
is continuous and such that the matrix with
entries
exp , , ,
2
,,
j j k k
j j k k
ix p x p
F a x p x p
is positive semidefinite for all possible sets of
, , , ,...., , 2
1 1 2 2
N
n
NN
x p x p x p R
.
References:
[1] Chambolle A., Conti S. and Iurlano F.:
Approximation of functions with small jump
sets and existence of strong minimizers of
Griffith’s energy. J. Math. Pures Appl., 128/9
(2019), 119–139.
[2] Chambolle A. and Crismale V.: A density
result in GSBDp with applications to the
approximation of brittle fracture energies.
Arch. Rational Mech. Anal., 232 (2019), 1329–
1378.
[3] Conti S., Focardi M., and Iurlano F.: Existence
of strong minimizers for the Griffith static
fracture model in dimension two. Ann. Inst. H.
Poincar´e Anal. Non Lin´eaire, 36 (2019), 455–
474.
[4] Conti S., Focardi M., and Iurlano F.:
Approximation of fracture energies with p-
growth via piecewise affine finite elements.
ESAIM Control Optim. Calc. Var., 25 (2019),
paper no. 34
[5] Crismale V. and Friedrich M.: Equilibrium
configurations for epitaxially strained films and
material voids in three-dimensional linear
elasticity. Arch. Rational Mech. Anal., 237
(2020), 1041–1098.
[6] El-Nabulsi R.A.: Fractional action cosmology
with variable order parameter. Int. J. Theor.
Phys. 2017, 56, 1159.
[7] Guo D. and Chu W.: Summation formulae
involving multiple Harmonic numbers, Appl.
Anal. Discrete Math. 15(1) (2021), 201–212.
[8] Kim D. and Simsek Y.: A new family of zeta
type function involving Hurwitz zeta function
and the alternating Hurwitz zeta function,
Mathematics 9(3) (2021), 233.
[9] Krantz S.G.: Handbook of complex variables,
Springer Science, New York (1999).
[10] Ma M. and Lim D.: Degenerate Derangement
Polynomials and Numbers, Fractal Fract. 5(3)
(2021), 59.
[11] Murphy G.M.: Ordinary Differential Equations
and Their Solutions; Dover Publication, Inc.:
New York, NY, USA, 2011.
[12] Mathai A.M. and Haubold H.J.: Special
Functions for Applied Scientists; Springer:
New York, NY, USA, 2008.
[13] Prodanov D.: Regularized Integral
Representations of the Reciprocal Gamma
Function. Fractal Fract 75 2019, 3, 1.
[14] Reynolds R. and Stauffer A.: Definite Integral
of Arctangent and Polylogarithmic Functions
Expressed as 77 a Series. Mathematics 2019, 7,
1099.
[15] Reynolds R. and Stauffer A.: A definite integral
involving the logarithmic function in terms of
the Lerch 79 Function. Mathematics 2019, 7,
1148.
[16] Reynolds R. and Stauffer A.: Derivation of
Logarithmic and Logarithmic Hyperbolic
Tangent Integrals 81 Expressed in Terms of
Special Functions. Mathematics 2020, 8, 687.
[17] Reynolds R. and Stauffer A.: Definite integrals
involving the product of logarithmic functions
and logarithm 83 of square root functions
expressed in terms of special functions., AIMS
Mathematics, 5, 2020.
[18] Saha A. and Talukdar B.: Inverse variational
problem for nonstandard Lagrangians. Rep.
Math. Phys. 2014, 73, 299–309.
[19] Udwadia F.E. and Cho H.: Lagrangians for
damped linear multi-degree-of-freedom
systems. J. Appl. Mech. 2013, 80, 041023.
[20] Usman T., Khan N., Saif M., and Choi J.: A
Unified Family of Apostol-Bernoulli Based
Poly-Daehee Polynomials, Montes Taurus J.
Pure Appl. Math. 3(3) (2021), 1–11.
Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US
EQUATIONS
DOI: 10.37394/232021.2022.2.17