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1 Introduction
In this paper, we generalize the solution of problems
from the papers [1], [2] and [3], which concerned the
sums of reciprocals of all products generated by prime
factors of the numbers 2002 and 2022 based on the
decomposition of these numbers into prime numbers.
The number 2022 (as well as the year 2022) has three
prime divisors 2, 3, 337, because

2022 = 2 · 3 · 337 ,

and the number 2002 (as well as the year 2002) has
four prime divisors 2, 7, 11, 13, because

2002 = 2 · 7 · 11 · 13 .

These prime numbers generate corresponding re-
duced harmonic series
1
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+ · · ·
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+
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+
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1
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+

1

22 · 7
+

1

22 ·11
+ · · ·

The generalization will concern the decomposition
into n prime numbers and the derived formula for the

sum of the series generated by n prime numbers will
be proved by induction. The derived formula will ap-
ply not only to the decomposition of numbers into
prime numbers, but also to the decomposition into
compound numbers.

Because our topic concerns the harmonic series
and the so called reduced harmonic series or modi-
fied harmonic series, let us now recall the necessary
notions from infinite series theory.

2 Basic notions
For any sequence {ak} of numbers the associated in-
finite series or more briefly series is defined as the
sum

∞∑
k=1

ak = a1 + a2 + a3 + · · · .

The sequence of partial sums {sn} associated to a se-

ries
∞∑
k=1

ak is defined for each n as the sum

sn =

n∑
k=1

ak = a1 + a2 + · · ·+ an .

The series
∞∑
k=1

ak converges to a limit s if and only

if the sequence of partial sums {sn} converges to s,

i.e. lim
n→∞

sn = s. We say that the series
∞∑
k=1

ak has a
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sum s and write
∞∑
k=1

ak = s.

The geometric series is the sum of an infinite num-
ber of terms that have a constant ratio between succes-
sive terms. Any geometric series can be written as

a+ aq + aq2 + aq3 + · · · ,

where a is the coefficient of each term and q is the
common ratio between adjacent terms. Geometric se-
ries are among the simplest examples of infinite series
and for |q| < 1 have the sum

s =
a

1− q
. (1)

More information about geometric series can be
found, for example, on [4].

The sum of the reciprocals of some positive inte-
gers is generally the sum of unit fractions. For exam-
ple the sum of the reciprocals of the cube numbers is
the Apéry’s constant ζ(3) which is given by the for-
mula

∞∑
k=1

1

k3
=

1

13
+

1

23
+

1

33
+

1

43
+ · · · .

= 1.202057 .

The harmonic series is the infinite series formed
by summing all positive unit fractions:

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · · .

The harmonic series is divergent. Its divergence was
first proven in 1350 by Nicole Oresme. More infor-
mation about harmonic series can be found, for exam-
ple, on [5].

The reduced harmonic series is defined as the sub-
series of the harmonic series, which arises by omit-
ting some its terms. As an example of the reduced
harmonic series we can take the series formed by re-
ciprocals of primes and number one

1 +
1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13
+ · · · .

This reduced harmonic series is divergent. The first
proof of its divergence was made by Leonhard Euler
(see e.g. book [6]).

3 Six lemmas
Before giving the general formula for the sum of the
reduced harmonic series generated by any number of
positive integer factors, we present six following use-
ful lemmas.

Lemma 1. Let a be a positive integer. The geometric
series in the form of special reduced harmonic series

Ta =
1

a
+

1

a2
+

1

a3
+

1

a4
+ · · · (2)

has the sum

Sa =
1

a− 1
=

a

a− 1
− 1 . (3)

Proof. Equation (3) follows from the formula (1) for
the sum of a convergent geometric series. Because the
first term is 1/a and common ratio q is also 1/a > 0,
we have

Sa =
1/a

1− 1/a
=

1/a

(a− 1)/a
=

1

a− 1
=

=
a− (a− 1)

a− 1
=

a

a− 1
− 1 .

Lemma 2. Let a < b be positive integers. The series
in the form of special reduced harmonic series

Ta·b =
1

ab
+

1

a2b
+

1

b2a
+

1

a3b
+

1

b3a
+

+
1

a2b2
+

1

a4b
+

1

b4a
+

1

a3b2
+

1

b3a2
+ · · · =

=
1

ab

(
1 +

1

a
+

1

b
+

1

a2
+

1

b2
+

1

ab
+ · · ·

) (4)

has the sum

Sa·b =
1

(a− 1)(b− 1)
. (5)

Proof. It is clear that we have

Sa·b =
1

ab

(
1 + Sa + Sb + Sa·b

)
,

whence, according to formula (3), we get

(ab− 1)Sa·b = 1 +
1

a− 1
+

1

b− 1
,

i.e.

(ab− 1)Sa·b =
(a− 1)(b− 1) + b− 1 + a− 1

(a− 1)(b− 1)
,

i.e.
Sa·b =

ab− 1

(ab− 1)(a− 1)(b− 1)
,

whence
Sa·b =

1

(a− 1)(b− 1)
.

EQUATIONS 
DOI: 10.37394/232021.2022.2.18 Potůček R.

E-ISSN: 2732-9976 113 Volume 2, 2022 



Lemma 3. Let a < b be positive integeres. The series
in the form of special reduced harmonic series

T (a, b) =
1

a
+

1

b
+

(
1

a2
+

1

ab
+

1

b2

)
+

+

(
1

a3
+

1

a2b
+

1

b2a
+

1

b3

)
+

+

(
1

a4
+

1

a3b
+

1

b3a
+

1

a2b2
+

1

b4

)
+

+

(
1

a5
+

1

a4b
+

1

b4a
+

1

a3b2
+

1

b3a2
+

1

b5

)
+ · · ·

(6)
has the sum

S(a, b) =
a

a− 1
· b

b− 1
− 1 (7)

and also the sum

S(a, b) =
a+ b− 1

(a− 1)(b− 1)
(8)

and as well the sum

S(a, b) =
1

a
· a

a− 1
+

1

b
· a

a− 1
· b

b− 1
. (9)

Proof. We gradually determine the sum S(a, b) of the
series T (a, b) by rearranging it, appropriately divid-
ing it into suitable subseries and using the well-known
formula (1) for the sum of an infinite geometric series.

Assume that its sum S(a, b) is finite and that the
series (6) converges. Because all its terms are posi-
tive, then the series (6) converges absolutely and so
we can rearrange it. For easier determination the sum
S(a, b) it is necessary the series (6) rearrange and di-
vide it into three subseries: Ta, Tb and Ta·b. It is clear
that

S(a, b) = Sa + Sb + Sa·b ,

whence, according to formulas (3) and (5), we get

S(a, b) =
1

a− 1
+

1

b− 1
+

1

(a− 1)(b− 1)
=

=
b− 1 + a− 1 + 1

(a− 1)(b− 1)
=

a+ b− 1

(a− 1)(b− 1)
,

S(a, b) =
a+ b− 1

(a− 1)(b− 1)
=

=
ab− ab+ a+ b− 1

(a− 1)(b− 1)
=

=
ab− (a− 1)(b− 1)

(a− 1)(b− 1)
=

=
ab

(a− 1)(b− 1)
− 1 ,

S(a, b) =
a+ b− 1

(a− 1)(b− 1)
=

ab(b− 1) + a2b

ab(a− 1)(b− 1)
=

=
ab(b− 1)

ab(a− 1)(b− 1)
+

a2b

ab(a− 1)(b− 1)
=

=
1

a
· a

a− 1
+

1

b
· a

a− 1
· b

b− 1
.

Lemma 4. Let a < b < c be positive integers. The
series in the form of special reduced harmonic series

Ta·b|c =
1

ab
+

1

a2b
+

1

b2a
+

1

abc
+

1

a3b
+

1

b3a
+

+
1

a2b2
+

1

a2bc
+

1

b2ac
+

1

c2ab
+ · · · =

=
1

ab

(
1 +

1

a
+

1

b
+

1

c
+

1

a2
+

1

b2
+

+
1

ab
+

1

ac
+

1

bc
+

1

c2
+ · · ·

)
.

(10)
has the sum

Sa·b|c =
c

(a− 1)(b− 1)(c− 1)
. (11)

Proof. Clearly, we have

Sa·b|c =
1

ab

(
1+Sa+Sb+Sc+Sa·b|c+Sa·c+Sb·c

)
,

whence, by formulas (3) and (5), we get

(ab− 1)Sa·b|c = 1 +
1

a− 1
+

1

b− 1
+

1

c− 1
+

+
1

(a−1)(c−1)
+

1

(b−1)(c−1)
,

i.e.

(ab− 1)Sa·b|c =
1

(a− 1)(b− 1)(c− 1)
·

·
[
(a− 1)(b− 1)(c− 1) + (b− 1)(c− 1) +

+ (a− 1)(c− 1) + (a− 1)(b− 1) +

+ (b− 1) + (a− 1)
]
.

So, we have

Sa·b|c =
1

(a− 1)(b− 1)(c− 1)(ab− 1)
·

·
[
abc− ab− ac− bc+ a+ b+ c− 1 + bc− b−

− c+ 1 + ac− a− c+ 1 + ab− a− b+ 1+

+ b− 1 + a− 1
]
,
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i.e.
Sa·b|c =

abc− c

(a− 1)(b− 1)(c− 1)
,

whence we get

Sa·b|c =
c

(a− 1)(b− 1)(c− 1)
.

Lemma 5. Let a < b < c be positive integers. The
series in the form of special reduced harmonic series

T (a, b, c) =
1

a
+

1

b
+

1

c
+

(
1

a2
+

1

b2
+

+
1

c2
+

1

a·b
+

1

a·c
+

1

b·c

)
+

(
1

a3
+

+
1

b3
+

1

c3
+

1

a2 ·b
+

1

a2 ·c
+

1

b2 ·a
+

+
1

b2 ·c
+

1

c2 ·a
+

1

c2 ·b
+

1

a·b·c

)
+

+

(
1

a4
+

1

b4
+

1

c4
+

1

a3 ·b
+

1

a3 ·c
+

+
1

b3 ·a
+

1

b3 ·c
+

1

c3 ·a
+

1

c3 ·b
+

+
1

a2 ·b·c
+

1

b2 ·a·c
+

1

c2 ·a·b
+

+
1

a2 ·b2
+

1

a2 ·c2
+

1

b2 ·c2

)
+ · · ·

(12)

has the sum

S(a, b, c) =
a

a− 1
· b

b− 1
· c

c− 1
− 1 (13)

and also the sum

S(a, b, c) =
(a+ b− 1)(c− 1) + ab

(a− 1)(b− 1)(c− 1)
(14)

and as well the sum

S(a, b, c) =
1

a
· a

a− 1
+

1

b
· a

a− 1
· b

b− 1
+

+
1

c
· a

a− 1
· b

b− 1
· c

c− 1
.

(15)

Proof. We determine the sum S(a, b, c) of the series
T (a, b, c) by rearranging it and using the formula (1).

Assume that its sum S(a, b, c) is finite and that the
series (12) converges. Because all its terms are pos-
itive, then the series (12) converges absolutely and
so we can rearrange it. Now, it is necessary the se-
ries (12) rearrange and divide it into six subseries Ta,

Tb, Tc, Ta·b|c, Ta·c and Tb·c. It is clear that

S(a, b, c) = Sa + Sb + Sc + Sa·b|c + Sa·c + Sb·c ,

whence, according to formulas (3), (5) and (11), we
get

S(a, b, c) =
1

a− 1
+

1

b− 1
+

1

c− 1
+

+
c

(a− 1)(b− 1)(c− 1)
+

+
1

(a− 1)(c− 1)
+

1

(b− 1)(c− 1)
=

=
1

(a− 1)(b− 1)(c− 1)
·

·
[
(b− 1)(c− 1) + (a− 1)(c− 1) +

+ (a− 1)(b− 1) + c+ b− 1 + a− 1
]
=

=
1

(a− 1)(b− 1)(c− 1)
·

·
[
bc− b− c+ 1 + ac− a− c+ 1 +

+ ab− a− b+ 1 + c+ b− 1 + a− 1
]
=

=
ab+ ac+ bc− a− b− c+ 1

(a− 1)(b− 1)(c− 1)
=

=
ac+ bc− c− a− b+ 1 + ab

(a− 1)(b− 1)(c− 1)
=

=
(a+ b− 1)(c− 1) + ab

(a− 1)(b− 1)(c− 1)
,

S(a, b, c) =
(a+ b− 1)(c− 1) + ab

(a− 1)(b− 1)(c− 1)
=

=
1

(a− 1)(b− 1)(c− 1)
·

·
[
abc− abc+ ab+ ac+ bc −

− a− b− c+ 1
]
=

=
1

(a− 1)(b− 1)(c− 1)
·

·
[
abc− ab(c− 1) + a(c− 1) +

+ b(c− 1)− (c− 1)
]
=

=
abc− (ab− a− b− 1)(c− 1)

(a− 1)(b− 1)(c− 1)
=

=
abc− (a− 1)(b− 1)(c− 1)

(a− 1)(b− 1)(c− 1)
=

=
abc

(a− 1)(b− 1)(c− 1)
− 1 ,
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S(a, b, c) =
(a+ b− 1)(c− 1) + ab

(a− 1)(b− 1)(c− 1)
=

=
abc(a+ b− 1)(c− 1) + a2b2c

abc(a− 1)(b− 1)(c− 1)
=

=
abc(b− 1)(c− 1) + a2bc(c− 1) + a2b2c

abc(a− 1)(b− 1)(c− 1)
=

=
1

a
· a

a− 1
+

1

b
· a

a− 1
· b

b− 1
+

+
1

c
· a

a− 1
· b

b− 1
· c

c− 1
.

Remark 1. Let us note that a number s(n) of partial
summands making the sum S(a1, a2, . . . , an), n ≥ 3,
is

s(n) =

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 1

)
= 2n − 2 ,

while s(1) = 1 and s(2) = 3, so

s(3) = 23 − 2 =

(
3

1

)
+

(
3

2

)
= 3 + 3 = 6 ,

according to equations

S(a, b) = Sa + Sb + Sa·b

and

S(a, b, c) = Sa + Sb + Sc + Sa·b|c + Sa·c + Sb·c

given in Lemmas 3 and 5. For example, the sum
S(2, 3, 5, 7) has these

s(4) = 24 − 2 =

(
4

1

)
+

(
4

2

)
+

(
4

3

)
=

= 4 + 6 + 4 = 14

partial summands:

S2 , S3 ,S5 , S7 ,

S2·3 , S2·5 , S2·7 ,S3·5 , S3·7 , S5·7 ,

S2·3·5|7 , S2·3·7 ,S2·5·7 , S3·5·7

and for example, the sum S(2, 3, 5, 7, 11) has these

s(5) = 25 − 2 =

(
5

1

)
+

(
5

2

)
+

(
5

3

)
+

(
5

4

)
=

= 5 + 10 + 10 + 5 = 30

partial summands:
S2 , S3 ,S5 , S7 , S11 ,

S2·3 , S2·5 ,S2·7 , S2·11 , S3·5 ,

S3·7 , S3·11 ,S5·7 , S5·11 , S7·11 ,

S2·3·5 , S2·3·7 ,S2·3·11 , S2·5·7 , S2·5·11 ,

S2·7·11 , S3·5·7 ,S3·5·11 , S3·7·11 , S5·7·11 ,

S2·3·5·7|11 , S2·3·5·11 ,S2·3·7·11 , S2·5·7·11 , S3·5·7·11 .

Lemma 6. For all positive integer n and for any pos-
itive integers a1, a2, . . . , an it holds the equality

1 +
1

a1 − 1
+

a1
(a1 − 1)(a2 − 1)

+

+
a1a2

(a1 − 1)(a2 − 1)(a3 − 1)
+ · · ·

· · · + a1a2 · · · an−1

(a1 − 1)(a2 − 1) · · · (an − 1)
=

=
a1

a1 − 1
· a2
a2 − 1

· a3
a3 − 1

· · · · · an
an − 1

.

(16)

Proof. Let us denote the sum on the left-hand side of
(16) by Ln, the product on the right-hand side by Rn

and use mathematical induction.
1. Base case: The equality (16) holds for n = 1:

L1 = 1 +
1

a1 − 1
=

a1 − 1 + 1

a1 − 1
=

a1
a1 − 1

= R1 .

2. Inductive step: Suppose that it holds Ln = Rn for
n ≥ 1 and show that it holds Ln+1 = Rn+1. Since
Ln+1 =

= Ln +
a1a2 · · · an−1an

(a1 − 1)(a2 − 1) · · · (an − 1)(an+1 − 1)
,

then, by the inductive hypothesis, we get
Ln+1 =

= Rn +
a1a2 · · · an−1an

(a1− 1)(a2− 1) · · · (an− 1)(an+1− 1)
=

=
a1

a1 − 1
· a2
a2 − 1

· a3
a3 − 1

· · · · · an
an − 1

+

+
a1a2 · · · an−1an

(a1− 1)(a2− 1) · · · (an− 1)(an+1− 1)
=

=
a1a2 · · · an−1an(an+1− 1) + a1a2 · · · an−1an
(a1 − 1)(a2 − 1) · · · (an − 1)(an+1 − 1)

=

=
a1a2 · · · anan+1

(a1 − 1)(a2 − 1) · · · (an+1 − 1)
= Rn+1 .

Therefore the equality (16) holds for all positive inte-
ger n and for any positive integers a1, a2, . . . , an.
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4 Analytical Solution
Now, we determine two general formulas for the sum
S(a1, a2, . . . , an), further denoted briefly by S[n], of
the reduced harmonic series

T (a1, a2, . . . , an) =
1

a1
+

1

a2
+ · · ·+ 1

an
+

+

(
1

a21
+

1

a22
+ · · ·+ 1

a2n
+

1

a1a2
+

1

a1a3
+ · · ·

· · · + 1

a1an
+

1

a2a3
+ · · ·+ 1

a2an
+ · · ·

· · · + 1

an−1an

)
+

(
1

a31
+

1

a32
+ · · ·+ 1

a3n
+

+
1

a21a2
+

1

a21a3
+ · · ·+ 1

a21an
+

1

a22a1
+

+
1

a22a3
+ · · ·+ 1

a22an
+ · · ·+ 1

a2na1
+

1

a2na2
+ · · ·

· · · + 1

a2nan−1
+

1

a1a2a3
+

1

a1a2a4
+ · · ·

· · · + 1

an−2an−1an

)
+

(
1

a41
+

1

a42
+ · · ·+ 1

a4n
+

+
1

a31a2
+

1

a31a3
+ · · ·+ 1

a3nan−1
+ · · ·

· · · + 1

an−3an−2an−1an

)
+ · · · ,

generated obviously not only by n prime num-
bers a1, a2, . . . , an but also by n positive integers
a1, a2, . . . , an and prove it by mathematical induc-
tion.

By (3) for S[1] = S(a1) we have

S[1] = Sa1
=

1

a1 − 1
,

i.e.

S[1] =
1

a1
· a1
a1 − 1

=

1∑
i=1

(
1

ai

i∏
j=1

aj
aj − 1

)
. (17)

By (9) for S[2] = S(a1, a2) we get

S[2] =
1

a1
· a1
a1 − 1

+
1

a2
· a1
a1 − 1

· a2
a2 − 1

,

so we have

S[2] =

2∑
i=1

(
1

ai

i∏
j=1

aj
aj − 1

)
. (18)

By (15) for S[3] = S(a1, a2, a3) we have

S[3] =
1

a1
· a1
a1 − 1

+
1

a2
· a1
a1 − 1

· a2
a2 − 1

+

+
1

a3
· a1
a1 − 1

· a2
a2 − 1

· a3
a3 − 1

,

i.e.

S[3] =

3∑
i=1

(
1

ai

i∏
j=1

aj
aj − 1

)
. (19)

So, we can assume that it holds the following theorem:
Theorem 1. For all positive integer n the sum S[n]
of the reduced harmonic series generated by positive
integers a1, a2, . . . , an holds the equality

S[n] =

n∑
i=1

(
1

ai

i∏
j=1

aj
aj − 1

)
. (20)

Proof. Let us prove the formula (20) by using math-
ematical induction.
1. Base case: This formula holds for n = 1, as was
stated in (17):

S[1] =

1∑
i=1

(
1

ai

i∏
j=1

aj
aj − 1

)
.

2. Inductive step: Suppose that the formula (20) holds
for n and show that it also holds for n+ 1. Since

S[n+ 1] = S[n] +
1

an+1

n+1∏
j=1

aj
aj − 1

,

then by (16) and by the inductive hypothesis we can
gradually write

S[n+ 1] =

n∑
i=1

(
1

ai

i∏
j=1

aj
aj − 1

)
+

+
1

an+1

n+1∏
j=1

aj
aj − 1

=

=

n∑
i=1

[
1

ai

(
1+

i∑
j=1

a1a2 · · · aj−1

(a1−1)(a2−1) · · · (aj−1)

)]
+

+
1

an+1

(
1+

n+1∑
j=1

a1a2 · · · aj
(a1−1)(a2−1) · · · (aj+1−1)

)
=

=

n+1∑
i=1

[
1

ai

(
1+

i∑
j=1

a1a2 · · · aj−1

(a1−1)(a2−1) · · · (aj−1)

)]
=

=

n+1∑
i=1

(
1

ai

i∏
j=1

aj
aj − 1

)
.
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Therefore the equality (20) holds for all positive inte-
ger n and for any positive integers a1, a2, . . . , an.

Now, let us prove, also bymathematical induction,
another formula for the sum S[n]:

Theorem 2. For all positive integer n the sum S[n]
of the reduced harmonic series generated by positive
integers a1, a2, . . . , an holds the equality

S[n] =

n∏
i=1

ai
ai − 1

− 1 . (21)

Proof. 1. Base case: It is easy to see that the formula
(21) holds for n = 1, because by (3) we get

S[1] =
a1

a1 − 1
− 1 =

1∏
i=1

ai
ai − 1

− 1

2. Inductive step: Suppose that the formula (21) holds
for n and show that it holds for n+ 1. Since by (20)

S[n+ 1] = S[n] +
1

an+1

n+1∏
i=1

ai
ai − 1

,

then by the inductive hypothesis we gradually have

S[n+ 1] =

n∏
i=1

ai
ai − 1

− 1 +
1

an+1

n+1∏
i=1

ai
ai − 1

=

=
an+1 − 1

an+1

n+1∏
i=1

ai
ai − 1

− 1 +

+
1

an+1

n+1∏
i=1

ai
ai − 1

=

=

(
an+1 − 1

an+1
+

1

an+1

) n+1∏
i=1

ai
ai − 1

− 1 =

=

n+1∏
i=1

ai
ai − 1

− 1 .

Therefore for all positive integer n the sum S[n] of
the reduced harmonic series generated by positive in-
tegers a1, a2, . . . , an has also the form (21).

5 Three simple examples
Now, we calculate the sums of three specific reduced
harmonic series generated by two, three and four
smallest prime numbers by means of the results of the
Theorem 1 and 2.

Example 1. Determine the sum S[2] = S(2, 3) of the
reduced harmonic series in the form

T (2, 3) =
1

2
+

1

3
+

(
1

22
+

1

32
+

1

2·3

)
+

+

(
1

23
+

1

33
+

1

22 ·3
+

1

32 ·2

)
+

+

(
1

24
+

1

34
+

1

23 ·3
+

1

33 ·2
+

1

22 ·32

)
+ · · · .

formed of all the unit fractions that have denominators
with only prime factors from the set {2, 3}.

Solution: For n = 2 and a1 = 2, a2 = 3 by the
formula (20) from Theorem 1 we have

S[2] = S(2, 3) =

2∑
i=1

(
1

ai

i∏
j=1

aj
aj − 1

)
=

=
1

a1
· a1
a1 − 1

+
1

a2
· a1
a1 − 1

· a2
a2 − 1

=

=
1

2
· 2

2− 1
+

1

3
· 2

2− 1
· 3

3− 1
=

=
1

2
· 2
1
+

1

3
· 2
1
· 3
2
= 1 + 1 = 2 .

By the formula (21) from Theorem 2 we get the same
result:

S[2] = S(2, 3) =

2∏
i=1

ai
ai − 1

− 1 =

=
a1

a1 − 1
· a2
a2 − 1

− 1 =

=
2

2− 1
· 3

3− 1
− 1 =

2

1
· 3
2
− 1 = 2 .

Example 2. Determine the sum S[3] = S(2, 3, 5) of
the reduced harmonic series in the form

T (2, 3, 5) =
1

2
+

1

3
+

1

5
+

(
1

22
+

1

32
+

+
1

52
+

1

2·3
+

1

2·5
+

1

3·5

)
+

(
1

23
+

+
1

33
+

1

53
+

1

22 ·3
+

1

22 ·5
+

1

32 ·2
+

+
1

32 ·5
+

1

52 ·2
+

1

52 ·3
+

1

2·3·5

)
+ · · ·

formed of all the unit fractions that have denominators
with only prime factors from the set {2, 3, 5}.
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Solution: For n = 3 and a1 = 2, a2 = 3, a3 = 5
by the formula (20) from Theorem 1 we have

S[3] = S(2, 3, 5) =

3∑
i=1

(
1

ai

i∏
j=1

aj
aj − 1

)
=

=
1

a1
· a1
a1 − 1

+
1

a2
· a1
a1 − 1

· a2
a2 − 1

+

+
1

a3
· a1
a1 − 1

· a2
a2 − 1

· a3
a3 − 1

=

=
1

2
· 2

2− 1
+

1

3
· 2

2− 1
· 3

3− 1
+

+
1

5
· 2

2− 1
· 3

3− 1
· 5

5− 1
=

=
1

2
· 2
1
+

1

3
· 2
1
· 3
2
+

1

5
· 2
1
· 3
2
· 5
4
=

= 1 + 1 +
3

4
=

11

4
= 2.75 .

By the formula (21) from Theorem 2 we get the same
result:

S[3] = S(2, 3, 5) =

3∏
i=1

ai
ai − 1

− 1 =

=
a1

a1 − 1
· a2
a2 − 1

· a3
a3 − 1

− 1 =

=
2

2− 1
· 3

3− 1
· 5

5− 1
− 1 =

=
2

1
· 3
2
· 5
4
− 1 =

11

4
= 2.75 .

Example 3. Determine the sum S[4] = S(2, 3, 5, 7)
of the reduced harmonic series

T (2, 3, 5, 7) =
1

2
+

1

3
+

1

5
+

1

7
+

+

(
1

22
+

1

32
+

1

52
+

1

72
+

1

2·3
+

+
1

2·5
+

1

2·7
+

1

3·5
+

1

3·7
+

1

5·7

)
+

+

(
1

23
+

1

33
+

1

53
+

1

73
+

1

22 ·3
+

+
1

22 ·5
+

1

22 ·7
+

1

32 ·2
+

1

32 ·5
+

+
1

32 ·7
+

1

52 ·2
+

1

52 ·3
+

1

52 ·7
+

+
1

72 ·2
+

1

72 ·3
+

1

72 ·5
+

1

2·3·5
+

+
1

2·3·7
+

1

2·5·7
+

1

3·5·7

)
+ · · ·

Solution: For n = 4 and a1 = 2, a2 = 3, a3 = 5,
a4 = 7 by the formula (20) from Theorem 1 we have

S[4] = S(2, 3, 5, 7) =

4∑
i=1

(
1

ai

i∏
j=1

aj
aj − 1

)
=

=
1

a1
· a1
a1 − 1

+
1

a2
· a1
a1 − 1

· a2
a2 − 1

+

+
1

a3
· a1
a1 − 1

· a2
a2 − 1

· a3
a3 − 1

+

+
1

a4
· a1
a1 − 1

· a2
a2 − 1

· a3
a3 − 1

· a4
a4 − 1

=

=
1

2
· 2

2− 1
+

1

3
· 2

2− 1
· 3

3− 1
+

+
1

5
· 2

2− 1
· 3

3− 1
· 5

5− 1
+

+
1

7
· 2

2− 1
· 3

3− 1
· 5

5− 1
· 7

7− 1
=

=
1

2
· 2
1
+

1

3
· 2
1
· 3
2
+

1

5
· 2
1
· 3
2
· 5
4
+

+
1

7
· 2
1
· 3
2
· 5
4
· 7
6
=

= 1 + 1 +
3

4
+

5

8
=

27

8
= 3.375 .

By the formula (21) from Theorem 2 we get the same
result:

S[4] = S(2, 3, 5, 7) =

4∏
i=1

ai
ai − 1

− 1 =

=
a1

a1 − 1
· a2
a2 − 1

· a3
a3 − 1

· a4
a4 − 1

− 1 =

=
2

2− 1
· 3

3− 1
· 5

5− 1
· 7

7− 1
− 1 =

=
2

1
· 3
2
· 5
4
· 7
6
− 1 =

27

8
= 3.375 .

6 Numerical Solution
Wewill solve the task to determine the sumS of recip-
rocals of all products generated by n positive integers,
where n = 2, 3, 4 numerically by using the basic pro-
gramming language in the computer algebra system
Maple 2022. For n ≥ 5 we would use the general-
ization of the following simple procedures partab,
partabc and partabcd:

partab:= proc(p,a,b)
local de,i,j,n,s;
s:= 0;
for n from 1 to p do

for i from 0 to n do
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for j from 0 to n-i do
if i+j > n-1 then
de:=aˆi*bˆj;
s:= s+1/de;
end if;

end do;
end do;

end do;
print("sum for integers",a,b,"
and for",p,"summands is",
evalf[4](s));

end proc:

partabc:= proc(p,a,b,c)
local de,i,j,k,n,s;

...
for k from 0 to n-i-j do

if i+j+k > n-1 then
de:=aˆi*bˆj*cˆk;
s:= s+1/de;
end if;

end do;
...

print("sum for integers",a,b,c"
and for",p,"summands is",
evalf[4](s));

end proc:

partabcd:= proc(p,a,b,c,d)
local de,i,j,k,l,n,s;

...
for k from 0 to n-i-j do

for l from 0 to n-i-j-k do
if i+j+k+l > n-1 then
de:=aˆi*bˆj*cˆk*dˆl;
s:= s+1/de;
end if;

end do;
...

print("sum for integers",a,b,c,d"
and for",p,"summands is",
evalf[4](s));

end proc:

For example, for parametr p = 10, the first pro-
cedure partab generates and sums first 10 numbers
of 1-combinations, 2-combinations, 3-combinations,
... with repetitions or also multisubsets of size n =
1, 2, 3, . . . from a set {a, b} of size 2. The number of
multisubsets of size n is then the number of nonneg-
ative integer solutions of the Diophantine equation

i+ j = n.

Sowe consider the first 10 summands that have de-
nominators with only factors aibj from the set {a, b}

until i+ j ≤ 10, i.e. these 10 summands:(
1

a1b0
+

1

a0b1

)
+

(
1

a2b0
+

1

a0b2
+

1

a1b1

)
+

+

(
1

a3b0
+

1

a0b3
+

1

a2b1
+

1

a1b2

)
+

1

a4b0

Analogously, for p = 10, the second procedure
partabc generates and sums the following 10 sum-
mands, which correspond to the solution of the Dio-
phantine equation

i+ j + k = n,

where n = 1, 2, 3, . . . :(
1

a1b0c0
+

1

a0b1c0
+

1

a0b0c1

)
+

+

(
1

a2b0c0
+

1

a0b2c0
+

1

a0b0c2
+

+
1

a1b1c0
+

1

a1b0c1
+

1

a0b1c1

)
+

1

a3b0c0

and the third procedure partabcd generates and sums
the following 10 summands, which correspond to the
solution of the Diophantine equation

i+ j + k + l = n,

where n = 1, 2, 3, . . . :(
1

a1b0c0d0
+

1

a0b1c0d0
+

1

a0b0c1d0
+

+
1

a0b0c0d1

)
+

1

a2b0c0d0
+

1

a0b2c0d0
+

+
1

a2b0c0d0
+

1

a0b2c0d0
+

1

a1b1c0d0
+

1

a1b0c1d0

The approximate values of 36 sums of the type
S[2] = S(a, b), where a ∈ {2, 3, 4, 5, 6, 7, 8, 9},
b ∈ {3, 4, 5, 6, 7, 8, 9, 10}, a < b, i.e. of the sums

S(2, 3), S(2, 4), S(2, 5), . . .

. . . , S(8, 9), S(8, 10), S(9, 10) ,

for parameter p = 100, rounded to 6 decimals and
obtained by two for statements
A:={2,3,4,5,6,7,8,9};
B:={3,4,5,6,7,8,9,10};
for a in A do

for b in B do
if a < b then
partab(100,a,b)
end if;

end do;
end do;
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Table 1: 36 approximate sums S[2] = S(a, b) for a ∈
{2, 3, . . . , 9}, b ∈ {3, 4, . . . , 10}, a < b.

S(a, b) b = 3 b = 4 b = 5 b = 6

a = 2 2.000000 1.666667 1.500000 1.400000

a = 3 × 1.000000 0.875000 0.800000

a = 4 × × 0.666667 0.600000

a = 5 × × × 0.500000

S(a, b) b = 7 b = 8 b = 9 b = 10

a = 2 1.333333 1.285714 1.250000 1.222222

a = 3 0.750000 0.714286 0.687500 0.666667

a = 4 0.555556 0.523810 0.500000 0.481481

a = 5 0.458333 0.428571 0.406250 0.388889

S(a, b) b = 7 b = 8 b = 9 b = 10

a = 6 0.400000 0.371429 0.350000 0.333333

a = 7 × 0.333333 0.312500 0.296296

a = 8 × × 0.285714 0.269841

a = 9 × × × 0.250000

are written into Table 1.

The approximate values of 36 sums of the type
S[3] = S(2, b, c), where b ∈ {3, 4, 5, 6, 7, 8, 9, 10}
and c ∈ {4, 5, 6, 7, 8, 9, 10, 11}, b < c, i.e. of the
sums

S(2, 3, 4), S(2, 3, 5), S(2, 3, 6), . . .

. . . , S(2, 9, 10), S(2, 9, 11), S(2, 10, 11) ,

for parameter p = 100, rounded to 6 decimals and
obtained by two for statements

B:={3,4,5,6,7,8,9,10};
C:={4,5,6,7,8,9,10,11};
for b in B do

for c in C do
if b < c then
partabc(100,2,b,c);
end if;

end do;
end do;

are written into Table 2.

The approximate values of 36 sums of the type
S[4] = S(2, 3, c, d), where c ∈ {4, 5, 6, 7, 8, 9,
10, 11} and d ∈ {5, 6, 7, 8, 9, 10, 11, 12}, c < d, i.e.
of the sums

S(2, 3, 4, 5), S(2, 3, 4, 6), S(2, 3, 4, 7), . . .

. . . , S(2, 3, 10, 11), S(2, 3, 10, 12), S(2, 3, 11, 12) ,

for parameter p = 100, rounded to 6 decimals and
obtained by two for statements

Table 2: 36 approximate sums S[3] = S(2, b, c) for
b ∈ {3, 4, . . . , 10}, c ∈ {4, 5, . . . , 11}, b < c.

S(2, b, c) c = 4 c = 5 c = 6 c = 7

b = 3 3.000000 2.750000 2.600000 2.500000

b = 4 × 2.333333 2.200000 2.111111

b = 5 × × 2.000000 1.916667

b = 6 × × × 1.800000

S(2, b, c) c = 8 c = 9 c = 10 c = 11

b = 3 2.428571 2.375000 2.333333 2.300000

b = 4 2.047619 2.000000 1.962963 1.933333

b = 5 1.857143 1.812500 1.777778 1.750000

b = 6 1.742857 1.700000 1.666667 1.640000

S(2, b, c) c = 8 c = 9 c = 10 c = 11

b = 7 1.666667 1.625000 1.592593 1.566667

b = 8 × 1.571429 1.539683 1.514286

b = 9 × × 1.500000 1.475000

b = 10 × × × 1.444444

C:={4,5,6,7,8,9,10,11};
D1:={5,6,7,8,9,10,11,12};
for c in C do

for d in D1 do
if c < d then
partabcd(100,2,3,c,d);
end if;

end do;
end do;

are written into Table 3.

Table 3: 36 approximate sums S[4] = S(2, 3, c, d) for
c ∈ {4, 5, . . . , 11}, d ∈ {5, 6, . . . , 12}, c < d.

S(2, 3, c, d) d = 5 d = 6 d = 7 d = 8

c = 4 4.000000 3.800000 3.666667 3.571429

c = 5 × 3.500000 3.375000 3.285714

c = 6 × × 3.200000 3.114286

c = 7 × × × 3.000000

S(2, 3, c, d) d = 9 d = 10 d = 11 d = 12

c = 4 3.500000 3.444444 3.400000 3.363636

c = 5 3.218750 3.166667 3.125000 3.090909

c = 6 3.050000 3.000000 2.960000 2.927273

c = 7 2.937500 2.888889 2.850000 2.818182

S(2, 3, c, d) d = 9 d = 10 d = 11 d = 12

c = 8 2.857143 2.809524 2.771429 2.740260

c = 9 × 2.750000 2.712500 2.681818

c = 10 × × 2.666667 2.636364

c = 11 × × × 2.600000

Note that the calculation of these 3 · 36 = 108
approximate values of sums S[2], S[3] and S[4] took
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about 2, 58 and 1443 seconds, respectively.
Note also that the numerical results S(2, 3) = 2,

S(2, 3, 5) = 2.75 and S(2, 3, 5, 7) = 3.375, obtained
by the three above-mentioned procedures, are com-
pletely in agreement with the results of Examples 1,
2 and 3.

7 Conclusion
In this paper two general formulas for the sum
S(a1, a2, . . . , an), briefly denoted by S[n], of the
convergent reduced harmonic series

T (a1, a2, . . . , an) =
1

a1
+

1

a2
+ · · ·+ 1

an
+

+

(
1

a21
+

1

a22
+ · · ·+ 1

a2n
+

1

a1a2
+

1

a1a3
+ · · ·

· · · + 1

a1an
+

1

a2a3
+ · · ·+ 1

a2an
+ · · ·

· · · + 1

an−1an

)
+

(
1

a31
+

1

a32
+ · · ·+ 1

a3n
+ · · ·

generated by n positive integers a1, a2, . . . , an were
derived.

The first general formula has the form

S[n] =

n∑
i=1

(
1

ai

i∏
j=1

aj
aj − 1

)
and the briefer second one has the form

S[n] =

n∏
i=1

ai
ai − 1

− 1 .

So, it can be said that the convergent reduced har-
monic series generated by n positive integers belong
to special types of convergent infinite series, such as
geometric and telescoping series, which sum can be
found analytically by means of a finite formula.

Area of Further Development
It would be interesting to try to derive a reverse for-
mula to determine a series with a given sum that
would not be unambiguous. From Tables 1 to 3 we
get, among other, that

S(2, 5) = S(2, 9, 10) = 1.5 ,

S(2, 3) = S(2, 5, 6) = 2 ,

S(2, 3, 4) = S(2, 3, 7, 8) = S(2, 3, 6, 10) = 3 .

Furthermore, it would be possible to determine
whether the formula

S(2, 3, . . . , n− 1, n) = n− 1

holds for each integer n ≥ 3, as indicated by the data
in Tables 1 to 3.
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