
[2] W. Feller, An Introduction to Probability
Theory and Its Applications, New York,
John Wiley, 1971.
[3] G. A. Korn and T. M. Korn, Mathematical
handbook for scientists and engineers:
Definitions, theorems and formulas for
reference and review, Dover Publications,
2000.
[4] F. W. J. Olver, D. W. Lozier, R. F. Boisvert
and C. W. Clark, NIST Handbook of
Mathematical Functions, Cambridge
University Press, New York, USA, 2010.
[5] J. K. Pate and C. B. Read, Handbook of the
Normal Distribution, New York, Dekker,
1982.
[6] E. Lucas, A Characterization of the Normal
Distribution, Annals of Mathematical
Statistics, Vol. 13, No. 1, 1942, pp. 91-93.
[7] D. E. Dominici, The inverse of the
cumulative standard normal probability
function, Integral Transforms and Special
Functions, Vol. 14, 2003, pp. 281-292.
[8] S. J. McKenna, A method of computing the
complex probability function and other
related functions over the whole complex
plane, Astrophysics and Space Science, Vol.
107, 1984, pp. 71-83.
[9] M. R. Spiegel, Theory and Problems of
Probability and Statistics, New York,
McGraw-Hill, 1992.
[10] R. Beals and R. Wong, Special Functions: A
Graduate Text, Cambridge University Press,
2010.
[11] W. H. Beyer, CRC Standard Mathematical
Tables, Boca Raton, FL, CRC Press, 1987.
[12] N. N. Lebedev, Special Functions and Their
Applications, Dover Publications Inc., New
York, 1973.
[13] H. Steinhaus, Mathematical Snapshots, New
York, Dover Publ., 1999.
[14] C. Chiarella and A. Reiche, On the
evaluation of integrals related to the error
function, Mathematics of Computation, Vol.
22, 1968, pp. 137-143
[15] P. J. Davis, Leonhard Euler's Integral: A
Historical Profile of the Gamma Function,
American Mathematical Monthly, Vol. 66,
No. 10, 1958, pp. 849-869.
[16] E. D. Rainville, Special Functions,
MacMillan, New York, 1960.
[17] H. M. Srivastava and H. L. Manocha, A
treatise on generating functions, Joh Wiles
and Sons, New York, Ellis Horwood,
Chichester, 1984.
[18] S. Zhang and J. Jin, Computation of Special
Functions, Wiley, 1966.
[19] T. M. Cover and J. A. Thomas, Elements of
Information Theory. John Wiley and Sons.,
2006.
[20] J. Spanier and K. B. Oldham, An atlas of
functions, Springer Verlag, New York, 1987.
[21] Z. X. Wang and D. R. Guo, Special
Functions, World Scientific, Singapore,
2010.
[22] E. T. Whittaker and G. N. Watson, A
Course of Modern Analysis: An Introduction
to the General Theory of Infinite Processes
of Analytic Functions with an Account of
the Principal Transcendental Functions,
Cambridge Univ. Press, 1963.
[23] D. G. Zill, Advanced engineering mathe-
matics, Jones & Bartlett, 2016.
[24] S. M. Abrarov and B. M. Quine, Accurate
approximations for the complex error
function with small imaginary argument,
Journal of Mathematical Research, Vol. 7,
2015, pp. 44-53.
[25] S. Aggarwal, A. R. Gupta, S. D. Sharma, R.
Chauhan and N. Sharma, Mahgoub
Transform (Laplace-Carson Transform) of
Error Function, International Journal of
Latest Technology in Engineering,
Management and Applied Science, Vol. 8,
No. 4, 2019, pp. 92-98.
[26] P. P. Bhailal and C. P. Jyotindra, Error
functions and their applications, PRAJNA-
Journal of Pure and Applied Sciences, Vol.
21, 2013, pp. 30-34.
[27] L. Carlitz, The inverse of the error function,
Pacific Journal of Mathematics, Vol. 13,
1963, pp. 459-470.
[28] K. Diethelm, N. J. Ford and A. D. Freed,
Detailed error analysis for a fractional
Adams method, Numerical Algorithms, Vol.
36, 2004, pp. 31-52.
[29] H. Irmak, Various results for series
expansions of the error functions with the
complex variable and some of their
implications, Turkish Journal of
Mathematics, Vol. 44, No. 5, 2020, pp.
1640-1648.
[30] F. A. S. Salem and H. Irmak, A special note
on the error functions defined in certain
domains of the complex plane and some of
their implication, WSEAS Transactions on
EQUATIONS
DOI: 10.37394/232021.2023.3.7
Hüseyi
n Irmak, Fatma Ahmed Salem Salem