Performance of Some Dawoud-Kibra Estimators for Logistic Regression Model: Application to Pena data set

OLASUNKANMI JAMES OLADAPO ${ }^{1, *}$, OLUSEGUN O.ALABI ${ }^{2}$, KAYODE AYINDE 2,3
${ }^{1}$ Department of Statistics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, NIGERIA
${ }^{2}$ Department of Statistics, Federal University of Technology, Akure, Ondo state, NIGERIA
${ }^{3}$ Department of Mathematics and Statistics, Northwest Missouri state university, Maryville, Missouri, USA
${ }^{1 *}$ Corresponding author

Abstract

A logistic regression model's parameters are usually estimated using the maximum likelihood (ML) method. As a consequence of the problem of multicollinearity, unstable parameter estimates are obtained, and the mean square error (MSE) obtained cannot also be relied upon. There have been several biased estimators proposed to deal with multicollinearity, and the logistic Dawoud-Kibra (LDK) estimator is one of them, and research has shown that biasing parameters have an effect on MSE, too. Our study proposed seven LDK biasing estimators and all of them were subjected to Monte Carlo simulations, as well as using Pena data sets. According to the simulation study, LDK estimators outperform Logistic Ridge Regression (LRR) and ML methods. Furthermore, application to Pena real data set also align with the simulation results.

Key-words: Logistic regression, Multicollinearity, Biased estimators, Maximum likelihood, Simulation, MSE.
Received: January 5, 2023. Revised: October 15, 2023. Accepted: November 17, 2023. Published: December 31, 2023.

1 Introduction

It was Frisch [1] who first introduced the concept of multicollinearity in multiple regression models. It is a common occurrence in applied research. For linear regression models and logit regression models, the use of ordinary least squares (OLS) and maximum likelihood (ML) leads to high variance and unstable parameter estimates. Due to multicollinearity, regression analysis's conclusions may be questioned. As a correction measure for linear regression, ridge regression (RR) has become increasingly popular in recent decades [2]. Many studies have been conducted to estimate the ridge parameter k , originally proposed by Hoerl and Kennard [2, 3]. Such studies, performed on ridge regression, include the works of Gibbons [4], Lawless and Wang [5], and Dempster et al. [6] Hoerl and Kennard; [2] Hoerl et al.; [7] McDonald and Galarneau [8] Alkhamisi et al. [9] Alkhamisi and Shukur [10] Muniz and Kibria [11] Muniz et al. [12] and Månsson et al. [13] Lukman and Ayinde [14] Ayinde et al. [15] and others too. However, logit models have not received much attention, and only a few researchers have tried to work on them. Those
who have studied them are the likes of Schaeffer et al. [16, 17], Månsson and Shukur [18], Kibria et al. [19], and a few others. Almost all the researchers working on the logit models focused only on the RR and paid little or no attention to the biasing parameter of all other estimators proposed by other researchers to handle the problem of multicollinearity in the logit models.
This research paper will focus on proposing some Logistic Dawoud and Kibra (LDK) estimators, following the works of Kibra et al. [19, 20]. Research has shown that the biasing parameters of an estimator have an effect on the value of the mean square error (MSE). Therefore, its anticipated LDK estimators will have MSE values lower than those of the LRR and ML. The MSE has been one of the criteria used in judging the performances of estimators.
This research paper is structured as follows: Section 2 entails the materials and methodology adopted for the study. Section 3 includes the results and discussion of simulation and numerical results. Section 4 provides a succinct overview and conclusions.

2. Materials and Methodology.

Adopting the concepts in the research works of Kibra et al. and Kibra [19, 20], we will be proposing some LDK estimators in this section for estimating the biasing parameter k .

2.1 Logit Regression

The logit regression has always been one of the most common statistical methods used whenever the i-th value of the dependent variable (y) follows a Be ($\pi \mathrm{i}$) distribution with the following parameter value:
$\pi_{i}=\frac{\exp \left(x_{i}^{\prime} \beta\right)}{1+\exp \left(x_{i}^{\prime} \beta\right)}$
Where x_{i}^{\prime} is the ith row of X , and is a $n \times(p+1)$ data matrix, having p explanatory variables and such that β is a $(p+1) \times 1$ vector of coefficients. Using the Maximum Likelihood technique, which maximizes the following log likelihood, is one of the most used ways to estimate β and can be expressed as:
$\mathrm{L}=\sum_{i=1}^{n} y_{i} \log \left(\pi_{i}\right)+\sum_{i=1}^{n}\left(1-y_{i}\right) \log \left(1-\pi_{i}\right)$
λ_{j} is said to be the jth eigenvalues of the $X^{\prime} \hat{W} X$ matrix.
The LRR estimator, proposed by Schaeffer et al. [16], is a substitute for ML estimates that mitigates multicollinearity problems. Instead of estimating the regression model coefficients directly, it estimates the inverse of the covariance matrix. In this way, the LRR estimator effectively reduces small eigenvalues caused by multicollinearity; therefore, the regression coefficients are more reliable and robust.

The LRR estimator is express as:
$\hat{\beta}_{L R R}=\left(X^{\prime} \hat{W} X+k I\right)^{-1} X^{\prime} \hat{W} X \hat{\beta}_{M L E}$
With k has the biasing parameter, \hat{W} and $\hat{\beta}_{M L E}$ is the $\hat{\beta}_{M L E}$ estimates derived from equation (4). The LRR estimator MSE is shown to be:
$E\left(L_{L R R}^{2}\right)=E\left(\beta_{L R R}-\beta\right)^{\prime} E\left(\beta_{L R R}-\beta\right)$
$=\sum_{j=1}^{j} \frac{\lambda_{j}}{\left(\lambda_{j}+k\right)^{2}}+k^{2} \sum_{j=1}^{j} \frac{\alpha_{j}}{\left(\lambda_{j}+k\right)^{2}}$

To get this we set the first derivative of equation (2) to be equal to zero, the ML estimates can now be derived by solving the equation below

$$
\begin{equation*}
\frac{\partial l}{\partial \beta}=\sum_{i=1}^{n}\left(y_{i}-\pi_{i}\right) x_{i}=0 \tag{3}
\end{equation*}
$$

The iterative weighted least square (IWLS) algorithm is used:

$$
\begin{equation*}
\hat{\beta}_{M L E}=\left(X^{\prime} \hat{W} X\right)^{-1} X^{\prime} \hat{W}_{z} \tag{4}
\end{equation*}
$$

Where the following are the expression of \hat{W} and \hat{z} respectively
$\hat{W}=\pi_{i}\left(1-\pi_{i}\right)$ and \hat{z} is known to be a vector where the ith element equals

$$
z_{i}=\log \left(\hat{\pi}_{i}\right)+\frac{y_{i}-\hat{\pi}_{i}}{\hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)}
$$

Since equation (3) is nonlinear in β, we can express the MSE of the ML estimator as:
$E\left(L_{M L}^{2}\right)=E\left(\beta_{M L}-\beta\right)^{\prime} E\left(\beta_{M L}-\beta\right)=\operatorname{tr}\left(X^{\prime} \hat{W} X\right)^{-1}=\sum_{i=1}^{j} \frac{1}{\lambda_{j}}$

The Logistic Dawoud and Kibra (LDK) estimator, which is a special two parameter estimator of KibraLukman (KL) estimator that was proposed by Afzal et al [21] and it also handle the problem of multicollinearity effectively too. The estimator LDK is defined as:
$\hat{\beta}_{L D K}=\left(X^{\prime} \hat{W} X+k(1+d) I\right)^{-1}\left(X^{\prime} \hat{W} X-k(1+d) I\right) \hat{\beta}_{M L E}$
With k and d , the biasing parameters, \hat{W} and $\hat{\beta}_{M L E}$ is the $\hat{\beta}_{M L E}$ estimates derived from equation (4).
The MSE of the LDK estimator is express to be:

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\beta}_{\text {LDK }}\right)=\sum_{i=1}^{p} \frac{\left(\lambda_{i}-k(1+d)\right)^{2}}{\lambda_{i}\left(\lambda_{i}+k(1+d)\right)^{2}}+4 k^{2}(1+d) \sum_{i=1}^{p} \frac{\alpha_{i}^{2}}{\left(\lambda_{i}+k(1+d)\right)^{2}} \tag{9}
\end{equation*}
$$

where α_{j}^{2} is expressed as the jth element of $\gamma \beta$ and γ is known to be the eigenvector expressed as $X^{\prime} \hat{W} X=\gamma^{\prime} \Lambda \gamma$, where $\Lambda=\operatorname{diag}\left(\lambda_{j}\right)$.

2.2 The Dawoud-Kibra Estimators.

There are numerous approaches that have been developed for the linear regression model and then transferred to the logistic ridge regression model for selecting a ridge parameter. A biasing parameter k
from Hoerl and Kennard's [2, 3] research in the classical $R R$ is represented as follows:
$\hat{k}_{H K 1}=\frac{\sigma^{2}}{\alpha_{\text {max }}^{2}}$
As shown below, the aforementioned biasing parameter was also used to obtain the biasing parameter that Kibria [19] suggested.
$\hat{k}_{G M}=\frac{\sigma^{2}}{\left(\prod_{i=1}^{l} \hat{\alpha}_{j}^{2}\right)^{\frac{1}{l}}}$
Later on, equation (10) was adopted into the LRR by Schaeffer et al. [16] as:
$\hat{k}_{S R W}=\frac{1}{\alpha_{\text {max }}^{2}}$
However the biasing parameters k and d for LDK can be gotten from the MSE:
$\operatorname{MSE}\left(\hat{\beta}_{L D K}\right)=\sum_{i=1}^{p} \frac{\left(\lambda_{i}-k(1+d)\right)^{2}}{\lambda_{i}\left(\lambda_{i}+k(1+d)\right)^{2}}+4 k^{2}(1+d) \sum_{i=1}^{p} \frac{\alpha_{i}^{2}}{\left(\lambda_{i}+k(1+d)\right)^{2}}$
Then, by differentiating $\operatorname{MSE}\left(\hat{\alpha}_{L D K}\right)$ w.r.t. d and equating to 0 , we have
$d=\sum_{i=1}^{p}\left[\frac{\lambda_{i}}{k\left(1+2 \lambda_{i} \alpha_{i}^{2}\right)}\right]-1 \quad \begin{aligned} & \text { However, } \mathrm{d} \text { depends on } \\ & \text { the unknown } \alpha_{i} . \text { For }\end{aligned}$ practical purposes, it will be replaced by its unbiased estimator $\hat{\alpha}_{i}$. Hence, this will be expressed as:
$\hat{d}=\sum_{i=1}^{p}\left\lfloor\frac{\lambda_{i}}{\hat{k}\left(1+2 \lambda_{i} \alpha_{i}^{2}\right)}\right\rfloor-1$
Then, by differentiating $\operatorname{MSE}\left(\hat{\alpha}_{L D K}\right)$ w.r.t. k and equating to 0 , we have
$k=\frac{1}{(1+d)\left(\frac{1}{\lambda_{i}}+2 \alpha_{i}^{2}\right)}$
However, k depends on the unknown α_{i}. For practical purposes, it will be replaced by its unbiased estimator $\hat{\alpha}_{i}$. Hence, this will be expressed as:

$$
\begin{equation*}
\hat{k}=\frac{1}{(1+d)\left(\frac{1}{\lambda_{i}}+2 \hat{\alpha}_{i}^{2}\right)} \tag{15}
\end{equation*}
$$

Following the works of Schaeffer et al. [16] and Kibra et al and Kibra [19, 20] the following biasing parameter k for LDK are proposed as:

$$
\begin{align*}
& \hat{k}_{A M}=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{(1+d)\left(\frac{1}{\lambda_{i}}+2 \hat{\alpha}_{i}^{2}\right)} \tag{16}\\
& \hat{k}_{H M}=p \sum_{i=1}^{p} \frac{1}{(1+d)\left(\frac{1}{\lambda_{i}}+2 \hat{\alpha}_{i}^{2}\right)} \tag{17}\\
& \hat{k}_{\text {MAX }}=\text { Maximum }\left(\frac{1}{(1+d)\left(\frac{1}{\lambda_{i}}+2 \hat{\alpha}_{i}^{2}\right)}\right) \tag{18}\\
& \hat{k}_{M I N}=\operatorname{Minimum}\left(\frac{1}{(1+d)\left(\frac{1}{\lambda_{i}}+2 \hat{\alpha}_{i}^{2}\right)}\right) \tag{19}\\
& \hat{k}_{M E D}=\operatorname{Median}\left(\frac{1}{(1+d)\left(\frac{1}{\lambda_{i}}+2 \hat{\alpha}_{i}^{2}\right)}\right) \tag{20}\\
& \hat{k}_{\text {MR }}=\frac{\left(\hat{k}_{M A X}+\hat{k}_{M I N}\right)}{2} \tag{21}
\end{align*}
$$

2.3 The Monte Carlo Simulation

As the main objective of this paper is to ascertain the effects of multicollinearity on ML, LRR, and LDK Estimators, the degree of correlation between the regressors is the most significant variable in the experiment. Accordingly, we generate the explanatory variables using the following formula, which allows us to adjust the correlation's strength:
$x_{i j}=\left(1-\rho^{2}\right)^{1 / 2} z_{i j}+\rho z_{i p} \quad \mathrm{i}=1,2, \ldots$,
, $\mathrm{j}=1,2, \ldots, \mathrm{p}$
The term ρ^{2} describes the level of correlation between the explanatory factors and $z_{i j}$ is the usual normal distribution's pseudorandom numbers as well. The four different levels of correlation that are being evaluated are $0.8,0.9,0.95$, and 0.99 respectively.

Similarly, the dependent variable comes from $\operatorname{Be}\left(\pi_{i}\right)$ distribution where
$\pi_{i}=\frac{\exp \left(x_{i}^{\prime} \beta\right)}{1+\exp \left(x_{i}^{\prime} \beta\right)}$
We set $\beta^{\prime} \beta=1$, then the MSE is minimized when this coefficient is chosen, in accordance with Newhouse and Oman's [22] assertion that if our MSE is a function of β, σ^{2} and k if all the explanatory variables utilized are fixed. Sample sizes used are 50, $60,70,80,90,100,150,200$ and 250 , likewise the number of explanatory variable considered are $\mathrm{p}=3$, 4,5 and 6 .We will be able to determine which of the Dawoud-Kibra biasing k parameters will be more efficient using this experimental design.
We may find additional details on simulation processes from the works of Kibria [20] Lukman et al [23]; Oladapo et al [24,25]; Muniz and Kibria [11];

Idowu et al [26]; Owolabi et al [27]; Månsson and Shukur [18] and others too.

3. Results and Discussion 3.1 Simulation Results

Results from both real-world data and Monte Carlo simulations are presented in this section. Tables 1 through 4 display the MSE values of all the estimators used in the Monte Carlo study, and Table 5 displays the MSE values from a real-life data set. Additionally, the effects of varying the many factors we employed in this investigation on the ML, LRR, and LDK estimators are also covered.
Table 1 shows the estimated MSE values when $\mathrm{n}=50$, 60 , and 70 for explanatory variables, $p=3,4$, and 6 . It can be observed that the LDK with the biasing parameter k of the Median (MED) version gives the lowest MSE in all cases, with few exceptions.

Table 1: Estimated MSE for different estimator when $p=3,4,5$ and 6 when $n=50,60$ and 70

Bold values show the smallest MSE

Table 2 shows the estimated MSE values when n is 80 and 90 for explanatory variables, $p=3,4,5$ and 6 . It can be observed that the LDK with the biasing parameter k of the Median (MED) version gives the lowest MSE values in almost all the designs used. In
the only six cases where the biasing parameter k of the MED version is not the lowest MSE, the Arithmetic Mean (AM) or Maximum (MAX) version takes the lowest.

Table 2: Estimated MSE for different estimator when $p=3,4,5$ and 6 when $n=80$ and 90

Bold values show the smallest MSE
Table 3 shows the estimated MSE values when n is 100 and 150 for explanatory variables, $\mathrm{p}=3,4,5$, and 6. It can be observed that the LDK with the biasing parameter k of the Median (MED) version gives the lowest MSE values in almost all the designs used. In Table 3: Estimated MSE for different estimator when $\mathrm{p}=3,4,5$ and 6 when $\mathrm{n}=100$ and 150

Bold values show the smallest MSE

Table 4 shows the estimated MSE values when n is 200 and 250 for explanatory variables, $p=3,4,5$, and 6. it can be observed that as there is increase in sample sizes with a low multicollinearity strength of 0.8 , the LDK with the biasing parameter k of the Arithmetic mean (AM) has the minimum MSE values compared
with the rest of the estimators proposed and compared with. Also, at other multicollinearity levels, the median (MED) version gives the lowest MSE values in almost all the designs used. Except in five cases, the biasing parameter k of the arithmetic mean (AM) has the lowest MSE values again.

Table 4: Estimated MSE for different estimator when $\mathrm{p}=3,4,5$ and 6 when $\mathrm{n}=200$ and 250

n	ρ	P	MLE	RIDGE	DWD	DWDMED	DWDAM	DWDHM	DWDMAX	DWDMIN	DWDMR
		P3	0.5562	0.3562	0.5861	0.3475	$\mathbf{0 . 3 1 0 4}$	2.2064	0.4326	0.4236	0.3491
		P4	0.7832	0.4369	0.7596	0.3465	$\mathbf{0 . 3 4 0 2}$	3.9929	0.5193	0.5475	0.4012
		P5	1.2874	0.6164	1.076	0.4883	$\mathbf{0 . 4 4 4 7}$	5.6277	0.7891	0.8014	0.6237
200	0.8	P6	1.7794	0.7238	1.332	$\mathbf{0 . 5 2 7 2}$	0.5634	6.8464	1.0012	0.9999	0.799
		P3	1.0757	0.5552	0.9481	0.4746	$\mathbf{0 . 4 4 1 7}$	2.1763	0.608	0.7094	0.5339
		P4	1.5963	0.7012	1.2151	$\mathbf{0 . 4 5 6}$	0.51	3.8229	0.7905	0.9297	0.6893
		P5	2.6508	1.0189	1.7239	0.7305	$\mathbf{0 . 7 0 4 9}$	5.7017	1.1385	1.4642	1.0186
	0.9	P6	3.7422	1.2098	2.1293	$\mathbf{0 . 8 6 3 3}$	0.9656	7.5765	1.5594	1.8758	1.4429
	0.95	P3	2.2299	0.9329	1.4868	$\mathbf{0 . 6 8 0 2}$	0.7709	2.3972	0.9502	1.242	1.0196

Bold values show the smallest MSE

3.2 Numerical example

Pena et al. [28] examined the impact of temperature, pH , and soluble solids concentration on the chance of Alicyclobacillus development in apple juice using a logistic model. The eigenvalues of the matrix are 13464.7990, 1715.9257, 56.5515, and 3.5445. Consequently, multicollinearity is present in the model, as shown by the condition index (C.I.) of 61.6342.

When there is multicollinearity, the ML estimator performs the least well, as expected. The choice of the biasing parameters k and d determines the efficiency of biased estimators. All of the proposed estimators performed admirably, and one of them has the minimum mean square error, which corresponds to the simulation outcome.

Table5: Regression coefficients and MSE

	$\hat{\beta}_{0}$	$\hat{\beta}_{1}$	$\hat{\beta}_{3}$	$\hat{\beta}_{4}$	SMSE	
$\hat{\beta}_{M L}$	-7.24633	1.885951	-0.06628	0.110422	-0.31173	21.35138842
$\hat{\beta}_{L R R}$	$-2.4 \mathrm{E}-06$	0.008038	-0.02442	0.015783	-0.01186	0.28340673
$\hat{\beta}_{L D K}$	7.244206	-1.74152	0.005895	-0.042	0.160006	21.57368811

$\hat{\beta}_{\text {LDKMED }}$	3.801875	0.438059	-0.03186	0.006407	-0.39032	5.782491876
$\hat{\beta}_{\text {LDKMN }}$	-4.75037	1.571575	-0.05868	0.086835	-0.33312	9.513392712
$\hat{\beta}_{\text {LDKMX }}$	7.244195	-1.74077	0.005875	-0.04191	0.159524	21.57256675
$\hat{\beta}_{\text {LDKMR }}$	7.240503	-1.57812	0.002386	-0.03006	0.076265	21.35343462
$\hat{\beta}_{\text {LDKHM }}$	7.245876	-1.85107	0.01198	-0.06703	0.259096	21.89852536
$\hat{\beta}_{\text {LDKAM }}$	7.222206	-1.28265	-0.00251	-0.02318	-0.03271	20.95427864

4. Conclusion

Based on the work of Kibra et al. [20], where realworld data and Monte Carlo simulation studies were utilized to examine the estimator performance, we were able to suggest a few LDK estimators in this paper for estimating the biasing parameter k . The estimators' performances were assessed using the Mean Squared Error (MSE) criteria. In the simulation study, it was observed that nearly all sample sizes that were taken into account and that the biasing parameter k with the Arithmetic mean version exhibits the lowest MSE values when the strength of multicollinearity is at 0.8 . Additionally, at the remaining design used in this paper, the biasing parameter k with the Median (MED) version has the least, with the exception in
some cases. In addition, from the numerical example, the biasing parameter k with the Median (MED) and the LRR have the two lowest MSEs, respectively. Hence, based on our findings, both in simulation and numerical examples, we thereby recommend to practitioners, researchers, and scientists that when faced with multicollinearity issues in using the logistic model, they should use the LDK estimator with the biasing k of the Arithmetic version when the multicollinearity level is not severe, but in severe multicollinearity cases, they should go with the Median (MED) version.
least squares. Journal of the American Statistical Association, 72,1977: 77-91.
[7] Hoerl, A.E., Kennard, R.W., \& Baldwin, K.F. Ridge regression: Some simulation. Communications in Statistics: Theory and Methods. 4: 1975:105-123.
[8] McDonald, G. C., \& Galarneau, D. I. A Monte Carlo evaluation of some ridge-type estimators. Journal of the American Statistical Association, 70,1975: 407-416.
[9] Alkhamisi, M. A., Khalaf, G., \& Shukur, G. Some modifications for Choosing Ridge Parameter. Communications in Statistics: Theory and Methods, 35, 2006:1-16.
[10] Alkhamisi, M., \& Shukur, G. Developing ridge parameters for SUR model. Communications in Statistics: Theory and Methods, 37, 2008:544564.
[11] Muniz, G., \& Kibria, B. M. G.. On some ridge regression estimators: An empirical compari
sons. Communications in Statistics: Simulation and Computation, 38,2009: 621-630.
[12] Muniz G., Golam Kibria B. M., \& Shukur, G. On developing ridge regression parameters: A graphical investigation. Submitted for Publication in SORT. 2011
[13] Månsson, K., Shukur, G., \& Kibria, B. M. G.. A simulation study of some ridge regression estimators under different distributional assumptions. Communications in Statistics: Simulation and Computation, 39, 2010:16391670
[14] Lukman A.F.\&Ayinde K. Review and classifications of the ridge parameter estimation techniques. Hacet J Math Stat 46(5) 2017:953967
[15] Ayinde, K., Lukman, A.F., Samuel, O.O.\& Ajiboye, S.A. Some new adjusted ridge estimators of linear regression model. International Journal Civil Engineerint Technology. 9, 2018:2838-2852.
[16] Schaefer R.L., Roi L.D., \&Wolfe R.A. A ridge logistic estimator, Communications in Statistics - Theory and Methods, 13(1) 1984: 99-113.
[17] Schaefer R. L. Alternative regression collinear estimators in logistic when the data are col linear. Journal of Statistical Computation and Simulation 25, 1986:75-91.
[18] Månsson, K., \& Shukur, G. On ridge parameters in logistic regression. To appear in Communications in Statistics: Theory and Methods.
[19] Kibria, B. M. G., Månsson,K., \& Shukur,G. Performance of some logistic ridge regression estimators. Computational Economics 40 (4) 2012:401-14.
[20] Kibria, B.M.G. (2003). Performance of some new ridge regression estimators, Communications in Statistics - Simulation and Computation, 32(2)2003:419-435.
[21] Afzal, N. \& Amanullah, M. Dawoud-Kibria Estimator for the Logistic Regression Model: Method, Simulation and Application. Iranian Journal of Science and Technology Transition Science, 46, 2022:1483-1493
[22] Newhouse J. P., \& Oman S. D. An evaluation ofridge estimators. Rand Corporation. P-716PR, 1971: 1-28.
[23] Lukman, A. F., Emmanuel, A., Clement, O. A., \& Ayinde, K. A Modified Ridge-Type Logistic Estimator. Iranian Journal of Science and

Technology, Transactions A: Science, 44(2),2020: 437-443.
[24] Oladapo, O. J., Owolabi,A.T, Idowu,J.I, \& Ayinde K. (2022). A New Modified Liu RidgeType Estimator for the Linear Regression Model : Simulation and Application. Clinical Biostatistics and Biometrics. 8(2):1-14
[25] Oladapo, O.J., \& Idowu, J.I., Owolabi, A.T., \& Ayinde, Kayode. A New Biased Two-Parameter Estimator in Linear Regression Model. EQUATIONS. 3, 2023: 73-92.
[26] Idowu, J. I., Oladapo, O. J., Owolabi, A.T., Ayinde, K. and Akinmoju, O. Combating multicollinearity: A new two-parameter approach, Nicel Bilimler Dergisi, 5(2), 2023: 90116.
[27] Owolabi, A. T.,Ayinde,K., Idowu,J.I., Oladapo,O.J., \& Adewale,A.F. . A New TwoParameter Estimator in the Linear Regression Model with Correlated Regressors. Journal of Statistics. Application and Probability. 11(2) 2022:499-512.
[28] Pena, W, Massaguer P.D, Zuniga, A, \& Saraiva S.H . Modeling the growth limit of Alicyclobacillus acidoterrestris CRA7152 in apple juice: effect of pH , Brix, temperature and nisin concentration. Journal of Food Processing and Preservation 35 (4)2011:509-17.

Contribution of Individual Authors to the Creation of a Scientific Article

The authors equally contributed in the present research, at all stages from the formulation of the problem to the final findings and solution.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en _US

