
3 Conclusion
The above results can be generalized to obtain a
conclusion whose proof is left to the reader
Theorem 3.1 Let be a family of
continuous self-mapping of an Banach
spaces , suppose that for any
there exists a function
, such that for
all
.
Then there exists a unique satisfying
for all
4 Recommendation
The nth spaces are possible, wide, sizes spaces,
so it's really interesting to develop this study to
search at specific conditions and contractions
for the existence of double or triple fixed points.
References:
[1] S. Banach, Sur les operations dans les
ensembles abstraits etleur application aux
quations intgrales, Fund. Math., Vol.3,
NO.1, (1922), pp. 133-181.
[2] S. , Linear 2-normiete rume, Math.
Nachr., Vol.28, (1964), pp. 1-43.
[3] S. , Untersuchungen ber
verallgemeinerte m-metrishe rume I,
Math. Nachr. Vol.40, (1969), pp.165-189.
[4] H. Gunawan, on n-inner products, n-
norms, and the Cauchy Schwarz
inequality., Sci. Math. Jpn. Vol.55, (2002),
pp. 53-60.
[5] A. A. Hamoud , J. Patil, B. Hardan, A.
Bachhav, H. Emadifar and H. Guunerhan,
Generalizing contractive mappings on b-
rectangular metric space, Advances in
Mahtematical Physics, Vol.2022, (2022),
10 pages.
[6] B. Hardan, J. Patil, A. Chaudhari and
A. Bachhav, Approximate fixed points for
n-Linear functional by -
nonexpansive Mappings on -Banach
spaces, Journal of Mathematical Analysis
and Modeling, Vol.1, No.1, (2020), pp. 20-
32.
[7] B. Hardan, J. Patil , A. Chaudhari and A.
Bachhav, Caristi Type Fixed Point
Theorems of Contractive Mapping with
Application, One Day National Conference
on Recent Advances in Sciences Held on:
13th February 2020. pp. 609-614.
[8] K. Iseki, Fixed point theorems in 2-Banach
spaces, Math Seminar Notes, Kobe Univ.,
Vol.2, (2019), pp. 11-13.
[9] M. S. Khan and M. D. Khan, Involutions
with fixed point in 2-Banach spaces,
Internat. J. Math. Sci., Vol.16, No.3,
(2019), pp. 429-434.
[10] S.S. Kim, and Y.J. Cho, strict convexity in
linear n-norm spaces, Demonstration
Math. Vol.29, No.4, (1994), pp. 739-744.
[11] T.R. Kristiantoo, R.A. ,Wibawa, and H.
Gunawan, Equivalence relation of n-
norms on a vector space, Mat. Vesnik.
Vol.65, No.4, (2015), pp. 488-493.
[12] R. Malceski, strong n-convex n-normed
spaces, Mat. Bull. Vol.21, (2017), pp. 81-
102.
[13] A. Misiak, n-Inner product spaces, Math.
Nacher. Vol.140, (1989), pp. 299-319.
[14] J. Patil, B. Hardan, A.A. Hamoud, B.
Amol and E. Homan, ”A new result on
Branciari metric space using (α, γ)-
contractive mappings.” Topological
Algebra and its Applications, Vol.10, No.1,
(2022), pp. 103–112.
[15] J. Patil and B. Hardan, On Fixed Point
Theorems in Complete Metric Space.
Journal of Computer and Mathematical
EQUATIONS
DOI: 10.37394/232021.2023.3.14
Jayashree Patil, Basel Hardan,
Ahmed A. Hamoud, Kirtiwant P. Ghadle, Alaa A. Abdallah