
by Fu=0,0≤u < 1
0.005, u ≥1
Indeed, Fis a nonlinear mapping as defined in Def-
inition 1.4. Especially with special choices of αand
β, the nonlinear mapping as defined in Definition 1.4
becomes nonspreading mapping, T J −1mapping,
T J −2mapping and nonexpansive mapping. If we
choose
(1) α=β= 1 for all u, v ∈ M , then Fis a non-
spreading mapping;
(2) α= 1, β = 0 for all u, v ∈ M , then Fis a
T J −1mapping;
(3) α=4
3, β =2
3for all u, v ∈ M , then Fis a
T J −2mapping;
(4) α= 0, β = 0 for all u, v ∈ M , then Fis a
nonexpansive mapping.
Table 1: To verify that Fis a nonlinear mapping de-
fined in Definition 1.4, consider the following cases:
Cases α, β u, v Definition 1.4
111
10 ,9
10 0.3,10 0.00005≤110.07832
211
10 ,9
10 10,0.5 0.00005≤90.26952
31
100 ,199
100 1.2,0.2 0.00005 ≤2.85698
41
200 ,99
100 0.9,1.1 0.00005 ≤0.83926
5 0 ,2 0.9,1.1 0.00005 ≤1.60205
6 2 ,0 0.9,1.1 0.00005 ≤2.42000
71
200 ,99
100 1,0.2 0.00005 ≤1.63339
8 2 ,0 1,0.2 0.00005 ≤0.07605
9 0 ,2 1,0.2 0.00005 ≤2
10 1
200 ,99
100 0.9,10 0.00005≤84.51706
11 1
200 ,99
100 0.99,9.99 0.00005 ≤82.86452
12 1
200 ,99
100 1.01,0.99 0.00005 ≤1.01515
Table 2: To verify that Fis a nonspreading mapping
for α= 1, β = 1, consider the following cases:
Cases α, β u, v Nonspreading
1 1,1 1.01 ,0.99 0.00005 ≤1.99032
2 1,1 0.99 ,1.01 0.00005 ≤1.99032
3 1,1 1.2,0.2 0.00005 ≤1.47802
Table 3: To verify that Fis a T J −1mapping for
α= 1, β = 0, consider the following cases:
Cases α, β u, v T J −1
1 1,0 1.01 ,0.99 0.00005 ≤0.97062
2 1,0 1.2,0.2 0.00005 ≤1.03802
3 1,0 0.99 ,1.01 0.00005 ≤1.02050
Table 4: To verify that Fis a T J −2mapping for
α=4
3, β =2
3, consider the following cases:
Cases α, β u, v T J −2
14
3,2
31.01 ,0.99 0.000075 ≤2.96055
24
3,2
31.2,0.2 0.000075 ≤1.51605
34
3,2
30.99 ,1.01 0.000075 ≤3.01042
Table 5: To verify that Fis a nonexpansive mapping
for α= 0, β = 0, consider the following cases:
Cases α, β u, v Nonexpansive
1 0,0 1.01 ,0.99 0.005000 ≤0.02000
2 0,0 1.2,0.2 0.005000 ≤1.00000
3 0,0 0.99 ,1.01 0.005000 ≤0.02000
3 Conclusion
In this paper we introduce a new class of nonlinear
mappings in Hilbert space. We prove fixed point the-
orems and demiclosed principles for this nonlinear
mapping. Furthermore, we have given an example of
a nonlinear mapping as defined in Definition 1.4. It
is shown that for various αand βvalues, this map-
ping satisfies the inequality given in Definition 1.4 as
mentioned in Table 1. Especially with special choices
of αand β, the nonlinear mapping as defined in Def-
inition 1.4 becomes nonspreading mapping(Table 2),
T J −1mapping(Table 3), T J −2mapping(Table 4)
and nonexpansive mapping(Table 5).
References:
[1] W. G. Dotson, Jr, Fixed points of quasi-
nonexpansive mappings, J. Austral. Math.
Soc, 13, 1972, 167-170.
[2] S. Itoh and W. Takahashi, The common
fixed point theory of single-valued map-
pings and multi-valued mappings, Pac. J.
Math., 79, 1978, 493-508.
[3] F. E. Browder, Fixed point theorems for
noncompact mappings in Hilbert spaces,
Proc Nat Acad Sci USA., 53, 1965, 1272-
1276. doi:10.1073/pnas.53.6.1272.
[4] A. Pazy, Asymptotic behavior of contrac-
tions in Hilbert space, Israel J Math., 9,
1971, 235-240, doi:10.1007/BF02771588.
[5] W. O. Ray, The fixed point property
and unbounded sets in Hilbert space,
Trans. Amer. Math. Soc., 258, 1980,
531-537, doi:10.1090/S0002-9947-1980-
0558189-1.
EQUATIONS
DOI: 10.37394/232021.2023.3.20