
Fractional integrals can be applied in various field of science
and engineering [17]. For example, they are useful in solving
a series of various problems in differential equations, prob-
ability, statistics, chemical engineering, underground water,
population dynamics and so forth [3], [14]–[17], [19], [21].

Recently, a new generalized fractional integral, including
the left and the right Riemann Liouville fractional integrals,
the Riesz fractional integral, has been introduced by Agrawal
[5] in 2010.

Definition 1.1: [5] The generalized variational fractional
integral operator SαP of order α for function f(t) is defined
as:

Sα〈a,t,b,p,q〉f(t) = p

∫ t

a

kα(t, s)f(s)ds

+ q

∫ b

t

kα(s, t)f(s)ds = SαP f(t),

where t ∈ (a, b), p, q ∈ R, P = 〈a, t, b, p, q〉 is a parameter
set and kα(t, s) is a non-negative kernel which may depend
on a parameter α.

Remark 1.2: (I) Clearly, for kα(t, s) := 1
Γ(α) (t − s)α−1,

P = 〈a, t, b, p, q〉,
• if P = P1 = 〈a, t, b, 1, 0〉, then the left Riemann

Liouville fractional integral

SαP1
f(t) =

∫ t

a

1

Γ(α)
(t− s)α−1f(s)ds = Iαa+f(t),

is obtained.
• if P = P2 = 〈a, t, b, 0, 1〉, then we obtain the right

Riemann Liouville fractional integral

SαP2
f(t) =

∫ b

t

1

Γ(α)
(s− t)α−1f(s)ds = Iαb−f(t).

• if P = P3 = 〈a, t, b, 1
2 ,

1
2 〉, then we obtain the Riesz

fractional integral of f(t) of order α

SαP3
f(t) =

1

2
SαP1

f(t)+
1

2
SαP2

f(t) =
1

2
Iαa+f(t)+

1

2
Iαb−f(t).

is given.

(II) for kα(t, s) := βt−β(η+α)τβ(η+1)−1

Γ(α) (tβ−τβ)α−1, P =

P1 = 〈a, t, b, 1, 0〉, we obtain the Erdélyi-Kober fractional
integral [6]

Iη,αβ f(t) =
βt−β(η+α)

Γ(α)

∫ t

0

τβ(η+1)−1(tβ − τβ)α−1f(τ)dτ.

(III) Let α > 0, µ > −1, β, η ∈ R. For kα(t, s) :=
t−α−β−2µ

Γ(α) τµ(t − τ)α−1
2F1

(
α+ β + µ,−η;α; 1− τ

t

)
and P1 = 〈a, t, b, 1, 0〉, we obtain a generalized fractional
integral (or the generalized Saigo fractional integral) [9],
[18] of order α for a real-valued continuous f,

Iα,β,η,µt f(t) =

t−α−β−2µ

Γ(α)

∫ t

0

τµ(t− τ)α−1 ×

2F1

(
α+ β + µ,−η;α; 1− τ

t

)
f(τ)dτ, (I.1)

where the function 2F1 (.) appearing as a kernel for the
operator (1.5) is the familiar Gaussian hypergeometric
function.

Integral inequalities play important roles in nonlinear analy-
sis [1]–[3], [19], [20], [23]. The Grüss inequality [13] is a well-
known inequality in mathematics which has been discussed by
many researchers [7]–[13], [20], [23], [24], [26]–[28].

Theorem 1.3: Let f and g be two continuous functions
defined on [a, b] such that m ≤ f(t) ≤ M, p ≤ g(t) ≤ P
for all t ∈ [a, b] and some real constants m,M, p, P . Then the
following inequality∣∣∣∣∣ 1

b− a

∫ b

a

f (t) g (t) dt− 1

(b− a)
2

∫ b

a

f (t) dt

∫ b

a

g (t) dt

∣∣∣∣∣ ≤
1

4
(M −m) (P − p) ,

holds.
Further information concerning the history and applications

of some inequalities in fractional calculus can be found in [2],
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[7], [8], [10], [25], [25]–[28]. Recently, some inequalities of
Grüss type for several kinds of fractional integrals have been
established [7], [8], [10], [26]–[28]. For example, in 2010,
Dahmani et al. [10] proposed the following version of Grüss
inequality for Riemann-Liouville fractional integral Iα0+ [.].

Theorem 1.4: Let f and g be two integrable functions on
[0,∞) such that m ≤ f(t) ≤ M, p ≤ g(t) ≤ P for all t ∈
[0,∞) and some real constants m,M, p, P . Then the following
inequality

∣∣∣∣ tα

Γ (α+ 1)
Iα0+ [f(t)g (t)]− Iα0+ [f(t)] Iαa+ [g (t)]

∣∣∣∣
≤
(

tα

Γ (α+ 1)

)2

(M −m) (P − p) .

In 2014, Wang et al. [28] proved Grüss inequality for
generalized fractional integral Iα,β,η,µt [.], thus generalizing the
results of [10].

Theorem 1.5: Let f and g be two integrable functions on
[0,∞) such that m ≤ f(t) ≤ M, p ≤ g(t) ≤ P for all t ∈
[0,∞) and some real constants m,M, p, P . Then the following
inequality

|Γ (1 + µ) Γ (1− β + η) t−β−µ

Γ (1− β) Γ (1 + µ+ α+ η)
Iα,β,η,µt [f(t)g (t)]

−Iα,β,η,µt [f(t)] Iα,β,η,µt [g (t)] |

≤
(

Γ (1 + µ) Γ (1− β + η) t−β−µ

Γ (1− β) Γ (1 + µ+ α+ η)

)2

×

(M −m) (P − p) .

In 2015, Choi and Purohit [8] obtained the general version
of Theorem 1.5 which generalized the pervious results of
Baleanu et al. [7], Wang et al. [28] and Tariboon et al. [26].

Theorem 1.6: Assume that f and g are two integrable
functions on [0,∞) and ϕ1, ϕ2, ψ1 and ψ2 are four integrable
functions on [0,∞) such that

ϕ1(t) ≤ f(t) ≤ ϕ2(t), ψ1(t) ≤ g(t) ≤ ψ2(t), (I.2)

for all t ∈ [0,∞). Then for t > 0, α > max {0,−β − µ},
µ > −1, β < 1 and β − 1 < η < 0, the following inequality

|Γ (1 + µ) Γ (1− β + η) t−β−µ

Γ (1− β) Γ (1 + µ+ α+ η)
Iα,β,η,µt [f(t)g (t)]

−Iα,β,η,µt [f(t)] Iα,β,η,µt [g (t)] |
≤
√
T (f, ϕ1, ϕ2) T (g, ψ1, ψ2) ,

holds where

T (u, υ, ω) =(
Iα,β,η,µt [ω(t)]− Iα,β,η,µt [u(t)]

)
×(

Iα,β,η,µt [u(t)]− Iα,β,η,µt [υ(t)]
)

+
Γ (1 + µ) Γ (1− β + η) t−β−µ

Γ (1− β) Γ (1 + µ+ α+ η)
Iα,β,η,µt [υ(t)u(t)]

−Iα,β,η,µt [υ(t)] Iα,β,η,µt [u(t)]

+
Γ (1 + µ) Γ (1− β + η) t−β−µ

Γ (1− β) Γ (1 + µ+ α+ η)
Iα,β,η,µt [ω(t)u(t)]

−Iα,β,η,µt [ω(t)] Iα,β,η,µt [u(t)]

+Iα,β,η,µt [υ(t)] Iα,β,η,µt [ω(t)]

−Γ (1 + µ) Γ (1− β + η) t−β−µ

Γ (1− β) Γ (1 + µ+ α+ η)
Iα,β,η,µt [υ(t)ω(t)] .

In this paper, an Agrawal fractional integral inequality of
Grüss type is established. Our results generalize the corre-
sponding ones in the literature [7], [8], [10], [26]–[28].

The presentation of the paper is as follows. In Section
3, we will focus on the Grüss inequality for the Agrawal
fractional integral with a general kernel, thus generalizing the
results of [7], [8], [10], [26]–[28]. In Section 4, we give more
general versions of inequalities in previous section. Finally,
some conclusions and problems for further investigations are
given.

This section provides general inequalities related to Grüss
type for variational fractional integral. Now, our results can
be stated as follows. Throughout Sections 2 and 3, P =
〈a, t, b, p, q〉 is a parameter set where a < t < b and p, q ≥ 0.

Theorem 2.1: Let f and g be two integrable functions on
[0,∞[ satisfying the following condition

m ≤ f(x) ≤M, n ≤ g(x) ≤ N (II.1)

for any m,M,n,N ∈ R, x ∈ [a, b]. Then for t > 0, α > 0,
we have:

|(SαP (1)SαP (fg)(t)− SαP f(t)SαP g(t))|

≤ 1

4
(M −m) (P − p)×[(

Sα〈a,t,b,p,0〉 (1) (t)
)4

+
(
Sα〈a,t,b,0,q〉 (1) (t)

)4
] 1

2

≤ 1

4
(M −m) (P − p)

(
Sα〈a,t,b,p,q〉 (1) (t)

)2

.

Remark 2.2: Using Theorem (2.1) for P = P1 =
〈a, t, b, 1, 0〉,
• if kα(t, s) = 1

Γ(α) (t − s)α−1, we have the result of
Dahmani et al. [10, 2010] which is a generalization of
the classical Grüss inequality.

• for kα(t, s) := βt−β(η+α)τβ(η+1)−1

Γ(α) (tβ − τβ)α−1, we ob-
tain Grüss type inequality for the Erdélyi-Kober fractional
integral.

2. Gr¿ss Type Inequality for 
Variational Fractional Integral  
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• for kα(t, s) := t−α−β−2µ

Γ(α) τµ(t −
τ)α−1

2F1

(
α+ β + µ,−η;α; 1− τ

t

)
, α > 0,

µ > −1, β, η ∈ R, we have Theorem 1.6 obtained
by Wang et al. [28, 2014].

Theorem 2.3: Let f and g be two integrable functions on
[0,∞[ and let ϕ1, ϕ2, ψ1 and ψ2 be four integrabel functions
on [0,∞[ satisfying the condition (I.2) on [0,∞[. Then for
t > 0, α > 0, we have:∣∣∣SαP (1)SαP (fg)(t)− SαP f(t)SαP g(t)

∣∣∣ (II.2)

≤
(
H〈a,b,t,p,0〉(f, ϕ1, ϕ2)H〈a,b,t,p,0〉(g, ψ1, ψ2)+
H〈a,b,t,0,q〉(f, ϕ1, ϕ2)H〈a,b,t,0,q〉(g, ψ1, ψ2)

) 1
2

,

where H〈a,b,t,p,q〉(u, v, w) is defined by

H〈a,b,t,p,q〉(u, v, w) =(
Sα〈a,b,t,p,q〉w(t)− Sα〈a,b,t,p,q〉u(t)

)
×(

Sα〈a,b,t,p,q〉u(t)− Sα〈a,b,t,p,q〉v(t)
)

+Sα〈a,b,t,p,q〉(1)Sα〈a,b,t,p,q〉vu(t)

−Sα〈a,b,t,p,q〉v(t)Sα〈a,b,t,p,q〉u(t)

+Sα〈a,b,t,p,q〉(1)Sα〈a,b,t,p,q〉wu(t)

−Sα〈a,b,t,p,q〉w(t)Sα〈a,b,t,p,q〉u(t)

+Sα〈a,b,t,p,q〉v(t)Sα〈a,b,t,p,q〉w(t)

−Sα〈a,b,t,p,q〉(1)Sα〈a,b,t,p,q〉vw (t) .

Remark 2.4: Using Theorem (2.3) for
P = P1 = 〈a, t, b, 1, 0〉,
• for

kα(t, s) :=
t−α−β−2µ

Γ(α)
τµ(t− τ)α−1 ×

2F1

(
α+ β + µ,−η;α; 1− τ

t

)
,

α > 0, µ > −1, β, η ∈ R,

we obtain Theorem 1.6 which obtained by Choi and
Purohit [8], thus generalizing the pervious results of
Baleanu et al. [7], Wang et al. [28] and Tariboon et al.
[26].

Theorem 2.5: Let f and g be two integrable functions on
[0,∞[ and let ϕ1, ϕ2, ψ1 and ψ2 be four integrabel functions
satisfying the condition (I.2) on [0,∞[. Then for t > 0 and
α > 0, the following inequalities hold:

SαPψ1(t)SαP f(t) + SαPϕ2(t)SαP g(t) ≥
SαPψ1(t)SαPϕ2(t) + SαP f(t)SαP g(t).

Proof. From the condition (I.2), we have for t ∈ [0,∞[ that(
ϕ2(τ)− f(τ)

)(
g(ρ)− ψ1(ρ)

)
≥ 0.

Then

ϕ2(τ)g(ρ) + ψ1(ρ)f(τ) ≥ ψ1(ρ)ϕ2(τ) + f(τ)g(ρ). (II.3)

Multiplying both sides of (II.3) by pkα(t, τ), and then inte-
grating over (a, t), we get

p

∫ t

a

kα(t, τ)ϕ2(τ)g(ρ)dτ + p

∫ t

a

kα(t, τ)ψ1(ρ)f(τ)dτ

≥ p

∫ t

a

kα(t, τ)ψ1(ρ)ϕ2(τ)dτ + p

∫ t

a

kα(t, τ)f(τ)g(ρ)dτ.

(II.4)

Multiplying both sides of (II.3) by qkα(τ, t), and then inte-
grating over (t, b), we obtain

q

∫ b

t

kα(τ, t)ϕ2(τ)g(ρ)dτ + q

∫ b

t

kα(τ, t)ψ1(ρ)f(τ)dτ

≥ q

∫ b

t

kα(τ, t)ψ1(ρ)ϕ2(τ)dτ + q

∫ b

t

kα(τ, t)f(τ)g(ρ)dτ.

(II.5)

Adding the inequalities (II.4) and (II.5), we have

g(ρ)SαPϕ2(t)+ψ1(ρ)SαP f(t) ≥ ψ1(ρ)SαPϕ2(t)+g(ρ)SαP f(t).
(II.6)

Multiplying both sides of (II.6) by pkα(t, ρ), and then inte-
grating over (a, t), we obtain

SαPϕ2(t) p

∫ t

a

kα(t, ρ)g(ρ)dρ

+SαP f(t) p

∫ t

a

kα(t, ρ)ψ1(ρ)dρ

≥ SαPϕ2(t) p

∫ t

a

kα(t, ρ)ψ1(ρ)dρ

+SαP f(t) p

∫ t

a

kα(t, ρ)g(ρ)dρ. (II.7)

Multiplying both sides of (II.6) by qkα(ρ, t), and then inte-
grating over (t, b), we get

SαPϕ2(t) q

∫ b

t

kα(ρ, t)g(ρ)dρ

+SαP f(t) q

∫ b

t

kα(ρ, t)ψ1(ρ)dρ

≥ SαPϕ2(t) q

∫ b

t

kα(ρ, t)ψ1(ρ)dρ

+SαP f(t) q

∫ b

t

kα(ρ, t)g(ρ)dρ. (II.8)

Adding the inequalities (II.7) and (II.8) we obtain

SαPψ1(t)SαP f(t) + SαPϕ2(t)SαP g(t) ≥
SαPψ1(t)SαPϕ2(t) + SαP f(t)SαP g(t),

and this ends the proof.
Remark 2.6: Using Theorem (2.5) for P = 〈a, t, b, 1, 0〉,

(I) if kα(t, s) = 1
Γ(α) (t− s)α−1, we have [26, Theorem 5].

(II) kα(t, s) := t−α−β

Γ(α) (t − τ)α−1
2F1

(
α+ β,−η;α; 1− τ

t

)
,

we obtain [27, Theorem 2].
Corollary 2.7: Let f and g be two integrable functions on

[0,∞[. Assume that there exist real constants m,M,n,N
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such that

m ≤ f(t) ≤M, n ≤ g(t) ≤ N, ∀ t ∈ [0,∞[.

Then for t > 0, α, β > 0, we have

n SβP (1)SαP f(t) +M SαP (1)SβP g(t) ≥
nM SαP (1)SβP (1) + SαP f(t)SβP g(t).

Specially, when f = g in Theorem (2.5), we get the
following corollary.

Corollary 2.8: Let f be an integrable function on [0,∞[.
Assume that there exist two integrable functions ϕ1, ϕ2 on
[0,∞[ such that

ϕ1(t) ≤ f(t) ≤ ϕ2(t), ∀t ∈ [0,∞).

Then, for t > 0, α > 0, one has:

SαPϕ1(t)SαP f(t) + SαPϕ2(t)SαP f(t) ≥
SαPϕ2(t)SαPϕ1(t) + (SαP f(t))

2
.

Example 2.9: Let f be a function satisfying t ≤ f(t) ≤ t+1
for t ∈ [0,∞[. Then for t > 0, α > 0, we have(

2SαP (t) + SαP (1)
)
SαP f(t) ≥ SαP (t+ 1) SαP (t) + (SαP f(t))2.

In this section, we give more general versions of Theorem
2.1 and Theorem 2.5.

Theorem 3.1: Let f and g be two integrable functions on
[0,∞[ and satisfying the condition (II.1) on [0,∞[ and let x be
a nonnegative continuous function on [0,∞[. Then for t > 0,
α > 0, we have:

|(SαPx(t)SαP (xfg)(t)− SαP (xf)(t)SαP (xg)(t))|

≤ 1

4
(M −m) (P − p)×[(

Sα〈a,t,b,p,0〉 (x) (t)
)4

+
(
Sα〈a,t,b,0,q〉 (x) (t)

)4
] 1

2

≤ 1

4
(M −m) (P − p)

(
Sα〈a,t,b,p,q〉 (x) (t)

)2

.

Theorem 3.2: Let f and g be two integrable functions on
[0,∞[ and let ϕ1, ϕ2, ψ1 and ψ2 be four integrabel functions
on [0,∞[ satisfying the condition (I.2) on [0,∞[. Then for
t > 0, α > 0, β > 0, p > 0, q > 0, the following inequalities
hold:

SβPψ1(t)SαP f(t)

+SαPϕ2(t)SβP g(t) ≥ SβPψ1(t)SαPϕ2(t) + SαP f(t)SβP g(t).

Proof. Multiplying both sides of (II.6) by pkβ(t, ρ), and then
integrating over (a, t), we obtain

SαPϕ2(t) p

∫ t

a

kβ(t, ρ)g(ρ)dρ

+SαP f(t) p

∫ t

a

kβ(t, ρ)ψ1(ρ)dρ

≥ SαPϕ2(t) p

∫ t

a

kβ(t, ρ)ψ1(ρ)dρ

+SαP f(t) p

∫ t

a

kβ(t, ρ)g(ρ)dρ. (III.1)

Multiplying both sides of (II.6) by qkβ(ρ, t), and then inte-
grating over (t, b), we get

SαPϕ2(t) q

∫ b

t

kβ(ρ, t)g(ρ)dρ

+SαP f(t) q

∫ b

t

kβ(ρ, t)ψ1(ρ)dρ

≥ SαPϕ2(t) q

∫ b

t

kβ(ρ, t)ψ1(ρ)dρ

+SαP f(t) q

∫ b

t

kβ(ρ, t)g(ρ)dρ. (III.2)

Adding the inequalities (III.1) and (III.2), we obtain

SβPψ1(t)SαP f(t) + SαPϕ2(t)SβP g(t) ≥
SβPψ1(t)SαPϕ2(t) + SαP f(t)SβP g(t),

and this ends the proof.
Remark 3.3: Using Theorem (3.2) for α = β, we have

Theorem (2.5).
Corollary 3.4: Let f and g be two integrable functions on

[0,∞[ satisfying the condition (II.1) for any m,M,n,N ∈
R.Then for t > 0, α, β > 0, p, q > 0, we have

nSβP (1)SαP f(t) +M SαP (1)SβP g(t) ≥
nM SαP (1)SβP (1) + SαP f(t)SβP g(t).

If f = g, in Theorem (3.2), we get the following result.
Corollary 3.5: Let f be an integrable function on [0,∞[.

Assume that there exist two integrable functions ϕ1, ϕ2 on
[0,∞[ such that

ϕ1(t) ≤ f(t) ≤ ϕ2(t), ∀t ∈ [0,∞).

Then, for t > 0, α > 0 and β > 0, one has:

SβPϕ1(t)SαP f(t) + SαPϕ2(t)SβP f(t) ≥
SαPϕ2(t)SβPϕ1(t) + SαP f(t)SβP f(t).

We have investigated general versions of Grüss type
inequality for the variational fractional integral. Some
well-known results on fractional Grüss’ inequality [7], [8],
[10], [26]–[28] are shown to be special cases of our results.
Recently, Neamaty et al. [22] introduced the concept of
variational fractional quantum integral (q-integral) with

3. Further Discussion  

4. Concluding Remarks 
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general kernels, which generalizes several types of fractional
integrals known from the literature. As open problems for
future research, it would be interesting to extend the Grüss
type inequality for the variational fractional integral to
quantum calculus.
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