
Common fixed point theorems for
commuting maps on metric spaces. Proc.
Amer. Math. Soc. 77, 369-373 (1979).

[25]. Rhoades, B. E., Singh, S. L., and
Kulshrestha, C.: Coincidence theorems for
some multivalued mappings. Int. J. of Math.
9, No. 8, 429-434 (1984).

[26]. Chang, S. — S.: A common fixed
point theorem for commuting mappings.
Proc. Amer. Math. Soc. 83, 645-652 (1981).

[27]. Chang, C. C.: On a fixed point
theorem of contractive type. Commentarii
Mathematici. Univ. Socti. Pauli. 32, 15-19
(1983).

[28]. Hadzic, O: Common fixed point
theorems for family of mappings in complete
metric spaces. Math. Japonica. 29, 127-134
(1984).

[29]. Imdad, M. and Chauhan, S.:
Employing common limit range property to
prove Unified Metrical Common Fixed Point
Theorems. International Journal of Analysis.
Vol. 2013, Article ID 763261, 10 pages
http://dx.doi.org/10.1155/2013/76326/.

[30]. Kirk, W. A.: Some recent results in
metric fixed point theory. Journal of Fixed
Point Theory and Applications. Vol. 2 No. 2,
195-207 (2007).

[31]. Azam, A., Fisher, B., and Khan, M:
Common fixed point theorems in complex
valued metric spaces. Numerical Functional
Analysis and optimization. 32 (3), 243-253
(2011).

E-ISSN: 2732-9976

15

Suresh Kumar Sahani, Surendra Kumar Tiwari,
Devnarayan Yadav, Madhav Prasad Poudel

[32]. Azam, A., and Arshad, M.: Common
Fixed Points of generalized contractive maps
in cone metric spaces, Bulletian of the
Iranian Mathematical Society. 35 (2), 255-
264 (2009).

[33]. Bhatt, S., Chaukiyal, S., and Dimri,
R. C.: A common fixed point theorem for
weakly compatible maps in complex valued
metric spaces, International Journal of
Mathematical Sciences and Applications. 1
(3), 1385-1389 (2011).

[34]. Bukatin, M., Koperman, R.,
Mathews, S, and Pajoohesh, H.: Partial
metric spaces. American Mathematical
Monthly. 116 (8), 708-718.

[35]. Chandok, S., and Kumar, D.: Some
common fixed point results for rational type
contraction mappings in complex valued
metric spaces. Journal of Operators, 2013.
Article ID 813-707.

[36]. Ciric, L., Samet, B., Aydi, H., and
Vetro, C.: Common fixed points of
generalized contractions on partial metric
spaces and an application. Applied
Mathematics and Computation, 2398-2406
(2011), doi:10.1016/j.amc.2011.07.005.

[37]. Sintunavarat, W., and Kumar, P.
Poom.: Generalized common fixed point
theorems in complex valued metric spaces
and applications. Journal of Inequalities and
Applications. 84, 2012.

[38]. Pragadeeswarar, V., and Marudia,
M.: Fixed point theorems for mapping
satisfying a contractive condition of rational
expression on a ordered partial metric
spaces. Thai Journal of Mathematics. 12 (3),
613-620 (2014).

[39]. Rouzkard, F., and Imbdad, M.: Some
common fixed point theorems on complex
valued metric spaces. Computers and
Mathematics with Applications.
doi:10.1016/j.comwa.2012.02.063.

[40]. Husain, S. A. and Sehgal, V. M.: On
common fixed points for a family of
mappings. Bull. Austral. Math. Soc. 13, 261-
267 (1975).

[41]. Singh, S. P. and Meade, B. A.: On
common fixed point theorems. Bull. Austral.
Math. Soc. 16, 49-53 (1977).

[42]. Fisher, M.: Mappings with a
common fixed point. Math. Sem. Notes. 7,
81-84 (1979).

[43]. Karapmar, E., Fulga, A.: A fixed
point theorem for Proinov mappings with a
contractive iterate. Appl. Math. J. Chin.

Volume 4, 2024



EQUATIONS
DOI: 10.37394/232021.2024.4.2

Univ. 38, 403412 (2023).
https://doi.org/10.1007/s11766-023-4258-y.

[44]. A. Hussain, N. Hussain, and D. Ali,
Estimation of newly established iterative
scheme for genralized and nonexpansive
mapping, J. Function Spaces 2021 (2021), 1-
9.10.1155/2021/6675979.

[45]. 45. Ali, D., Hussain, A., Karapinar,
E. & Cholamjiak, P.: Efficient fixed-point
iteration for generalized nonexpansive
mappings and its stability in Banach spaces.
Open Mathematics, 20(1), 1753-1769, 2023.
https://doi.org/10.1515/math-2022-0461

[46]. Magadevan, P., Karpagam, S., &
Karapinar, E. Existence of fixed point and
best proximity point of p- cyclic orbital phi-
contraction map. Nonlinear Analysis:
Modelling and Control, 27(1), 91-101,2022.

[47]. Karapinar, E.: Revisiting Fixed
Point Results with a Contractive Iterative at
a Point. In: Hoskova-Mayerov4, S., Flaut, C.,
Maturo, F. (eds) Algorithms as a Basis of
Modern Applied Mathematics. Studies in
Fuzziness and Soft Computing, Vol 404,
2021. Springer, Cham.
https://doi.org/10.1007/978-3-030-61334-
17

[48]. Karapinar, E., Fulga, A. & Agarwal,
R.P.: A survey: F-contractions with related
fixed point results. J. Fixed Point Theory
Appl . 22, 69 (2020).
https://doi.org/10.1007/s11784-020-00803-
7.

[49]. S.K. Sahani, Binay Kumar Pandey,
Digvijay Pandey, Single-valued Sig-nals,
Multi-valued Signals and Fixed-Point of
Contractive Signals,Math-ematics Open,
doi: 10.1142/S2811007224500020

E-ISSN: 2732-9976

16

Suresh Kumar Sahani, Surendra Kumar Tiwari,
Devnarayan Yadav, Madhav Prasad Poudel

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The authors have no conflicts of interest to declare
that are relevant to the content of this article.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en
us

Volume 4, 2024





