
  

OVING load problems are commonly encountered in a 

wide range of engineering applications (a helpful review 

can be found in [1]). Many of such applications deal with 

materials that behave viscoelastically under applied loads, that 

is, they exhibit a combination of both viscous and elastic 

characteristics in their response. Examples include asphalt 

roads, concrete airport runways, floating ice sheets, and 

constrained layer viscoelastic laminated dampers, of which all 

can be modeled as viscoelastic beams or plates under an 

external moving load.  

One of the earliest contributions to the foregoing problem 

was made by Kelly [2] who examined the response of a 

viscoelastic beam acted upon by a moving force. Several 

studies have been conducted since then, focusing on the 

analysis of viscoelastic beams, including those by Flügge [3], 

 

Lv et al. [4], and Louhghalam et al. [5]. In all of these studies, 

the inertial effects of the moving object due to convective 

acceleration terms are neglected in order to further simplify 

the analysis. However, this assumption may cause a 

significant error, usually in cases involving a large high-speed 

moving mass. In addition, the solutions proposed in those 

studies are restricted to the special case of a Kelvin model for 

the viscoelastic material, so that they cannot be generalized to 

cover various types of viscoelastic behavior. Therefore, in the 

current study, we aim at introducing a new analytical-

numerical solution that can be used to evaluate the dynamic 

response of a rectangular plate made of a general viscoelastic 

material and subjected to a moving inertial load. In this study, 

we take advantage of the Laplace transform to derive the 

governing equation of motion. This equation is then 

transformed into a system of linear differential equations in 

the time domain, of which the solution leads to the dynamic 

response of the plate.  

Consider a rectangular plate made of a viscoelastic material 

and subjected to a moving inertial load m traveling along a 

rectilinear trajectory at a constant speed v0 on line Y0 = b/2. 

The schematic of the plate is shown in Fig. 1. In this figure, a, 

b, and h represent the length, width and thickness of the plate, 

respectively, and k and c are the stiffness and damping factors 

of the supporting foundation. Any type of boundary condition 

that can guarantee the stability conditions may be assumed for 

the plate. Considering the equilibrium equation of an element 

of the plate leads to 
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where Mx, My and Mxy are the internal moments, and 

 

 

M 

A semi-analytical solution for the dynamic analysis of a rectangular 

viscoelastic plate subjected to a moving inertial load  
 

M. MOFID, M. A. FOYOUZAT 

Department of Civil Engineering, Sharif University of Technology, Azadi Ave., Tehran, P.O. Box: 11155-
9313,. IRAN 

 
Abstract: A semi-analytical method is developed to determine the response of a thin rectangular plate made of 
a general viscoelastic material to the excitation of a moving inertial load. The governing equation of the general 
problem is derived in the Laplace domain, which, for any particular viscoelastic model, is transformable into a 
system of differential equations in the time domain. Any standard procedure can then be readily employed to 
solve this system of equations. Using this method, sample response spectra are presented, through which the 
effect of viscosity, mass and velocity is scrutinized. The results show that, when the viscosity is not large 
enough, inertial terms cannot be ignored, especially when a heavy load is travelling at a high velocity.  
 
Keywords: Moving inertial load, Plate, Viscoelastic material, Laplace transform. 

Received: September 21, 2021. Revised: June 18, 2022. Accepted: July 14, 2022. Published: September 13, 2022.  

1. Introduction 

2. Method of Solution 

EQUATIONS 
DOI: 10.37394/232021.2022.2.22 M. Mofid, M. A. Foyouzat

E-ISSN: 2732-9976 141 Volume 2, 2022



22

0

2 2

0

( , / 2, )( , , )
( , , )

( , , )
( ) ( / 2) ( , , ) (2)

d z v t b tz x y t
f x y t h m g

t dt

z x y t
x v t y b k z x y t c

t



 


= − + −




− − − −



 
 
 

where ρ, g, δ and z(x, y, t) are the mass density of the plate, the 
acceleration of gravity, the Dirac delta function and the 
displacement field of the plate, respectively, and  
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is the inertial term of the mass. One can express the stress-

strain relation of a viscoelastic material as [3] 
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where σij, εkl, and ijkl are respectively the stress, strain, and 
relaxation components. The relaxation tensor in the above 
equation can be represented in terms of relaxation functions 

0(t) and 1(t) as 
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By imposing a Laplace transform on Eq. (1) with respect to 

time, taking advantage of Eq. (4) along with compatibility 

equations resulted from the well-known Kirchhoff’s 

hypothesis, one will get 
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where carets denote the Laplace transform. Assuming a 

solution of the form   for the 

response, where ψn’s are the eigenfunctions of the plate, and 

exploiting the orthogonality property, one will reach 
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where  denotes the Laplace transform,
4 2

n n
h D  = , ωn 

are the natural frequencies, and D is the flexural rigidity. 

Substituting the relaxation functions of the viscoelastic 
material to Eq. (6) and imposing an inverse Laplace transform 
on either side of it, the equation is transformed into the time 
domain. For example, for the Kelvin model with 
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and μ are the shear modulus, bulk modulus, and viscosity 
coefficient, respectively, application of this method leads to 
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and N is the number of considered modes in the solution. The 
system of Eqs. (7) can be readily solved, employing any 
standard procedure.  

In Fig. 2, the effect of higher modes in the response of the 

system is examined. It is understood from this figure that the 

heavier the moving inertial load becomes, the more the higher 

modes affect the response. The same conclusion also holds 

true as the viscosity level decreases, or as the speed of the 

moving object further increases.  
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Fig. 1. Viscoelastic plate subjected to a moving inertial load 
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Fig. 2. Effect of higher modes in the response: (a) γ = 0.1, H = 0; (b) γ = 0.1, 

H = 10-2; (c) γ = 0.7, H = 0; (d) γ = 0.7, H = 10-2. 

 

 

In the current study, a semi-analytical method was put forward 
to the dynamic response of a viscoelastic plate to a moving 
inertial load. The Laplace transform employed in the solution 
made possible the treatment of any type of viscoelastic 
material. To verify the solution, the numerical results were 
compared with those coming from the Moving Least Square 
Method (MLSM), where an excellent agreement was obtained. 
A numerical example was also solved to examine the effect of 
viscosity and inertial terms on the response. It was shown that 
the inertial terms of the moving object cannot be ignored in 
low levels of viscosity, especially when a heavy inertial load is 
travelling at high velocities.  

The effect of considering a higher number of modes in the 

solution was also investigated in the current study. It was 

shown that as the inertial load or the speed of the moving 

object rises, the effect of higher modes becomes more crucial. 

Conversely, at a high viscosity level, the effect of higher 

modes is proved to be less strong.  
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