
For the first time, a correction method of test solutions
was proposed for a model wave equation with two constant
coefficients-rates for rectilinear first quarter in [1] and for
curvilinear first quarter in [2] of the plane. The developed
correction method is used to obtain classical (twice contin-
uously differentiable) solutions for which are twice contin-
uously differentiable on the critical characteristics for the
obtained classical solutions. A smoothness criterion of the
right-hand side of this equation in the first quarter of the
plane is derived. It is proved that if the right-hand side of
the two-rate model wave equation depends only on one of
two independent variables, then its continuity in one of these
variables is necessary and sufficient for these solutions to be
classical solutions of this equation in quarter of the plane.

Using the generalization of the correcting Goursat problem
from [1] to two variable coefficients-rates a1(x, t) and a2(x, t)

This work was carried out according to the SPNI ”Convergence-2025”, No.
11, research work 1.2.02.3.

by the new ”implicit characteristics method” it was calculated
classical solutions of new model wave equation

utt(x, t) + (a1 − a2)utx(x, t)− a1a2uxx(x, t)−

−a−12 (a2)tut(x, t)− a1(a2)xux(x, t) = f(x, t),

(x, t) ∈ Ġ∞ =]0,+∞[×]0,+∞[, (1)

where f(x, t), a1(x, t), a2(x, t) are given real functions of
the variables x and t.

The characteristic equations dx = (−1)ia3−i(x, t)dt, i =
1, 2, corresponds to equation (1). to the which have implicit
general integrals gi(x, t) = Ci, Ci ∈ R, i = 1, 2. If the
coefficients a3−i are strictly positive, i. e. a3−i(x, t) ≥
a
(0)
3−i > 0, (x, t) ∈ G∞, then variable t on the characteristics
g1(x, t) = C1, C1 ∈ R, strictly decreases on characteristics
g2(x, t) = C2, C2 ∈ R, and strictly increases with the
growth of the variable x. Therefore, the implicit functions
yi = gi(x, t) = Ci, x ∈ R, t ≥ 0, have strictly mono-
tone implicit inverse functions x = hi{yi, t}, t ≥ 0, and
t = h(i)[x, yi], x ∈ R, i = 1, 2. By the definition of inverse
mappings on G∞, the following inversion identities hold:

gi(hi{yi, t}, t) = yi, t ≥ 0; hi{gi(x, t), t} = x, x ∈ R,

i = 1, 2, (2)

gi(x, h
(i)[x, yi]) = yi, x ∈ R;h(i)[x, gi(x, t)] = t, t ≥ 0,

i = 1, 2, (3)

hi{yi, h(i)[x, yi]} = x, x ∈ R; h(i)[hi{yi, t}, yi] = t, t ≥ 0,

i = 1, 2. (4)

If a3−i(x, t) ≥ a
(0)
3−i > 0, (x, t) ∈ G∞, a3−i ∈ C2(G∞),

then the implicit functions gi, hi, h(i) are twice continuously
differentiable with respect to x, t, yi, i = 1, 2, on G∞.

Let Ck(Ω) be a set of k times continuous differentiable
functions on the subset Ω ⊂ R2 and C0(Ω) = C(Ω). The
critical characteristic g2(x, t) = g2(0, 0) divides G∞ into two
sets G− = {(x, t) ∈ G∞ : g2(x, t) > g2(0, 0)} and G+ =
{(x, t) ∈ G∞ : g2(x, t) ≤ g2(0, 0)}.
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Theorem 1. Let be a3−i(x, t) ≥ a
(0)
3−i > 0, (x, t) ∈ G∞ =

[0,+∞[×[0,+∞[, a3−i ∈ C2(G∞), i = 1, 2. If the function
f ∈ C(G∞), then on G+ equation (1) has classical solutions

F (ε)(x, t) =

g2(x,t)∫
0

h1{g1(x,t),τ}∫
h1{g1(−εg2(x,t),g2(x,t)),τ}

f(δ, τ)

a1(δ, τ) + a2(δ, τ)
×

× exp

{ g1(x,t)∫
g1(δ,τ)

E(δ̃, τ̃)ds

}
dδdτ+

+

t∫
g2(x,t)

h1{g1(x,t),τ}∫
h2{g2(x,t),τ}

f(δ, τ)

a1(δ, τ) + a2(δ, τ)
×

× exp

{ g1(x,t)∫
g1(δ,τ)

E(δ̃, τ̃)ds

}
dδdτ, ε = ε̃+ 1 > 0, (5)

where in the exponent is the integrand

E(δ̃, τ̃) =
a22(δ̃, τ̃)

(
a1(δ̃,τ̃)

a2(δ̃,τ̃)

)
δ̃
− a2(δ̃, τ̃)

(
a1(δ̃,τ̃)

a2(δ̃,τ̃)

)
τ̃

[a1(δ̃, τ̃) + a2(δ̃, τ̃)]2
(
g1(δ̃, τ̃)

)
δ̃

.

Theorem 2. Let the assumptions of Theorem 1 be true. Then
the functions (5) are classical solutions of equation (1) on G+

for necessary smoothness

f ∈ C(G∞),

t∫
0

f
(
h1{g1(x, t), τ}, τ

)
dτ ∈ C1(G+),

h2{g2(x,t),g2(x,t)}∫
−εg2(x,t)

f
(
δ, g2(x, t)

)
dδ−

−
g2(x,t)∫
0

f
(
h1{g1

(
− εg2(x, t), g2(x, t)

)
, τ}, τ

)
dτ−

−
t∫

g2(x,t)

f
(
h2{g2(x, t), τ}, τ

)
dτ ∈ C1(G+). (6)

Theorem 3. In the requirements of Theorem 1, equation (1)
has classical solutions

F (ϑ)(x, t) =

g2(x,t)∫
0

h1{g1(x,t),τ}∫
h1{g1(ϑg2(x,t),g2(x,t)),τ}

f(δ, τ)

a1(δ, τ) + a2(δ, τ)
×

× exp

{ g1(x,t)∫
g1(δ,τ)

E(δ̃, τ̃)ds

}
dδdτ+

+

t∫
g2(x,t)

h1{g1(x,t),τ}∫
h2{g2(x,t),τ}

f(δ, τ)

a1(δ, τ) + a2(δ, τ)
×

× exp

{ g1(x,t)∫
g1(δ,τ)

E(δ̃, τ̃)ds

}
dδdτ, ϑ = ϑ̃− 1 ≥ 1, (7)

on G− under the necessary smoothness conditions

f ∈ C(G−),

t∫
0

f
(
h1{g1(x, t), τ}, τ

)
dτ ∈ C1(G̃−),

h2{g2(x,t),g2(x,t)}∫
ϑg2(x,t)

f
(
δ, g2(x, t)

)
dδ−

−
g2(x,t)∫
0

f
(
h1{g1

(
ϑg2(x, t), g2(x, t)

)
, τ}, τ

)
dτ−

−
t∫

g2(x,t)

f
(
h2{g2(x, t), τ}, τ

)
dτ ∈ C1(G−). (8)

Corollary 1. Under the assumptions of Theorem 1, the
functions F (ε) from (5) on G+ and F (ϑ) from (7) on G−
with ϑ̃ = ε̃ + 2 are classical solutions of Eq. (1) on the first
quarter of the plane G∞ with smoothness criterion (6) and
(8) for ϑ̃ = ε̃+ 2 of the right-hand side f on G∞.

Corollary 2. Let the assumptions of Theorem 1 hold and the
right-hand side f of Eq. (1) does not depend on x or t in G∞.
Then the continuity of f ∈ [0,+∞[ in t or x, respectively, is
necessary and sufficient for the functions F (ε) from (5) and
F (ϑ) from (7) with ϑ̃ = ε̃ + 2 are classical solutions of the
inhomogeneous equation (1) in G∞.

Corollary 3. Let the requirements of Theorem 1 be true and
the function f depends on x and t. Then for f ∈ C(G∞) the
requirement that the integrals from (6) and ( 8) for ϑ̃ = ε̃+ 2
bilong to the space C1(G∞) it is equivalent that they belong
to the spaces C(1,0)(G∞) or C(0,1)(G∞). Here C(1,0)(G∞)
or C(0,1)(G∞) are respectively, the spaces of continuously
differentiable with respect to x or t and continuous with
respect to t or x functions on G∞.

Notes. In the rectilinear [1] and curvilinear [2] first quarter
of the plane for the wave equation (1) with constant coeffi-
cients a3−i(x, t) = a

(0)
3−i > 0, i = 1, 2, its particular classical

solution is constructed on G∞ for the parameters ε̃ = 0 on
G+ and ϑ̃ = 2 on G−, which satisfy the equality ϑ̃ = ε̃ + 2
from our Corollary 1. Calculation of classical solutions with
minimal smoothness the right-hand side of the wave equations
in a quarter plane by correction method in mathematics is a
kind of analogue of the relativity theory in physics.
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