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1 Introduction 
Description of the dynamics and kinetics of 
composite astrophysical systems taking into account 
the effects of general relativity requires the 
development and deepening theory of many-body 
systems of interacting particles [1]–[5]. In the 
publications of modern authors, the main attention is 
paid to the study of the relativistic movement of 
objects representing a collection or dust-like “test 
particles” (which reduces the consideration of the 
entire system of particles to the study of the 
movement of one particle in external fields), or 
particles interacting gravitationally (in the absence of 
generalization to the case of charges on these 
particles) [6]–[10]. An accurate picture of the 
dynamics of the system must take into account that 
the movement of each particle occurs along geodesic 
lines, along which it is necessary to introduce 
individual (natural) parameters. The “proper time” of 
the particle is usually chosen as such a parameter, 
moving along a given trajectory [11]–[15]. However, 
such a parameterization leads only to a special case 
of the form of the general relativistic dynamics of a 
system of particles. In the works [16]–[19] the 
authors developed a methodology use of an 
additional continuous variable in general relativistic 
dynamics, and the subsequent transition to the 7-
dimensional formalism based on the use of “observer 

time”, weakening the need to introduce conditions on 
the energy manifold [6],[14] in canonical impulses. 
In this case, the expression for the total Hilbert–
Einstein action and the Hamiltonian equations the 
movements take on a new form (using the formalism 
of particle distribution functions), as well as the 
expression for the energy-momentum tensor in 
Einstein’s equations [20]–[26]. 

In this paper, the authors consider applications of 
Vlasov-type equations to cosmological problems 
based on theory of geodesics with electromagnetic 
fields for classical Lagrangians and carrying out time 
synchronization particles for multiparticle tasks. For 
this purpose, a Hamiltonian formulation of the 
equations of motion was obtained and a new form of 
the Liouville equation was derived. Further, the 
article considers the transition to the 3-dimensional 
formalism for the Vlasov–Einstein equations; a 
hypothesis about the origin of the cosmological 
lambda term, based on the structure of the total 
composite action of the particle system and 
gravitational and electromagnetic fields. Next, the 
authors give examples of the simplest hydrodynamic 
consequences of the Vlasov-Einstein equations, 
including the study of hydrodynamic consequences 
of the Vlasov–Poisson–Poisson equations for the 
analysis of the generalized Milne-McCrea model. 
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2 Liouville equation in extended phase 

space 
General relativistic action for moving charged (with 
charge 𝑒) particle of mass 𝑚 in the presence of 
gravitational and electromagnetic fields can be 
written in the following form: 

𝑆1 = −𝑚𝑐 ∫
𝜆𝑚

0

(𝑔𝜇𝜈(𝑿)
𝑑𝑋𝜇(𝒒, 𝜆)

𝑑𝜆
× 

𝑑𝑋𝜈(𝒒, 𝜆)

𝑑𝜆
)1/2𝑑𝜆 −

𝑒

𝑐
∫ 𝐴𝜇

𝑑𝑋𝜇

𝑑𝜆
𝑑𝜆, 

where: 𝑔𝜇𝜈(𝑿) is a fundamental tensor of 4-
dimensional space-time (𝑿 = {𝑋𝜇}𝜇=0,3), 𝐴𝜇(𝑿) ≡

{𝜑(𝑿); 𝑨(𝑿)} are 4-electromagnetic field potential, 
𝑞 is a Lagrangian particle parameter; the variable 
𝜆(> 0) is proportional to affine parameter: 𝑑𝑠 =

√𝐼𝑑𝜆, 𝐼 ≡ 𝑔𝜇𝜈(𝑑𝑋𝜇/𝑑𝜆)(𝑑𝑋𝜈/𝑑𝜆). 
Let write down the Euler–Lagrange 

equations for the action 𝑆1: 
𝑚𝑐

√𝐼

𝑑

𝑑𝜆
(𝑔𝜇𝜈

𝑑𝑋𝜈

𝑑𝜆
) +

𝑒

𝑐

𝑑𝐴𝜇

𝑑𝜆
= 

𝑚𝑐

2√𝐼

𝜕𝑔𝜈𝜁

𝜕𝑋𝜇

𝑑𝑋𝜈

𝑑𝜆

𝑑𝑋𝜁

𝑑𝜆
+

𝑒

𝑐

𝜕𝐴𝜈

𝜕𝑋𝜇

𝑑𝑋𝜈

𝑑𝜆
. (1) 

This shows that in the absence of 
electromagnetic interaction between particles, the 
value 𝑚𝑐/√𝐼 is reduced, and the equations of motion 
can be written equivalently using both the parameter 
𝜆 and the parameter proper interval 𝑠. However, 
taking into account the electromagnetic interaction 
leads to different equations when using different 
parameters. Although, how can be seen from 
equation (1), one can in principle go to the affine 
parameter 𝑠 by expressing 𝑑𝜆 in terms of 𝑑𝑠 and 𝐼: 
𝑑𝑠 = √𝐼𝑑𝜆. In multiparticle systems this possibility 
is absent. Let consider an action similar to 𝑆1, but for 
a system of many particles with differing masses 𝑚𝑎 
and charges 𝑒𝑎  (𝑎 = 1, 𝑁): 

𝑆1,Σ = − ∑

𝑎

𝑚𝑎𝑐 ∫ √𝑔𝜇𝜈

𝑑𝑋𝑎
𝜇

𝑑𝜆

𝑑𝑋𝑎
𝜈

𝑑𝜆
𝑑𝜆 − 

∑

𝑎

𝑒𝑎

𝑐
∫ 𝐴𝜇

𝑑𝑋𝑎
𝜇

𝑑𝜆
𝑑𝜆. 

To describe the dynamics of a many-particle 
system associated with the action of 𝑆1,Σ, canonical 
ones can be entered in a standard way impulses: 

(𝑄𝑎)𝜇 =
𝜕𝐿

𝜕𝑉𝑎
𝜇 = −

𝑚𝑎𝑐

√𝐼𝑎

𝑔𝜇𝜈(𝑿𝑎)𝑉𝑎
𝜈 −

𝑒𝑎

𝑐
𝐴𝜇(𝑿𝑎), 

𝑉𝑎
𝜈 ≡

𝜕𝑋𝑎
𝜈

𝜕𝜆
. 

Hamilton’s equations associated with canonical 
variables (𝑿𝑎, 𝑸𝑎): 

𝑉𝑎
𝜈 = −

√𝐼𝑎

𝑚𝑎𝑐
𝑔𝜇𝜈(𝑿𝑎)((𝑄𝑎)𝜇 +

𝑒𝑎

𝑐
𝐴𝜇). 

𝑑(𝑄𝑎)𝜇

𝑑𝜆
= ∑

𝑎

√𝐼𝑎

𝑚𝑎𝑐
((𝑄𝑎)𝜁 + 

𝑒𝑎

𝑐
𝐴𝜁(𝑿𝑎))

𝜕𝑔𝜁𝜈

𝜕𝑋𝑎
𝜇 ((𝑄𝑎)𝜈 +

𝑒𝑎

𝑐
𝐴𝜈(𝑿𝑎)) + 

+
𝑒𝑎√𝐼𝑎

𝑚𝑎𝑐2
((𝑄𝑎)𝜁 +

𝑒𝑎

𝑐
𝐴𝜁(𝑿𝑎))𝑔𝜁𝜉

𝜕𝐴𝜉(𝑿𝑎)

𝜕𝑋𝑎
𝜇 . 

Let introduce the partial distribution function 
𝑓𝑎(𝑿, 𝑸, 𝜆) over the extended 9-dimensional phase 
space. The corresponding Liouville equation for 𝑓𝑎 
takes the following form: 
𝜕𝑓𝑎(𝑋, 𝑄, 𝜆)

𝜕𝜆
−

√𝐼𝑎

𝑚𝑎𝑐
𝑔𝜇𝜈(𝑋𝑎)((𝑄𝑎)𝜇 +

𝑒

𝑐
𝐴𝜇)

𝜕𝑓𝑎

𝜕𝑋𝜈
 + 

+ (
√𝐼𝑎

𝑚𝑎𝑐
((𝑄𝑎)𝜁 +

𝑒𝑎

𝑐
𝐴𝜁(𝑋𝑎))

𝜕𝑔𝜁𝜈

𝜕𝑋𝑎
𝜇 ((𝑄𝑎)𝜈 + 

𝑒𝑎

𝑐
𝐴𝜈(𝑋𝑎)) +  

𝑒𝑎√𝐼𝑎

𝑚𝑎𝑐2
((𝑄𝑎)𝜁 + 

𝑒𝑎

𝑐
𝐴𝜁(𝑋𝑎))𝑔𝜁𝜉

𝜕𝐴𝜉

𝜕𝑋𝑎
𝜇)

𝜕𝑓𝑎

𝜕𝑄𝜇
= 0 (2) 

Let present 𝜆–stationary form of the Liouville 
equation when 𝑓𝑎 = 𝑓𝑎(𝑿, 𝑷), i.e. e. does not depend 
on the parametric variable 𝜆: 

−𝑔𝜇𝜈(𝑿)𝑃𝜇

𝜕𝑓𝑎(𝑿, 𝑷)

𝜕𝑋𝜈
+ 

(−
1

2

𝜕𝑔𝜈𝜁

𝜕𝑋𝜇
𝑃𝜈𝑃𝜁 +

𝑒𝑎

𝑐
𝐹𝜇𝜈(𝑿)𝑔𝜁𝜈𝑃𝜈)

𝜕𝑓𝑎

𝜕𝑃𝜇
= 0 

(since 𝑋0 = 𝑐𝑡, the last equation in the general case 
is 𝑡-nonstationary). 

Example 1. Let consider a special case of 
equation (1), when the metric 𝑔𝜇𝜈 and components of 
the vector potential 𝐴𝜇 do not depend on the time 
coordinate. Then the right side of equality (1) at index 
𝜇 = 0 is canceled, and perhaps analytically integrate 
the left-hand side (we omit the index 𝑎): 

𝑚𝑐

√𝐼
(𝑔0𝜈

𝑑𝑋𝜈

𝑑𝜆
) +

𝑒

𝑐
𝐴0 = −𝑄0. 

The meaning of the resulting integral can be clarified 
by taking the post-Galilean metric 𝑔𝜇𝜈 = diag(1 +

2Φ/𝑐2, −1, −1, −1) ( Landau metric), where Φ(𝑋𝑗) 
is the Newtonian gravitational potential. Then the last 
relation transforms to the form 

𝑚𝑐

√𝐼
(1 +

2Φ

𝑐2
)

𝑑𝑋0

𝑑𝜆
+

𝑒

𝑐
𝐴0 = −𝑄0, 

and the remaining Euler-Lagrange equations of 
system (1) take the form: 
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𝑚𝑐

√𝐼

𝑑

𝑑𝜆

𝑑𝑋𝑗

𝑑𝜆
+

𝑒

𝑐

𝑑𝐴𝑗

𝑑𝜆
=

𝑚𝑐

2𝑐2√𝐼

𝜕Φ

𝜕𝑋𝑗
(
𝑑𝑋0

𝑑𝜆
)2 + 

𝑒

𝑐

𝜕𝐴𝜈

𝜕𝑋𝑗

𝑑𝑋𝜈

𝑑𝜆
, 𝑗 = 1,2,3. (3) 

Replacing the parameter 𝜆 from equation (3) 
with time 𝑡, we obtain the equations of motion of a 
charged particle in an electrostatic field and in the 
gravitational potential Φ: 

𝑑

𝑑𝑡
(𝑀

𝑑𝑋𝑗

𝑑𝑡
) = −𝑀

𝜕Φ

𝜕𝑋𝑗
+

𝑒

𝑐
𝐹𝜇𝑗

𝑑𝑋𝜇

𝑑𝑡
, 

where 𝑀 = −(𝑄0/𝑐 − 𝑒𝐴0/𝑐2)/(1 + 2Φ/𝑐2) — 
the effective mass of the particle in the superposition 
of gravitational and electromagnetic fields. Let give 
an explicit expression for 𝑄0 and, through it, for 𝑀: 

𝑄0 = −
𝑚𝑐(1 + 2Φ/𝑐2)

√1 − 𝒗2/𝑐2 + 2Φ/𝑐2
−

𝑒

𝑐
𝐴0, 

𝑀 =
𝑚

√1 − 𝒗2/𝑐2 + 2Φ/𝑐2
. 

In addition to the Landau metric, when passing to the 
post-Newtonian approximation, one can also 
considerthe Fock metric: 

𝑔𝜇𝜈 = diag(1 + 2Φ/𝑐2, −(1 − 2Φ/𝑐2), 
−(1 − 2Φ/𝑐2), −(1 − 2Φ/𝑐2)). 

The equation of motion in this case takes the 
following form: 

𝑑

𝑑𝑡
(𝑀

𝑑𝑋𝑗

𝑑𝑡
) = −𝑀

1 + 𝒗2/𝑐2

1 − 2Φ/𝑐2

𝜕Φ

𝜕𝑋𝑗
+

𝑒

𝑐
𝐹𝜇𝑗

𝑑𝑋𝜇

𝑑𝑡
, 

and the explicit expressions for 𝑄0 and 𝑀 are as 
follows: 

𝑄0 = −
𝑚𝑐(1 + 2Φ/𝑐2)

√1 − 𝒗2/𝑐2 + 2Φ/𝑐2 + 2Φ𝒗2/𝑐4
−

𝑒

𝑐
𝐴0, 

𝑀 = −
(𝑄0/𝑐 − 𝑒𝐴0/𝑐2)(1 − 2Φ/𝑐2)

1 + 2Φ/𝑐2
= 

𝑚(1 − 2Φ/𝑐2)

√1 − 𝒗2/𝑐2 + 2Φ/𝑐2 + 2Φ𝒗2/𝑐4
. 

Example 2. Let consider the case when 
gravitational and electromagnetic fields depend only 
on the time variable 𝑡 (which means the Universe is 
completely homogeneous). In this case, equations (1) 
can be integrated methods of Hamiltonian 
mechanics. It is interesting to examine some 
particular aspects of the situation. We have here three 
integrals of motion 

𝑚𝑐

√𝐼
(𝑔𝑘𝜇

𝑑𝑋𝜇

𝑑𝜆
) +

𝑒

𝑐
𝐴𝑘 = −𝑄𝑘 , 𝑘 = 1,2,3. 

We use the energy integral 
𝐼 = 𝑔𝛼𝛽(𝑑𝑋𝛼/𝑑𝜆)(𝑑𝑋𝛽/𝑑𝜆) 

instead of the equation for the zeroth component. 
Spatial components of non-canonical momentum 
depend only on time: 𝑃𝑘 = 𝑒𝐴𝑘/𝑐 + 𝑄𝑘. Zeroth 
momentum component, also depending only on the 

variable 𝑡, is determined from the energy condition 
𝑔𝜇𝜈𝑃𝜇𝑃𝜈 = 𝑚2𝑐2. The equations of motion will then 
take the form: 

𝑑𝑋𝜇

𝑑𝜆
= −

√𝐼

𝑚𝑐
𝑔𝛼𝜇(𝑋0)𝑃𝛼. 

Eliminating the variable 𝜆 from here by dividing the 
expressions for the three integrals of motion by the 
equation for 𝑘 = 0, we obtain 

𝑑𝑋𝑘

𝑑𝑋0
=

𝑔𝜇𝑘(𝑋0)𝑃𝜇(𝑋0)

𝑔𝜈0(𝑋0)𝑃𝜈(𝑋0)
= 

𝑔𝜇𝑘(𝑋0)(𝑒𝐴𝜇(𝑋0)/𝑐 + 𝑄𝜇)

𝑔0𝜈(𝑋0)(𝑒𝐴𝜈(𝑋0)/𝑐 + 𝑄𝜈)
. 

Example 3. The generalized De Sitter 
Universe: 

𝑑𝑠2 = 𝑐2𝑑𝑡2 − exp(2𝐻𝑡)(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) = 
𝑐2𝑑𝑡2 − exp(2𝐻𝑡)(𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2sin2𝜃𝑑𝜑2). 

We get 𝑔𝛼𝛽 = d𝑖𝑎𝑔(1, −𝑒−2𝐻𝑡 , −𝑒−2𝐻𝑡, −𝑒−2𝐻𝑡), 
therefore we have a simplification of the last formula 
for Example 2: 

𝑑𝑋𝑘

𝑑𝑋0
= −

𝑃𝑘exp(−2𝐻𝑡)

𝑃0
= −

𝑄𝑘exp(−2𝐻𝑡)

𝑄0
. 

In this case, the canonical momenta 𝑄𝑘 (𝑘 = 1,2,3) 
are (conserved) integrals, and 𝑄0 is determined from 
the energy condition of Example 2: 
𝑄0

2 − exp(−2𝐻𝑡)𝑸2 = 𝑚2𝑐2, 𝑸2 = 𝑄1
2 + 𝑄2

2 + 𝑄3
2, 

that is, 𝑄0
2 = 𝑚2𝑐2 + exp(−2𝐻𝑡)𝑸2, 

𝑑𝑋𝑘

𝑑𝑡
≡ 𝑉𝑘 =

𝑐𝑄𝑘exp(−2𝐻𝑡)

√𝑚2𝑐2 + 𝑸2exp(−2𝐻𝑡)
. 

The Euler–Lagrange equations is a consequence of 
considering the variational problem, and the above 
equations (for 𝑘 = 1,2,3) represent together with a 
set of initial data 𝑋𝑘(𝑋0 = 0) = 𝑋0

𝑘, 𝑉𝑘(𝑋0 = 0) =
𝑉0

𝑘 Cauchy problem, the solution of which 
completely determines the spatial evolution of the 
particle in the De Sitter metric. These equations can 
be easily integrated, so we get: 

𝑋𝑘(𝑡) = −
𝑐𝑄𝑘√𝑚2𝑐2 + 𝑸2exp(−2𝐻𝑡)

𝐻𝑸2
+ 𝐶𝑋

𝑘 , 

where arbitrary constants 𝐶𝑋
𝑘 are determined from the 

initial conditions: 

𝐶𝑋
𝑘 =

𝑐𝑄𝑘

𝐻𝑸2
√𝑚2𝑐2 + 𝑸2 + 𝑋0

𝑘 , 

in this case, the values of the 𝑄𝑘 integrals are related 
to the Cauchy data 𝑉0

𝑘: 𝑉0
𝑘 = 𝑄𝑘/√𝑚2𝑐2 + 𝑸2. Let’s 

integrate the equations of motion over the time 
interval [0, 𝑡] for 𝑘 = 1,2,3, we get: 

𝑋𝑘(𝑡) = 𝑋𝑘(0) +
𝑐𝑄𝑘

𝐻𝑸2
(√𝑚2𝑐2 + 𝑸2 − 

√𝑚2𝑐2 + exp(−2𝐻𝑡)𝑄2). 
For a light-like geodesic you should put 𝑚 = 0, then 
the last formula will be significantly simplified: 
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𝑋𝑘(𝑡) = 𝑋𝑘(0) +
𝑐𝑄𝑘

𝐻𝑸2
(1 − exp(−𝐻𝑡0/2)). 

Example 4.Most the general form of the 
“force” function corresponding to the case when a 
spherical 3-volume containing matter, can be 
considered by an external observer as a point mass 
(from the principles of symmetry, located in the 
center of a given volume), is as follows: 𝐹(𝑟) =
𝐴𝑟−2 + 𝐵𝑟 (𝐵 ≡ Λ/𝜎, 𝜎 = c𝑜𝑛𝑠𝑡). From this, based 
on the use of the “weak field” approximation, it was 
concluded about the need to correct the shape of the 
coefficients of the point mass metric: 

𝑔00 = (1 − 2𝐴𝑟−1 − 𝐵𝑟2/3)𝑐2, 
𝑔11 = (1 − 2𝐴𝑟−1 − 𝐵𝑟2/3)−1. 

Accordingly, the transition to the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric allows 
using of these considerations to understand the 
structure and evaluate the impact on the cosmological 
dynamics of dark matter and energy. The use of the 
post-Newtonian approximation based on the 
previously considered Fock metric allows us to verify 
these conclusions. To do this, consider the action for 
gravity in the approximation of weak relativism with 
the Λ term has the following form (in the Lagrangian 
representation): 

𝑆𝐿 = ∑

𝑎,𝒒

∫
𝑚𝑎

2
𝒙𝑎

2 (𝒒, 𝑡) 𝑑𝑐𝑡 − 

∑

𝑎,𝒒

∫ 𝑚𝑎Φ(𝒙𝑎(𝒒, 𝑡))𝑑𝑐𝑡 + 

+ 
2𝒦

𝑐4
∫ ∫ (∇Φ)2𝑑3𝑥𝑑𝑐𝑡 + 𝒦 ∫ ∫ Λ𝑑3𝑥𝑑𝑐𝑡 − 

2𝒦Λ

𝑐2
∫ ∫ Φ𝑑3𝑥𝑑𝑐𝑡. 

Varying over the particles, we obtain the equation of 
motion in the post-Newtonian approximation, 
corresponding to the above action: 

𝑚𝑎𝒙̈𝑎 = −𝑚𝑎∇Φ(𝒙𝑎) 
(it turns out to coincide in form with the equation of 
classical dynamics). Let us rewrite the action 𝑆 in the 
Eulerian representation, introducing the classical 
distribution function (on 7-dimensional extended 
phase space): 

𝑆𝐸 = ∑

𝑎

1

2𝑚𝑎
∫ 𝒑2𝑓𝑎(𝒙, 𝒑, 𝑡)𝑑3𝑥𝑑3𝑝𝑑𝑡 − 

∑

𝑎

∫ Φ(𝒙, 𝑡)𝑓𝑎(𝒙, 𝒑, 𝑡)𝑑3𝑝𝑑3𝑥𝑑𝑡 + 

+ 
2𝒦

𝑐4
∫ ∫ (∇Φ)2𝑑3𝑥𝑑𝑡 + 𝒦 ∫ ∫ Λ𝑑3𝑥𝑑𝑐𝑡 − 

2𝒦Λ

𝑐2
∫ ∫ 𝑈𝑑3𝑥𝑑𝑡. 

The inverse transformation to the Lagrangian 
representation can be done by substituting 

𝑓𝑎(𝒙, 𝒑, 𝑡) = ∑𝑞 𝛿(𝒙 − 𝒙𝑎(𝑞, 𝑡))𝛿(𝒑 − 𝒑𝑎(𝒒, 𝑡)). 
Let us vary 𝑆𝐸 with respect to Φ and obtain the 
Poisson equation with the Λ term: 

ΔΦ = 4𝜋𝛾 ∑

𝑎

𝑚𝑎 ∫ 𝑓𝑎(𝒙, 𝒑, 𝑡) 𝑑3𝑝 −
1

2
𝑐2Λ. 

What does the second term on the right side give? 
Presence of an “effective” external field: solution of 
the equation ΔΦ = −

1

2
𝑐2Λ can be chosen in its 

simplest form as Φ = −
1

12
𝑐2Λ(𝑥2 + 𝑦2 + 𝑧2), 

which leads to “pushing” of particles. What does this 
give us in a Milne–McCrea type solution? From the 
Poisson equation we obtain 

Φ = 4𝜋𝛾 ∑

𝑎

𝑚𝑎 ∫
𝑓𝑎(𝒙′, 𝒑, 𝑡)

|𝒙 − 𝒙′|
𝑑3𝑝𝑑3𝑥′ −

𝑐2Λ

12
𝒙2. 

We took advantage of the fact that the solution to an 
inhomogeneous linear equation is the sum a 
particular solution and a general solution of a 
homogeneous equation, i.e. harmonic function. Our 
choice of a particular solution is clearly dictated by 
the requirement of isotropy (invariance regarding 
rotations) solutions of Friedmann and Milne-
McCrea.  
Let us present the corresponding “Vlasov–Poisson 
equation with Λ-term” (for particle type 𝑎): 

𝜕𝑓𝑎

𝜕𝑡
+ (

𝑝

𝑚𝑎
,

𝜕𝑓𝑎

𝜕𝑏𝑓𝑥
) − (∇Φ,

𝜕𝑓𝑎

𝜕𝑝
) = 0, 

ΔΦ = 4𝜋𝛾 ∑

𝑎

𝑚𝑎 ∫ 𝑓𝑎(𝑥, 𝑝, 𝑡)𝑑3𝑝 −
1

2
𝑐2Λ. 

 
 
3 Derivation of the Vlasov–Maxwell–

Einstein equation in (𝑿, 𝑼, 𝒕)–
representation 
General relativistic action for a system of many 
particles with differing masses 𝑚𝑟 and charges 𝑒𝑎 
(𝑎 = 1, 𝑁): in the presence of gravitational and 
electromagnetic fields can be written as follows: 

𝑆 = 𝑆𝑝 + 𝑆𝑝𝑓 + 𝑆𝑓𝑓 + 𝑆𝐸𝐻 , (4) 

𝑆𝑝 = − ∑

𝑎

𝑚𝑎𝑐 ∫ √𝑔𝛼𝛽

𝑑𝑋𝑎
𝛼

𝑑𝜆

𝑑𝑋𝑎
𝛽

𝑑𝜆
 𝑑𝜆, 

𝑆𝑝𝑓 = − ∑

𝑎

𝑒𝑎

𝑐
∫ 𝐴𝛼(𝑿𝑎)

𝑑𝑋𝑎
𝛼

𝑑𝜆
 𝑑𝜆, 

𝑆𝑓𝑓 = − 
1

16𝜋𝑐
∫ 𝐹𝛼𝛽𝐹𝛼𝛽|𝑔|1/2 𝑑4𝑋,   

𝑆𝐸𝐻 = 𝐾 ∫ |𝑔|1/2(𝑅 + Λ) 𝑑4𝑋,   

𝐴𝜇(𝑋) ≡ {𝜑(𝑿); 𝑨(𝑿)}, 𝑿 = {𝑋𝜇}𝜇=0,...,3, 
where: 𝑔𝜇𝜈(𝑿) is a fundamental tensor of 4-
dimensional space-time, 𝐴𝜇(𝑿) is an electromagnetic 
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field potential, Λ is a cosmological constant, 𝐾 =
−𝑐3/(16𝜋𝛾); variable 𝜆(> 0) is proportional to 
proper time of the particle, i.e. affine parameter of the 
𝑎-th particle: 𝑑𝑠𝑎 = √𝐼𝑎𝑑𝜆, 𝐼𝑎 ≡ (𝑔𝜇𝜈(𝑑𝑋𝜇/

𝑑𝜆)(𝑑𝑋𝜈/𝑑𝜆))𝑎 (𝐼𝑎 is a conserved integral of 
motion).  

We obtain the equations of motion of 
charged massive particles in given fields by varying 
𝑆𝑝 + 𝑆𝑝𝑓 (for an individual particle, index 𝑎 = 𝑎0 we 
do not write out): 

−𝑚𝑐
𝑑2

𝑑𝜆2
(
𝑔𝛼𝜇(𝑑𝑋𝜇/𝑑𝜆)

√𝐼
) −

𝑒

𝑐

𝑑𝐴𝛼

𝑑𝜆
= 

−
𝑚𝑐

2√𝐼

𝜕𝑔𝜇𝜈

𝜕𝑋𝛼

𝑑𝑋𝜇

𝑑𝜆

𝑑𝑋𝜈

𝑑𝜆
−

𝑒

𝑐

𝜕𝐴𝜇

𝜕𝑋𝛼

𝑑𝑋𝜇

𝑑𝜆
. 

Considering that the quantity 𝐼 is the integral of 
motion, we obtain the following equation: 

𝑑2𝑋𝜇

𝑑𝜆2
+ Γ𝛼𝛽

𝜇 𝑑𝑋𝛼

𝑑𝜆

𝑑𝑋𝛽

𝑑𝜆
=

𝑒√𝐼

𝑚𝑐2
𝐹𝛼

𝜇 𝑑𝑋𝛼

𝑑𝜆
, (5) 

𝛼, . . . , 𝜇 = 0, . . . ,3. 
Let us pose the following problem: rewrite equation 
(5), eliminating the natural parameter 𝜆, and passing 
instead to the coordinate 𝑋0 ≡ 𝑐𝑡 (“observer time”). 
To do this, let us present the dynamics equations in 
speed variables: 

𝑑𝑋𝜇

𝑑𝜆
= 𝑉𝜇 ,

𝑑𝑉𝜇

𝑑𝜆
= −Γ𝛼𝛽

𝜇
𝑉𝛼𝑉𝛽 +

𝑒√𝐼

𝑚𝑐2
𝐹𝛼

𝜇
𝑉𝛼. (6) 

Let us note here the appearance of the integral √𝐼 in 
the second term on the right side of the second 
equation — it will not exist when using natural 
parameter 𝑠 instead of 𝜆. However, when 𝑠 is 
introduced into consideration, the second-order 
homogeneity in the velocities of the right hand 
disappears. part that is necessary for further 
transformation. Namely, the following very general 
statement about the reduction of order by two powers 
holds.  
 Lemma (on reducing the order of an ODE 
system). Let a system of 2𝑁 ordinary differential 
equations be given (𝐴 = 0, 𝑁 − 1): 

𝑑𝑋𝐴

𝑑𝜆
= 𝑓 𝐴(𝑿, 𝑽),

𝑑𝑉𝐴

𝑑𝜆
= 𝐹𝐴(𝑿, 𝑽). 

Let the functions 𝑓 𝐴(𝑿, 𝑽) be of the first degree of 
homogeneity with respect to the variable 𝑽, and the 
functions 𝐹𝐴(𝑿, 𝑽) be of the second degree: 

𝑓𝐴(𝑿, 𝑘𝑽) = 𝑘𝑓 𝐴(𝑿, 𝑽),  
𝐹𝐴(𝑿, 𝑘𝑽) = 𝑘2𝑓𝐴(𝑿, 𝑽). 

Then the system of 2𝑁 − 2 equations  
𝑑𝑋𝐴

𝑑𝑋0
=

𝑓 𝐴(𝑿, 𝑼)

𝑓0(𝑿, 𝑼)
,

𝑑𝑈𝐴

𝑑𝑋0
=

𝐹𝐴(𝑿, 𝑼)

𝑓0(𝑿, 𝑼)
− 

𝑈𝐴
𝑓 𝐴(𝑿, 𝑼)

𝑓0(𝑿, 𝑼)
, 𝑈𝐴 ≡

𝑉𝐴

𝑉0
, 𝑈0 ≡ 1, 𝐴 = 0, 𝑁 − 1. 

is valid. Proof is carried out by direct substitution.  

 Using this lemma, we rewrite system (6) in 
the form  

𝑑𝑋𝑖

𝑑𝑡
= 𝑈𝑖,

𝑑𝑈𝑖

𝑑𝑡
= 𝐺𝑖(𝑿, 𝑼), 𝑖 = 1,2,3, (7) 

𝐺𝑖(𝑿, 𝑼) = −(Γ𝜇𝜈
𝑖 −

𝑈𝑖

𝑐
Γ𝜇 𝑛𝑢

0 )𝑈𝜇𝑈𝜈 + 

𝑒√𝐼

𝑚𝑐2
(𝐹𝜇

𝑖 −
𝑈𝑖

𝑐
𝐹𝜇

0)𝑈𝜇, 𝐼 ≡ 𝑔𝜇𝜈

𝑑𝑋𝜇

𝑑𝑡

𝑑𝑋𝜈

𝑑𝑡
 

(it should be noted that for 𝑖 = 0 the equation 
becomes an identity).  

Let us write down the Liouville equation for 
the 7-dimensional distribution function 𝑓(𝒙, 𝒖, 𝑡) 
corresponding to system (7) (hereinafter 𝑿 = {𝑐𝑡, 𝒙}, 
𝑼 = {1, 𝒖}): 

𝜕𝑓(𝑥, 𝑢, 𝑡)

𝜕𝑡
+ 𝑢𝑖

𝜕𝑓

𝜕𝑥𝑖
+

𝜕(𝑓𝐺𝑖)

𝜕𝑢𝑖
= 0. (8) 

Thus, we obtained the first part (kinetic) of the 
Vlasov-Maxwell-Einstein system of equations. To 
obtain equations for the fields 𝑔𝜇𝜈 and 𝐹𝜈

𝜇 and relate 
these field characteristics to distribution function 
𝑓(𝒙, 𝒖, 𝑡), it is necessary to rewrite the total action, 
replacing the “arbitrary parameter” 𝜆 with time 𝑡, and 
including in 𝑆𝑝 and 𝑆𝑝𝑓 partial single-particle 
distribution function 𝑓𝑎(𝒙, 𝒖, 𝑡): including in 𝑆𝑝 and 
𝑆𝑝𝑓 partial single-particle distribution function 
𝑓𝑎(𝒙, 𝒖, 𝑡): 

𝑆 = − ∑

𝑎

𝑚𝑎𝑐 ∫ √𝑔𝛼𝛽𝑈𝛼𝑈𝛽𝑓𝑎(𝑿, 𝑼, 𝑡)𝑑𝒙𝑑𝑡𝑑𝒖 − 

∑

𝑎

𝑒𝑎

𝑐
∫ 𝐴𝛼(𝒙𝑎)𝑈𝛼𝑓𝑎(𝑿, 𝑼, 𝑡)𝑑3𝑥𝑑𝑡𝑑3𝑢 − 

−
1

16𝜋𝑐
∫ 𝐹𝛼𝛽𝐹𝛼𝛽|𝑔|1/2 𝑑3𝑥𝑑𝑐𝑡 + 

𝐾 ∫ |𝑔|1/2(𝑅 + Λ) 𝑑3𝑥𝑑𝑐𝑡, 𝐾 =
−𝑐3

16𝜋𝛾
. 

Varying the last expression for 𝑆 with respect 
to the electromagnetic field potentials, we obtain 
Maxwell’s equations: 

−
𝑐

16𝜋

𝜕(√−𝑔𝐹𝛼𝛽)

𝜕𝑋𝛽
= ∑

𝑎

∫ 𝑓𝑎(𝑿, 𝑼, 𝑡)𝑒𝑎𝑈𝛼𝑑𝒖. (9) 

If we vary 𝑆 by the metric 𝑔𝜇𝜈, we obtain Einstein’s 
equations for the gravitational field: 

𝐾√−𝑔(𝑅𝜇𝜈 −
1

2
(𝑅 + Λ)𝑔𝜇𝜈) = 

− ∑

𝑎

𝑚𝑎

2
∫

𝑈𝜇𝑈𝜈

√𝑔𝜁𝜂𝑈𝜁𝑈𝜂

𝑓𝑎(𝑿, 𝑼, 𝑡) 𝑑𝒖 + 

+
1

16𝜋𝑐
(−2𝐹𝛽𝜈𝐹𝛼𝜇𝑔𝛼𝛽 +

1

2
𝐹𝛼𝛽𝐹𝛼𝛽𝑔𝜇𝜈) √−𝑔. (10) 

The system of equations (8)–(10) is the complete 
Vlasov–Maxwell–Einstein system.  

Note that the resulting form of Einstein’s 
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equations leads to the conclusion that contribution to 
the cosmological Λ-term can be made by the first 
three terms of the action 𝑆. The obvious conclusion 
from this is that that the first three terms make the 
same contribution to the energy-momentum tensor 
and to the equations of motion as the “formal” Λ-
term: 

Λ𝑆(𝑿, 𝑡) = − ∑

𝑎

𝑚𝑎𝑐

𝐾√−𝑔
∫ √𝑔𝜇𝛼𝑈𝜇𝑈𝛼 × 

𝑓𝑎(𝑿, 𝑼, 𝑡)𝑑3𝑢 − ∑

𝑎

𝑒𝑎

𝑐𝐾√−𝑔
∫ 𝐴𝛼(𝒙𝑎)𝑈𝛼 × 

𝑓𝑎(𝑿, 𝑼, 𝑡)𝑑3𝑢 −
1

16𝐾𝜋𝑐
𝐹𝛼𝛽𝐹𝛼𝛽. 

The notation Λ𝑆 emphasizes that this expression is an 
analogue of the Λ-term, conditioned by the form of 
the action 𝑆. 
 
 
4 Hydrodynamic applications of the 

consequences of the Vlasov–Einstein 

equations 
In this section we will consider applications of the 
formalism developed above for two relativistic 
problems.  

Example 5. Consider a special case of the 
action 𝑆2 for the relativistic Lorentz metric 𝑔𝛼𝛽 =

𝑑𝑖𝑎𝑔(1, −1, −1, −1) (for one particle): 

𝑆𝐿 = 𝑚𝑐 ∫ (√𝑐2 − 𝒖2 + 𝑈/𝑐)𝑑𝑡 − 

1

8𝜋𝐺
∫ (∇𝑈)2𝑑𝒙𝑑𝑡 −

𝑐2Λ

8𝜋𝐺
∫ 𝑈 𝑑𝒙𝑑𝑡, 𝒖 ≡

𝑑𝒙

𝑑𝑡
. 

We vary 𝑆𝐿 by coordinates and obtain the equations 
of relativistic dynamics with Hamiltonian function 
ℋ𝐿 = 𝑚𝑐2√1 + 𝒑2/(𝑚𝑐)2 + 𝑚𝑈. Let’s write the 
action in terms of particle distribution functions:  

𝑆𝐿 = −𝑐 ∫ 𝑚(√𝑐2 − 𝒖2 + 𝑈/𝑐) × 

𝑓(𝑡, 𝒙, 𝒖, 𝑚)𝑑𝒖𝑑𝑚𝑑𝒙𝑑𝑡 −
1

8𝜋𝐺
∫ (∇𝑈)2𝑑𝒙𝑑𝑡 − 

𝑐2Λ

8𝜋𝐺
∫ 𝑈 𝑑𝒙𝑑𝑡. 

Varying it across the potential 𝑈, we obtain the 
equation for the gravitational field: 

Δ𝑈 = 4𝜋𝐺 ∫ 𝑚𝑓(𝑡, 𝒙, 𝒖, 𝑚)𝑑𝒖𝑑𝑚 −
1

2
𝑐2Λ. 

When passing to the equations of the hydrodynamic 
level, we obtain the Hamilton–Jacobi–Euler–Poisson 
system: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝑢𝑗(∇𝑊)𝜌) = 0,   

𝜕𝑊

𝜕𝑡
+ 𝑐√𝑚2𝑐2 + (∇𝑊)2 + 𝑚𝑈 = 0, 

𝑢𝑗(𝒑) =
𝜕ℋ𝐿

𝜕𝑝𝑗
=

𝑐𝑝𝑗

√𝑚2𝑐2 + 𝒑2
. 

Let us rewrite this system of equations for the 
isotropic case, when 𝜌 = 𝜌(𝑡, 𝑟, 𝑚), 𝑈 = 𝑈(𝑡, 𝑟), 
𝑊 = 𝑊(𝑡, 𝑟), in the form: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑘
(

𝑐(𝜕𝑊/𝜕𝑟)𝑥𝑘)

𝑟√𝑚2𝑐2 + (𝜕𝑊/𝜕𝑟)2
) = 0, 

𝜕𝑊

𝜕𝑡
+ 𝑐√𝑚2𝑐2 + (𝜕𝑊/𝜕𝑟)2 + 𝑚𝑈(𝑟, 𝑡) = 0, 

3(
𝜕𝑊/𝜕𝑟

𝑟
) + 𝑟

𝜕

𝜕𝑟
(
𝜕𝑊/𝜕𝑟

𝑟
) = 

 

4𝜋𝐺 ∫ 𝑚𝜌 𝑑𝑚 −
1

2
𝑐2Λ. 

Cosmological solutions correspond to the case when 
the value 𝜌 does not depend on the spatial variable: 
𝜌 = 𝜌(𝑚, 𝑡). In this case, the solution to the last 
equation (Poisson) will be the following function: 

𝑈(𝑡, 𝑟) = −
𝐴(𝑡)

𝑟
+

𝐵(𝑡)

6
𝑟2,   

𝐵(𝑡) ≡ 4𝜋𝐺 ∫ 𝑚𝜌 𝑑𝑚 −
1

2
𝑐2Λ. 

From the first equation (continuity equation) of the 
above system we have: 

𝜕𝜌

𝜕𝑡
+ 3𝐻𝜌 = 0,   

where 𝐻(𝑚, 𝑡) is the Hubble parameter. We obtain 
the Hamilton-Jacobi equations for variable 𝑊: 

3𝜑 + 𝑟
𝑑𝜑

𝑑𝑟
= 3𝐻,

𝜑(𝑟) =
(𝜕𝑊/𝜕𝑟)𝑐

𝑟√(𝜕𝑊/𝜕𝑟)2 + 𝑚2𝑐2
. 

Solving the equation for 𝜑, we obtain 𝜑 =
𝐻 + 𝜓(𝑚, 𝑡)/𝑟3, 𝜓(𝑚, 𝑡) — some function. So we 
we get a system of equations  
𝜕𝜌

𝜕𝑡
+ 3𝐻𝜌 = 0,

𝑐𝜕𝑊/𝜕𝑟

√𝑚2𝑐2 + (𝜕𝑊/𝜕𝑟)2
= 𝑟𝐻 +

𝜓(𝑡)

𝑟2
, 

𝜕𝑊

𝜕𝑡
+ 𝑐√𝑚2𝑐2 + (𝜕𝑊/𝜕𝑟)2 + 𝑚𝑈(𝑟, 𝑡) = 0. 

Let us denote Ω(𝑟, 𝑡) = 𝑐−1(𝑟𝐻 + 𝜓(𝑡)/𝑟2), 
Θ(𝑟, 𝑡) =

𝜕𝑊(𝑟,𝑡)

𝜕 𝑟
. Then the equation is valid: 

𝜕Θ

𝜕𝑡
+

𝑐ΘΘ𝑟′

√𝑚2𝑐2 + Θ2
+ 𝑚𝑈′(𝑟) = 0, 

or, after simplification: 
(𝑐Ω𝑡′ + 𝑐2ΩΩ𝑟′)

2 − (𝑈𝑟)2(1 − Ω2)3 = 0. 
Substituting here the explicit expressions Ω, Ω𝑡 , Ω𝑟, 
we get: 

(𝑟𝐻𝑡′ +
𝜓𝑡′

𝑟2
+ (𝑟𝐻 +

𝜓

𝑟2
)(𝐻 −

2𝜓

𝑟3
))2 − 

(
𝑟𝐵

3
+

𝐴

𝑟2
)2(1 − (𝑟𝐻 +

𝜓

𝑟2
)2)3 = 0. 

Analysis of this expression leads us to the following 
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conclusions. When expanding the left side of the 
above equation in powers of 𝑟 it is necessary that all 
coefficients of 𝑟𝑠 be equal to zero, therefore (since 
𝐵2𝐻6𝑟8 = 0) either 𝐻 = 0 or 𝐵(𝑡) = 0 (the latter 
means 8𝜋𝐺 ∫ 𝑚𝜌(𝑚, 𝑡) 𝑑𝑚 = 𝑐2Λ, that is, the 
stationarity of the Minkowski metric must be ensured 
corresponding dependence on the density of matter). 
If 𝐵(𝑡) = 0, then from the necessity of equality of the 
coefficient 𝜓6𝐴2 to zero it follows that 𝐴 = 0, 
𝑈(𝑟) = 0. Consequently, the cosmological solution 
for the Minkowski–Lorentz metric exists only for 
𝑈(𝑟) = 0, Moreover, from the last equation we 
obtain a relation for the Hubble parameter of the form 
𝐻𝑡′ + 𝐻2 = 0, the solution of which has form 
𝐻(𝑡) = (𝐶0 + 𝑡)−1.  

Example 6. Consider the case of non-
relativistic action and obtain the GamilJacobi 
equations for it. Action in This case can be 
represented in the form: 

𝑆𝑛𝑟 = ∫ (𝑚𝒖2/2 − 𝑒𝜙 − 𝑚𝑈) × 

𝑓(𝑡, 𝒙, 𝒖, 𝑚, 𝑒)𝑑𝒙𝑑𝒖𝑑𝑚𝑑𝑒𝑑𝑡 + 

+
1

8𝜋
∫ (∇𝜙)2𝑑𝒙𝑑𝑡 − 

−
1

8𝜋𝐺
∫ (∇𝑈)2𝑑𝑥𝑑𝑡 −

𝑐2Λ

8𝜋𝐺
∫ 𝑈 𝑑𝑥𝑑𝑡. 

Varying the electric potential 𝜙 and the gravitational 
potential 𝑈, we obtain the Poisson equations through 
distribution functions: 

Δ𝜙 = −4𝜋 ∫ 𝑒𝑓(𝑡, 𝒙, 𝒖, 𝑚, 𝑒) 𝑑𝒖𝑑𝑚𝑑𝑒,  

Δ𝑈 = 4𝜋𝐺 ∫ 𝑚𝑓(𝑡, 𝒙, 𝒖, 𝑚, 𝑒) 𝑑𝑢𝑑𝑚𝑑𝑒 −
1

2
𝑐2Λ. 

Considering the Liouville equation for a single-
particle function, making a hydrodynamic 
substitution into it 𝑓(𝑡, 𝒙, 𝒖, 𝑚, 𝑒) =
𝜌(𝑡, 𝒙, 𝑚, 𝑒)𝛿(𝑢 − 𝒗(𝑡, 𝒙, 𝒖, 𝑚, 𝑒)) passing to the 
Hamilton-Jacobi formalism (𝑣𝑖 = 𝜕𝑊(𝑡, 𝒙, 𝑒, 𝑚)/
𝜕𝑥𝑖), we obtain the system Euler–Poisson–
Hamilton–Jacobi equations: 

𝜕𝜌

𝜕𝑡
+ 𝜌Δ𝑊 +

𝜕𝜌

𝜕𝑥𝑗

𝜕𝑊

𝜕𝑥𝑗
= 0, 

𝜕𝑊

𝜕𝑡
+

1

2
∑

𝑖

(
𝜕𝑊

𝜕𝑥𝑖
)2𝑈 +

𝑒

𝑚
𝜙 = 0, 

Δ𝜙 = −4𝜋 ∫ 𝑒𝜌 𝑑𝑚𝑑𝑒,   

Δ𝑈 = 4𝜋𝐺 ∫ 𝑚𝜌 𝑑𝑚𝑑𝑒 −
1

2
𝑐2Λ. 

Let rewrite the resulting system of equations for the 
isotropic case, i.e. e. in the case when 𝜌 =
𝜌(𝑡, 𝑟, 𝑒, 𝑚), 𝑊 = 𝑊(𝑡, 𝑟, 𝑒, 𝑚), 𝑈 = (𝑟, 𝑡), 𝜙 =
𝜙(𝑟, 𝑡): 

𝜕𝜌

𝜕𝑡
+ 𝜌(

3𝑊𝑟′

𝑟
+ 𝑟

𝜕

𝜕𝑟
(
𝑊𝑟′

𝑟
)) +

𝜕𝜌

𝜕𝑟

𝜕𝑊

𝜕𝑟
= 0,  

𝜕𝑊

𝜕𝑡
+

(𝑊𝑟′)
2

2
+ 𝑈 +

𝑒𝜙

𝑚
= 0, 

3𝜙𝑟

𝑟
+ 𝑟

𝜕

𝜕𝑟
(
𝜙𝑟′

𝑟
) = −4𝜋 ∫ 𝑒𝜌 𝑑𝑚𝑑𝑒,  

3𝑈𝑟

𝑟
+ 𝑟

𝜕

𝜕𝑟
(
𝑈𝑟′

𝑟
) = 4𝜋 ∫ 𝑚𝜌 𝑑𝑚𝑑𝑒 −

𝑐2Λ

2
. 

Let us now assume that the density does not depend 
on the spatial coordinate: 𝜌 = 𝜌(𝑡, 𝑚. 𝑒) 
(homogeneity in space). Such solutions are usually 
called cosmological solutions, since on very large 
scales it is assumed that the density does not depend 
on the spatial coordinate at all. Then the last equation 
has a solution  

𝑈 = −
𝐴1(𝑡)

𝑟
+

𝐴2(𝑡)

6
𝑟2,   

𝐴2(𝑡) = 4𝜋𝐺 ∫ 𝑚𝜌 𝑑𝑚𝑑𝑒 −
𝑐2Λ

2
, 

and the penultimate one: 

𝜙(𝑟, 𝑡) = −
𝐴3(𝑡)

𝑟
+

𝐴4

6
𝑟2, 

𝐴4(𝑡) = −4𝜋 ∫ 𝑒𝜌 𝑑𝑚𝑑𝑒. 

The first and second equations of the system give the 
equations for the Hubble parameter: 

𝜕𝜌

𝜕𝑡
+ 3𝐻(𝑒, 𝑚, 𝑡)𝜌 = 0,   

3𝜅 + 𝑟
𝜕𝜅

𝜕𝑟
= 3𝐻(𝑡, 𝑚, 𝑒), 𝜅 ≡

𝑊𝑟(𝑡, 𝑟, 𝑚, 𝑒)

𝑟
. 

Solving the equation for the variable 𝜅, we obtain 
𝜅 = 𝐻 + 𝐴5(𝑚, 𝑒, 𝑡)/𝑟3. Substituting this quantity 
into the second equation of the system (Hamilton-
Jacobi), we obtain: 

𝜕

𝜕𝑡
(
𝐻𝑟2

2

𝐴5

𝑟
) +

1

2
(𝐻𝑟 +

𝐴5

𝑟2
)2 −

𝐴1(𝑡)

𝑟
+

𝑏(𝑡)

6
𝑟2 + 

𝑒

𝑚
(−

𝐴3(𝑡)

𝑟
+

𝐴4(𝑡)

6
𝑟2) = 0. 

From the second term we find 𝐴5(𝑚, 𝑒, 𝑡) = 0; 
collecting coefficients for 𝑟−1, 𝑟2, we obtain a system 
of evolutionary equations for density and for the 
Hubble parameter: 

𝜕𝜌

𝜕𝑡
+ 3𝐻𝜌 = 0, 

𝜕𝐻

𝜕𝑡
+ 𝐻2 +

4𝜋𝐺

3
∫ 𝑚𝜌 𝑑𝑚𝑑𝑒 − 

𝑐2Λ

6
−

4𝜋𝐺𝑒

𝑚
∫ 𝑒𝜌 𝑑𝑚𝑑𝑒 = 0. 

This provides another opportunity to explain the 
accelerated expansion Universe, along with the 

lambda term. It is clearly seen from the equations 
that the last two terms work in in the same correct 
direction, creating the missing repulsion. In case of 
charged particles, this equality of the last term on 
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the left side to zero means neutrality. Let us denote 
𝜂(𝑡) = 

(4𝜋𝐺/3) ∫ 𝑚𝜌 𝑑𝑚𝑑𝑒 − (4𝜋𝐺𝑒/𝑚) ∫ 𝑚𝜌𝑑𝑚𝑑𝑒. 
Then, assuming that 𝐻 = 𝐻(𝑡), we can go to the 
system of two ordinary differential equations: 

𝑑𝜂

𝑑𝑡
= −3𝐻𝜂,

𝑑𝐻

𝑑𝑡
= −𝐻2 − 𝜂 + 𝜁,   

𝜁 = −
1

6
𝑐2Λ. 

Three cases can be distinguished: 1) Λ = 0, 2) Λ > 0, 
3) Λ < 0. In all three cases, the modern physical 
region of the Universe must correspond to regions on 
the phase (𝜂, 𝐻)-plane where 𝐻 > 0 (redshift) and 
𝑑𝐻/𝑑𝑡 = 𝜎 − 𝜂 − 𝐻2 > 0 (accelerated expansion).  

In this case, for the case 𝜁 = 0, accelerated 
expansion 𝑑𝐻/𝑑𝑡 > 0 is possible for 𝐻 > 0 and 
accelerated compression for 𝐻 < 0, as well as slower 
expansion (for 𝐻 > 0) with a transition to slower 
compression for 𝐻 = 0.  
 Moreover, for the left (𝐻 < 0) and right 
(𝐻 > 0) half-planes of the (𝐻, 𝜂)-phase plane of the 
velocity of the part directed in different directions; 
this can be interpreted as a “shrinking” of the system 
(this may be due to with such astronomical aspect as 
“violet shift”) and “expansion” of the system 
(respectively “red shift”). 
 
 
5 Conclusion 
In this paper, we consider the derivation of the 
Vlasov–Maxwell–Einstein equations system based 
on the Lagrangian formalism, while at the first stage 
we introduced the full action (Einstein–Hilbert–
Pauli) of a system of massive charged particles, 
electromagnetic and gravitational fields. To do this, 
it was necessary to synchronize the proper times of 
various particles. This was done through the proper 
time of one particle and through an arbitrary 
parameter. We derived equations and obtained an 
expression for mass in stationary gravitational and 
electromagnetic fields. It is interesting to compare the 
resulting form of the Vlasov–Maxwell–Einstein 
equations with other versions and classify them. As a 
rule, various forms of the kinetics equations in a 
gravitational field are written only for the equations 
Vlasov–Einstein (without Maxwell) and with 
Christoffel symbols, which means not for impulses, 
but for velocities. They can also be derived according 
to this scheme.  

The authors consider the use of AI to be very 
promising in obtaining from the action of a general 
form (including new types of interactions) new 
equations for fields and equations for the dynamics 
of particles in these fields. This is due to the fact that 

the terms corresponding to new fields (dilaton scalar, 
inflaton, etc.) in the approximation used enter the full 
Lagrangian additively, which leads to a standard 
technique for obtaining dynamic equations.  

In the present literature, equations of Vlasov 
type are usually not derived from the basic principles, 
but are written out directly (apparently based on 
analogies with the classical case), which inevitably 
leads to inaccuracies and direct errors. When it comes 
to the Vlasov-Einstein equations, the derivation 
seems absolutely necessary for both sides of the 
Vlasov equation, that is, for the equation Liouville 
(particle transport) and equations for fields. When 
deriving the Liouville equation, we move from an 
arbitrary parameter (along particle trajectories) to the 
observer’s time, which leads to time synchronization 
in multiparticle systems.  

In equations for fields, the form of the 
energy-momentum tensor is chosen quite arbitrarily 
in present publications, which is illegal. We obtained 
exact expressions for this tensor when passing to the 
distribution functions in the composite action for the 
system particles in gravitational and electromagnetic 
fields (which formally have the same effect as 
Einstein’s Λ–term). It seems promising to explore for 
this equations are all classical substitutions that are 
known in the Vlasov equation: energetic and 
hydrodynamic substitutions, as well as stationary 
Vlasov equation solutions. It appears current and 
interesting task to classify all decisions depending on 
time (spatially homogeneous solutions). This leads to 
cosmological solutions that are now being actively 
studied. The Hamilton–Jacobi equation methods are 
useful here. An extremely urgent task is to obtain for 
equations of Vlasov type the consequences of the 
assumption ``time averages coincide with Boltzmann 
extremals’’, which should lead to a complete self-
consistent description of the evolution of structures 
in the Universe as a sequence of states of relative 
equilibrium.  
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