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Abstract: The aim of the present research was to study the thermosolutal convection in compressible 

fluids with suspended particles in permeable media. Following the linearized stability theory, 

Boussinesq approximation and normal mode analysis, it is found that that stable solute gradient 

introduces oscillatory modes which were non-existent in its absence. For the case of stationary 

convection, it is found that medium permeability and suspended particles have destabilizing effects 

whereas the stable solute gradient has a stabilizing effect on the system. This problem was further 

extended to include uniform rotation. In this case for stationary convection, the suspended particles 

are found to have destabilizing effect whereas stable solute gradient, rotation and compressibility have 

stabilizing effect on the system. The medium permeability has a destabilizing effect in the absence of 

rotation but has both stabilizing and destabilizing effects in the presence of rotation.  
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1 Introduction 

          The theoretical and experimental results on 

thermal convection in a fluid layer, under 

varying assumptions of hydrodynamics have 

been discussed in a treatise by Chandrasekhar 

[1]. The use of Boussinesq approximation has 

been made throughout which states that the 

density changes are disregarded in all other terms 

in the equations of motion except the external 

force term. The approximation is well justified in 

the case of incompressible fluids. Chandra [2] 

observed that in an air layer, convection occurred 

at much lower gradients than predicted if the 

layer depth was less than 7 mm and called this 

motion “columnar instability”. However, for 

layers deeper than 10 mm, a Be'nard-type 

cellular convection was observed. Thus there is a 

contradiction between the theory and experiment. 

In geophysical situations, the fluid is often not 

pure but contains suspended particles. The effect 

of particle mass and heat capacity on the onset of 

Be′nard convection has been considered by 

Scanlon and Segel [3]. They found that the 

critical Rayleigh number was reduced solely 

because the heat capacity of the pure fluid was 

supplemented by that of the particles. The effect 

of suspended particles was found to destabilize 

the layer i.e. to lower the critical temperature 

gradient. Palaniswamy and Purushotham [4] 

have considered the stability of shear flow of 

stratified fluids with fine dust and have found the 

effect of fine dust to increase the region of 

instability. Venetis [5] has investigated the 

boundary roughness of  a mounted obstacle 

which is inserted into an incompressible, external 

and viscous flow field of a Newtonian fluid. 

When the fluids are compressible, the equations 

governing the system become quite complicated. 

To simplify them, Boussinesq tried to justify the 

approximation for compressible fluids when the 

density variations arise principally from thermal 

effects. Spiegel and Venonis [6] have simplified 

the set of equations governing the flow of 

compressible fluids under the following 

assumptions: 

(a) the depth of the fluid layer is much less than 

the scale height, as defined by them; and 

(b) the fluctuations in temperature, density, and 

pressure, introduced due to motion, do not 

exceed their total static variations. 
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Under the above approximations, the flow 

equations are the same as those for 

incompressible fluids, except that the static 

temperature gradient is replaced by its excess 

over the adiabatic one and 𝑐𝑣 is replaced by 𝑐𝑝. 

Using these approximations, Sharma [7] has 

studied the thermal instability in compressible 

fluids in the presence of rotation and a magnetic 

field. Hoshoudy and Kumar [8] have studied the 

Rayleigh-Taylor instability of a heavy fluid 

supported by a lighter one with suspended dust 

particles and small uniform general rotation.  

Compressibility effects on Rayleigh-Taylor 

instability of two plasmas layers are investigated 

by Hoshoudy et al. [9]. 

The investigation of double-diffusive convection 

is motivated by its interesting complexities as a 

double-diffusion phenomena as well as its direct 

relevance to geophysics and astrophysics. The 

conditions under which convective motion in 

double-diffusive convection are important (e.g. 

in lower parts of the Earth’s atmosphere, 

astrophysics, and several geophysical situations) 

are usually far removed from the consideration of 

a single component fluid and rigid boundaries 

and therefore it is desirable to consider  a fluid 

acted on by a solute gradient and free boundaries. 

The problem of thermohaline convection in a 

layer of fluid heated from below and subjected to 

a stable salinity gradient has been considered by 

Veronis [10]. The physics is quite similar in the 

stellar case in that helium acts like salt in raising 

the density and in diffusing more slowly than 

heat. The problem is of great importance because 

of its application to atmospheric physics and 

astrophysics, especially in the case of the 

ionosphere and the outer layer of the atmosphere. 

The thermosolutal convection problems also 

arise in oceanography, limnology and 

engineering. The onset of double-diffusive 

reaction-convection in fluid layer with viscous 

fluid, heated and salted from below subject to 

chemical equilibrium on the boundaries has been 

investigated by Gupta and Singh [11]. 

In recent years, the investigations of flow of 

fluids through porous media have become an 

important topic due to the recovery of crude oil 

from the pores of reservoir rocks. The problem of 

thermosolutal convection in fluids in a porous 

medium is of importance in geophysics, soil 

sciences, ground-water hydrology and 

astrophysics. The development of geothermal 

power resources holds increased general interest 

in the study of the properties of convection in 

porous media. The scientific importance of the 

field has also increased because hydrothermal 

circulation is the dominant heat transfer 

mechanism in the development of young oceanic 

crust (Lister [12]). Generally it is accepted that 

comets consist of a dusty “snowball” of a 

mixture of frozen gases which, in the process of 

their journey, changes from solid to gas and vice-

versa. The physical properties of comets, 

meteorites and interplanetary dust strongly 

suggest the importance of porosity in the 

astrophysical context. A mounting evidence, both 

theoretical and experimental, suggests that 

Darcy’s equation provides an unsatisfactory 

description of the hydrodynamic conditions, 

particularly near the boundaries of a porous 

medium. Beavers et al. [13] have experimentally 

demonstrated the existence of shear within the 

porous medium near surface, where the porous 

medium is exposed to a freely flowing fluid, thus 

forming a zone of shear-induced flow field. The 

Darcy’s equation however, cannot predict the 

existence of such a boundary zone, since no 

macroscopic shear term is included in this 

equation (Joseph and Tao [14]). To be 

mathematically compatible with the Navier-

Stokes equations and physically consistent with 

the experimentally observed boundary shear zone 

mentioned above, Brinkman proposed the 

introduction of the term 
𝜇

𝜀
∇2𝑉⃗  in addition to 

−(
𝜇

𝑘1
)𝑉 ⃗⃗  ⃗in the equations of fluid motion. The 

elaborate statistical justification of the Brinkman 

equations has been presented by Saffman [15] 

and Lundgren [16]. Stommel and Fedorov [17] 

and Linden [18] have remarked that the length 

scales characteristics of double-diffusive 

convecting layers in the ocean could be 

sufficiently large for Earth’s rotation to become 

important in their formation. Moreover, the 

rotation of the Earth distorts the boundaries of a 

hexagonal convection cell in a fluid flowing 

through a porous medium, and the distortion 

plays an important role in the extraction of 

energy in the geothermal regions. Brakke [19] 

explained a double-diffusive instability that 

occurs when a solution of a slowly diffusing 

protein is laid over a denser solution of more 

rapidly diffusing sucrose. Nason et al. [20] found 

that this instability, which is deleterious to 

certain biochemical separations, can be 

suppressed by rotation in the ultracentrifuge. 

Sharma and Sharma [21] and Sharma and 

Kumari [22] have considered the thermosolutal 
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convection in porous medium under varying 

assumptions of hydrodynamics and 

hydromagnetics. Misra et al. [23] have studied 

the numerical simulation of double-diffusive 

laminar mixed convection flow in a lid-driven 

porous cavity. Thermosolutal instability of 

magneto-hydrodynamic flow through porous 

medium has been studied by Choudhary [24]. 

Choudhary and Bhattacharjee [25] presents the 

study of three-dimensional flow and the 

injection/suction on an oscillatory flow of a 

visco-elastic incompressible fluid through a 

highly porous medium bounded between two 

infinite horizontal porous plates. Harfash and 

Alshara [26] have studied the problem of double 

diffusive convective movement of a reacting 

solute in a viscous incompressible occupying a 

plane layer in a saturated porous medium and 

subjected to a vertical magnetic field. Sriveni and 

Ratnam [27] have considered the double 

diffusive mixed convective heat and mass 

transfer flow of a viscous fluid through a porous 

medium in a rectangular duct. Coupled parallel 

flow of fluid with pressure-dependent viscosity 

through an inclined channel underlain by a 

porous layer of a variable permeability and 

variable thickness has been studied by Zaytoon 

and Hamdan [28]. Kumar and Gupta [29] have 

investigated the instability of the plane interface 

between two viscoelastic superposed conducting 

fluids in the presence of suspended particles and 

variable horizontal magnetic field through porous 

medium.    

Keeping in mind the importance in geophysics, 

astrophysics and various applications mentioned 

above, the thermosolutal convection in 

compressible fluids with suspended particles in a 

porous medium, in the absence and presence of a 

uniform rotation, separately, has been considered 

in the present paper. 

 

 

2 Formulation of the Problem and 

Basic Equations 

           Here we consider an infinite horizontal, 

compressible fluid-particle layer of thickness 𝑑 

bounded by the planes 𝑧 = 0 and 𝑧 = 𝑑 in a 

porous medium of porosity 𝜀 and permeability 

𝑘1. This layer is heated from below and 

subjected to a stable solute gradient such that 

steady adverse temperature gradient 𝛽(=

|𝑑𝑇 𝑑𝑧⁄ |) and a solute concentration gradient 

𝛽′(= |𝑑𝐶 𝑑𝑧⁄ |) are maintained. 

Let 𝜌, 𝜇, 𝑝 and 𝑉⃗ (𝑢, 𝑣, 𝑤) denote respectively the 

density, viscosity, pressure and filter velocity of 

the pure fluid: 𝑉𝑑⃗⃗⃗⃗ (𝑥 , 𝑡) and 𝑁(𝑥 , 𝑡) denote filter 

velocity and number density of the particles, 

respectively. If 𝑔 is acceleration due to gravity, 

𝐾 = 6𝜋𝜌𝜈𝜖′where 𝜀′ is the particle radius, 𝑉𝑑⃗⃗⃗⃗ =

(𝑙, 𝑟, 𝑠) , 𝑥 = (𝑥, 𝑦, 𝑧) and 𝜆1⃗⃗⃗⃗ = (0,0,1) , then the 

equation of motion and continuity for the fluid 

are 

𝜌

𝜀
[
𝜕𝑉⃗ 

𝜕𝑡
+
1

𝜀
(𝑉⃗ . ∇)𝑉⃗ ]

= −∇𝑝 − 𝜌𝑔𝜆1⃗⃗⃗⃗ + (
𝜇

𝜀
∇2 −

𝜇

𝑘1
) 𝑉⃗ 

+
𝐾𝑁

𝜀
(𝑉𝑑⃗⃗⃗⃗ − 𝑉⃗ ) ,                       (1) 

(𝜀
𝜕

𝜕𝑡
+ 𝑉⃗ . ∇) 𝜌 + 𝜌∇. 𝑉⃗ = 0  .                             (2) 

Since the distances between particles are 

assumed to be quite large compared with their 

diameter, the interparticle relations, buoyancy 

force, Darcian force and pressure force on the 

particles are ignored. Therefore the equations of 

motion and continuity for the particles are 

𝑚𝑁 [
𝜕𝑉𝑑⃗⃗⃗⃗ 

𝜕𝑡
+
1

𝜀
(𝑉𝑑⃗⃗⃗⃗ . ∇)𝑉𝑑⃗⃗⃗⃗ ]

= 𝐾𝑁(𝑉⃗ − 𝑉𝑑⃗⃗⃗⃗ ) ,                                                     (3) 

𝜀
𝜕𝑁

𝜕𝑡
+ ∇. (𝑁𝑉𝑑⃗⃗⃗⃗ ) = 0   .                                        (4) 

Let 𝑐𝑣  , 𝑐𝑝 ,𝑐𝑝𝑡 ,𝑇, 𝐶 and 𝑞 denote respectively the 

heat capacity of fluid at constant volume, heat 

capacity of fluid at constant pressure, heat 

capacity of particles, temperature, solute 

concentration and “effective thermal 

conductivity” of the clean water. Let 𝑐𝑣
′  , 𝑐𝑝𝑡

′  and 

𝑞′ denote the analogous solute coefficients. 

When particles and the fluid are in thermal and 

solute equilibrium, the equations of heat and 

solute conduction give 

[𝜌𝑐𝑣𝜀 + 𝜌𝑠𝑐𝑠(1 − 𝜀)]
𝜕𝑇

𝜕𝑡
+ 𝜌𝑐𝑣(𝑉⃗ . ∇)𝑇

+𝑚𝑁𝑐𝑝𝑡 (𝜀
𝜕

𝜕𝑡
+ 𝑉𝑑⃗⃗⃗⃗ . ∇) 𝑇

= 𝑞∇2𝑇 ,                                 (5) 
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[𝜌𝑐𝑣
′ 𝜀 + 𝜌𝑠𝑐𝑠

′(1 − 𝜀)]
𝜕𝐶

𝜕𝑡
+ 𝜌𝑐𝑣

′ (𝑉⃗ . ∇)𝐶

+𝑚𝑁𝑐𝑝𝑡
′ (𝜀

𝜕

𝜕𝑡
+ 𝑉𝑑⃗⃗⃗⃗ . ∇) 𝐶

= 𝑞′∇2𝐶 ,                                (6) 

where 𝜌𝑠 , 𝑐𝑠 are the density and heat capacity of 

the solid matrix, respectively. 

Spiegel and Venonis [6] have expressed any state 

variable (pressure, density or temperature), say 

𝑋, in the form 

𝑋 = 𝑋𝑚 + 𝑋0(𝑧) + 𝑋
′(𝑥, 𝑦, 𝑧, 𝑡) , 

where 𝑋𝑚 stands for the constant space 

distribution of 𝑋 , 𝑋0 is the variation in 𝑋 in the 

absence of motion, and 𝑋′(𝑥, 𝑦, 𝑧, 𝑡) stands for 

the fluctuations in 𝑋 due to the motion of the 

fluid. Following Spiegel and Veronis [6], we 

have 

𝑇(𝑧) = −𝛽𝑧 + 𝑇0  , 

𝑝(𝑧) = 𝑝𝑚 − 𝑔∫(𝜌𝑚 + 𝜌0)𝑑𝑧  ,

𝑧

0

 

𝜌(𝑥) = 𝜌𝑚[1 − 𝛼(𝑇 − 𝑇𝑚) + 𝛼
′(𝐶 − 𝐶𝑚)

+ 𝛼′′(𝑝 − 𝑝𝑚)]  , 

𝛼 = −(
1

𝜌

𝜕𝜌

𝜕𝑇
) , 𝛼′ = (

1

𝜌

𝜕𝜌

𝜕𝐶
) , 𝛼′′ = (

1

𝜌

𝜕𝜌

𝜕𝑝
)  . 

Thus 𝑝𝑚 , 𝜌𝑚 stand for the constant space 

distribution of 𝑝 and 𝜌 and 𝑇0 , 𝜌0 stand for the 

temperature and density of the fluid at the lower 

boundary (and in the absence of motion 

Since density variations are mainly due to 

variations in temperature and solute 

concentration, equations (1) – (6) must be 

supplemented by the equation of state 

𝜌(𝑧) = 𝜌𝑚[1 − 𝛼(𝑇 − 𝑇𝑚)
+ 𝛼′(𝐶 − 𝐶𝑚)]  .                    (7) 

Let 𝛿𝜌 , 𝛿𝑝 , 𝜃 , 𝛾 , 𝑉⃗  , 𝑉𝑑⃗⃗⃗⃗ and 𝑁 denote the 

perturbations in fluid density 𝜌, pressure 𝑝, 

temperature 𝑇, solute concentration 𝐶, fluid 

velocity (0,0,0) and particle number density 𝑁0 , 

respectively. Then the linearized perturbation 

equations, under the Spiegel and Veronis [6] 

assumptions, are 

1

𝜀

𝜕𝑉⃗ 

𝜕𝑡
= −

1

𝜌𝑚
∇𝛿𝑝 − 𝑔 (

𝛿𝜌

𝜌𝑚
) 𝜆1⃗⃗⃗⃗ + (

𝜈

𝜀
∇2 −

𝜈

𝑘1
) 𝑉⃗ 

+
𝐾𝑁0
𝜌𝑚𝜀

(𝑉𝑑⃗⃗⃗⃗ − 𝑉⃗ )  ,                   (8) 

∇. 𝑉⃗ = 0  ,                                                              (9) 

𝑚𝑁0
𝜕𝑉𝑑⃗⃗⃗⃗ 

𝜕𝑡
= 𝐾𝑁0(𝑉⃗ − 𝑉𝑑⃗⃗⃗⃗ )  ,                             (10) 

𝜀
𝜕𝑁

𝜕𝑡
+ ∇. (𝑁0𝑉𝑑⃗⃗⃗⃗ ) = 0   ,                                    (11) 

(𝐸 + ℎ𝜀)
𝜕𝜃

𝜕𝑡
= (𝛽 −

𝑔

𝑐𝑝
) (𝑤 + ℎ′𝑠)

+ 𝜅∇2𝜃 ,                                (12) 

(𝐸′ + ℎ′𝜀)
𝜕𝛾

𝜕𝑡
= 𝛽′(𝑤 + ℎ′𝑠)

+ 𝜅′∇2𝛾  .                                 (13) 

Here 

𝐸 = 𝜀 + (1 − 𝜀)
𝜌𝑠𝑐𝑠
𝜌𝑚𝑐𝑣

  ,   𝐸′

= 𝜀 + (1 − 𝜀)
𝜌𝑠𝑐𝑠

′

𝜌𝑚𝑐𝑣
′  ,

ℎ = 𝑓
𝑐𝑝𝑡
𝑐𝑣
 , ℎ′ = 𝑓

𝑐𝑝𝑡
′

𝑐𝑣
′  , 

𝑓 =
𝑚𝑁0
𝜌𝑚

 , 𝜅 =
𝑞

𝜌𝑚𝑐𝑣
  ,   𝜅′ =

𝑞′

𝜌𝑚𝑐𝑣
′  𝑎𝑛𝑑 𝛿𝜌

= −𝜌𝑚(𝛼𝜃 − 𝛼
′𝛾). 

Using 𝑑 , 𝑑2 𝜅⁄  , 𝜅 𝑑⁄  , 𝜌𝜈𝜅 𝑑2,   𝛽𝑑⁄  and 𝛽′𝑑 to 

denote the length, time, velocity, pressure, 

temperature and solute concentration scale 

factors, respectively, the linearized 

dimensionless perturbation equations become 

𝑝1
−1
𝜕𝑉∗⃗⃗ ⃗⃗ 

𝜕𝑡∗
= −∇∗𝛿𝑝∗ + 𝑅𝜃∗𝜆1⃗⃗⃗⃗ − 𝑆𝛾

∗𝜆1⃗⃗⃗⃗ 

+ (
1

𝜀
∇∗

2
−
1

𝑃
)𝑉∗⃗⃗ ⃗⃗ 

+ 𝜔(𝑉𝑑
∗⃗⃗ ⃗⃗  − 𝑉∗⃗⃗ ⃗⃗ )  ,                     (14) 

∇∗. 𝑉∗⃗⃗ ⃗⃗ = 0  ,                                                          (15) 

(𝜏
𝜕

𝜕𝑡∗
+ 1)𝑉𝑑

∗⃗⃗ ⃗⃗ = 𝑉∗⃗⃗ ⃗⃗   ,                                        (16) 

(
𝜕𝑀

𝜕𝑡∗
+ ∇∗. 𝑉𝑑

∗⃗⃗ ⃗⃗ ) = 0  ,                                          (17) 

(𝐸 + ℎ𝜀)
𝜕𝜃∗

𝜕𝑡∗
=
𝐺 − 1

𝐺
(𝑤∗ + ℎ𝑠∗)

+ ∇∗
2
𝜃∗  ,                                 (18) 

(𝐸′ + ℎ′𝜀)
𝜕𝛾∗

𝜕𝑡∗

= (𝑤∗ + ℎ′𝑠∗) +
1

𝜆
∇∗

2
𝛾∗  ,                               (19) 
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where 

𝑃 =
𝑘1
𝑑2
 , 𝐺 =

𝑐𝑝𝛽

𝑔
 , 𝑝1 =

𝜀𝜈

𝜅
 , 𝑅 =

𝑔𝛼𝛽𝑑4

𝜈𝜅
  ,

𝑆 =
𝑔𝛼′𝛽′𝑑4

𝜈𝜅′
 , 𝑀 =

𝜀𝑁

𝑁0
 , 𝜔

=
𝐾𝑁0𝑑

2

𝜌𝑚𝜈𝜀
 , 

𝜏 =
𝑚𝜅

𝐾𝑑2
 , 𝑓 =

𝑚𝑁0
𝜌𝑚

= 𝜏𝜔𝑝 𝑎𝑛𝑑 𝜆 =
𝜅

𝜅′
  , 

and starred (∗) quantities are expressed in 

dimensionless form. Hereafter, we suppress the 

stars for convenience. 

Eliminating 𝑉𝑑⃗⃗⃗⃗  from equation (14) with the help 

of equation (16) and then eliminating 𝑢, 𝑣, 𝛿𝑝 

from the three scalar equations of (14), and using 

equation (15), we obtain 

[𝐿1 − 𝐿2 (
1

𝜀
∇2 −

1

𝑃
)] ∇2𝑤

= 𝐿2[𝑅∇1
2𝜃 − 𝑆∇1

2𝛾]  ,                                       (20) 

𝐿2 [(𝐸 + ℎ𝜀)
𝜕

𝜕𝑡
− ∇2] 𝜃

= (
𝐺 − 1

𝐺
) (𝜏

𝜕

𝜕𝑡
+ 𝐻)𝑤,   (21) 

𝐿2 [(𝐸
′ + ℎ′𝜀)

𝜕

𝜕𝑡
−
1

𝜆
∇2] 𝛾

= (𝜏
𝜕

𝜕𝑡
+ 𝐻′)𝑤 ,                                              (22) 

where 

𝐿1 = 𝑝1
−1 (𝜏

𝜕2

𝜕𝑡2
+ 𝐹

𝜕

𝜕𝑡
)  ,

𝐿2 = (𝜏
𝜕

𝜕𝑡
+ 1) , ∇1

2

=
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
  , 

∇2=
𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
 , 𝐹 = 𝑓 + 1,𝐻

= ℎ + 1  , 𝐻′ = ℎ′ + 1   . 

Analyzing the perturbations into normal modes 

by seeking solutions in the form of functions of 

𝑥, 𝑦 and 𝑡 

[𝑤, 𝜃, 𝛾]

= [𝑊(𝑧), Θ(𝑧), Γ(𝑧)] exp(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦

+ 𝑛𝑡)  ,                                                      (23) 

where 𝑛 is, in general, complex, and 𝑘 =

(𝑘𝑥
2 + 𝑘𝑦

2)
1 2⁄

 is the wave number of disturbance. 

Eliminating 𝜃, 𝛾 between equations (20) – (22) 

and using expression (23), we obtain 

[𝐿1 +
𝐿2
𝑃
−
𝐿2
𝜀
(𝐷2 − 𝑘2)] [𝐷2 − 𝑘2

− 𝑛(𝐸 + ℎ𝜀)][𝐷2 − 𝑘2

− 𝜆𝑛(𝐸′ + ℎ′𝜀)](𝐷2 − 𝑘2)𝑊 

= (
𝐺 − 1

𝐺
) (𝜏𝑛 + 𝐻)𝑅𝑘2[𝐷2 − 𝑘2

− 𝜆𝑛(𝐸′ + ℎ′𝜀)]𝑊
− 𝜆(𝜏𝑛 + 𝐻′)𝑆𝑘2[𝐷2 − 𝑘2

− 𝑛(𝐸 + ℎ𝜀)]𝑊  ,                                            (24) 

where 

𝐿1 = 𝑝1
−1(𝜏𝑛2 + 𝐹𝑛) , 𝐿2 = 𝜏𝑛 + 1   𝑎𝑛𝑑   𝐷

=
𝑑

𝑑𝑧
  . 

 

 

3 Some Important Theorems 

Theorem I: The stable solute gradient introduces 

oscillatory modes in the system while in its 

absence principle of exchange of stabilities is 

satisfied.  

Proof: Let 

𝑈 = (𝐷2 − 𝑘2)𝑊  𝑎𝑛𝑑  𝑋

= [𝐿1 +
𝐿2
𝑃

−
𝐿2
𝜀
(𝐷2 − 𝑘2)]𝑈 .                                         (25) 

In terms of 𝑋, the equation satisfied by 𝑊 is 

[𝐷2 − 𝑘2 − 𝑛(𝐸 + ℎ𝜀)][𝐷2 − 𝑘2

− 𝜆𝑛(𝐸′ + ℎ′𝜀)]𝑋

= 𝑘2 (
𝐺 − 1

𝐺
)𝑅(𝜏𝑛 + 𝐻) 

[𝐷2 − 𝑘2 − 𝜆𝑛(𝐸′ + ℎ′𝜀)]𝑊
− 𝜆𝑘2𝑆(𝜏𝑛 + 𝐻′)[𝐷2 − 𝑘2

− 𝑛(𝐸 + ℎ𝜀)]𝑊.                  (26) 

Consider the case of two free surfaces having 

uniform temperature and solute concentration. 

The boundary conditions appropriate for the 

problem are 
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𝑊 = 𝐷2𝑊 = 0,Θ = Γ = 0 𝑎𝑡 𝑧
= 0  𝑎𝑛𝑑 1.                                                           (27) 

Multiplying equation (26) by 𝑋∗, the complex 

conjugate of 𝑋, integrating over the range of 𝑧 

and using the boundary conditions (27), we 

obtain 

𝐼1 + 𝑛[(𝐸 + ℎ𝜀) + 𝜆(𝐸
′ + ℎ′𝜀)]𝐼2

+ 𝜆𝑛2(𝐸 + ℎ𝜀)(𝐸′ + ℎ′𝜀)𝐼3

= 𝑘2 (
𝐺 − 1

𝐺
)𝑅(𝜏𝑛 + 𝐻) 

(𝐿1
∗ +

𝐿2
∗

𝑃
) [𝐼4 + 𝜆𝑛(𝐸

′ + ℎ′𝜀)𝐼5]

− 𝜆𝑘2𝑆(𝜏𝑛 + 𝐻′) (𝐿1
∗ +

𝐿2
∗

𝑃
) [𝐼4

+ 𝜆𝑛(𝐸 + ℎ′𝜀)𝐼5] + 

+𝑘2
𝐿2
∗

𝜀
[(
𝐺 − 1

𝐺
)𝑅(𝜏𝑛 + 𝐻) − 𝜆𝑆(𝜏𝑛 + 𝐻′)] 𝐼6

+ 

+𝑘2𝜆𝑛
𝐿2
∗

𝜀
[(
𝐺 − 1

𝐺
)𝑅(𝜏𝑛 + 𝐻)(𝐸′ + ℎ′𝜀)

− 𝑆(𝜏𝑛 + 𝐻′)(𝐸

+ ℎ𝜀)] 𝐼7  ,                       (28) 

where 

𝐼1 = ∫(|𝐷
2𝑋|2 + 2𝑘2|𝐷𝑋|2 + 𝑘4|𝑋|2)𝑑𝑧 ,   𝐼2

1

0

= ∫(|𝐷𝑋|2 + 𝑘2|𝑋|2)𝑑𝑧,   𝐼3

1

0

= ∫(|𝑋|2)𝑑𝑧,

1

0

 

𝐼4 = ∫(|𝑈|
2)𝑑𝑧 ,   𝐼5

1

0

= ∫(|𝐷𝑊|2 + 𝑘2|𝑊|2)𝑑𝑧 ,   𝐼6

1

0

= ∫(|𝐷𝑈|2 + 𝑘2|𝑈|2)𝑑𝑧 ,

1

0

 

𝐼7

= ∫(|𝐷2𝑊|2 + 2𝑘2|𝐷𝑊|2
1

0

+ 𝑘4|𝑊|2)𝑑𝑧  .                                                 (29) 

The integrals 𝐼1 − 𝐼7 are all positive definite. 

Putting = 𝑖𝑛0 , where 𝑛0 is real, into equation 

(28) and equating imaginary parts, we obtain 

𝑛0
2 =

{
 
 
 

 
 
 
[(𝐸+ℎ𝜀)+𝜆(𝐸′+ℎ′𝜀)]𝐼2+𝑘

2[

(
𝐺−1

𝐺
)𝑅(

𝐻𝐹

𝑝1
+
𝜏ℎ

𝑃
)−

𝜆𝑆(
𝐻′𝐹

𝑝1
+
𝜏ℎ′

𝑃
)

]𝐼4+

𝜆𝑘2[𝑆(𝐸+ℎ𝜀)𝐻′−(
𝐺−1

𝐺
)𝑅(𝐸′+ℎ′𝜀)𝐻]

(
𝐼5
𝑃
+
𝐼7
𝜀
)+

𝜏𝑘2

𝜀
[(
𝐺−1

𝐺
)𝑅ℎ−𝜆𝑆ℎ′]𝐼6 }

 
 
 

 
 
 

{
 
 
 

 
 
 
𝜆𝑘2[

−(
𝐺−1

𝐺
)𝑅(𝐸′+ℎ′𝜀){

𝜏(𝑓−ℎ)

𝑝1
+
𝜏2

𝑃
}+

𝑆(𝐸+ℎ𝜀){
𝜏(𝑓−ℎ)

𝑝1
+
𝜏2

𝑃
}

]𝐼5+

𝑘2𝜏2

𝑝1
{(
𝐺−1

𝐺
)𝑅−𝜆𝑆}𝐼4+

𝑘2𝜏2𝜆

𝜀
[−(

𝐺−1

𝐺
)𝑅(𝐸′+ℎ′𝜀)+𝑆(𝐸+ℎ𝜀)]𝐼7 }

 
 
 

 
 
 

, (30)  

or 

𝑛0 = 0  .                                                                 (31) 

In the absence of stable solute gradient, 

equations (30) and (31) become 

𝑛0
2

= −

(
𝐺

𝐺−1
) (𝐸 + ℎ𝜀)𝐼2 + 𝑘

2𝑅

{𝑝1
−1𝐻𝐹 +

𝜏ℎ

𝑃
} 𝐼4 +

𝑘2𝜏

𝜀
𝑅ℎ𝐼6

𝑘2𝜏2𝑅𝑝1
−1𝐼4

  ,                   (32) 

or 

𝑛0 = 0  .                                                                 (33) 

Since the integrals are positive definite and 𝑛0 is 

real. It follows that 𝒏𝟎 = 𝟎 and the principle of 

exchange of stabilities is satisfied, in the 

absence of stable solute gradient. In the 

presence of stable solute gradient, the 

principle of exchange of stabilities is not 

satisfied and oscillatory modes come into play. 

The stable solute gradient, thus, introduces 

oscillatory modes which were non-existent in 

its absence. 

Theorem II: For the case of stationary 

convection, the medium permeability and 

suspended particles have destabilizing effects, 

whereas the stable solute gradient has  a 

stabilizing effect on the system. 

Proof: When instability sets in as stationary 

convection, the marginal state will be 

characterized by 𝑛 = 0 and equation (24) 

reduces to 
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[
1

𝑃
−
1

𝜀
(𝐷2 − 𝑘2)] (𝐷2 − 𝑘2)2𝑊

= (
𝐺 − 1

𝐺
)𝑘2𝑅𝐻𝑊

− 𝜆𝑘2𝑆𝐻′𝑊 .                                                     (34) 

Considering the case of two free boundaries, it 

can be shown that all the even order derivatives 

of 𝑊 vanish on the boundaries and hence the 

proper solution of equation (34) characterizing 

the lowest mode is 

𝑊 = 𝑊0 sin 𝜋𝑧  ,                                                 (35) 

where 𝑊0 is a constant. Substituting the solution 

(35) in equation (34), we obtain 

𝑅

=

(
𝐺

𝐺−1
) [
(
1

𝑃
+
𝜋2+𝑘2

𝜀
) (𝜋2 + 𝑘2)2

+𝜆𝑘2𝐻′𝑆
]

𝑘2𝐻
  .              (36) 

If 𝑅𝑐 denotes the critical Rayleigh number in the 

absence of compressibility and 𝑅𝑐 stands for the 

critical Rayleigh number in the presence of 

compressibility, then we find that 

𝑅𝑐̅̅ ̅ = (
𝐺

𝐺 − 1
)𝑅𝑐   . 

Since critical Rayleigh number is positive and 

finite, so 𝐺 > 1 and we obtain a stabilizing effect 

of compressibility as its result is to postpone the 

onset of double-diffusive convection in a fluid-

particle layer of porous medium. 

It is evident from equation (36) that 

𝑑𝑅

𝑑𝑃

= −(
𝐺

𝐺 − 1
)
(𝜋2 + 𝑘2)2

𝑘2𝐻𝑃2
  ,                              (37) 

𝑑𝑅

𝑑𝐻

= −(
𝐺

𝐺 − 1
)

(
1

𝑃
+
𝜋2+𝑘2

𝜀
) (𝜋2 + 𝑘2)2

+𝜆𝑘2𝐻′𝑆
𝑘2𝐻2

  ,     (38) 

and 

𝑑𝑅

𝑑𝑆
= 𝜆 (

𝐺

𝐺 − 1
)
𝐻′

𝐻
  .                                       (39) 

The medium permeability and suspended 

particles have thus destabilizing effects, 

whereas the stable solute gradient has  a 

stabilizing effect on the thermosolutal 

convection in compressible fluids with 

suspended particles in a porous medium. 

 

 

4 Effect of Rotation 

Formulation of the Problem: In this section, we 

consider the same problem as that studied above 

except that the system is in a state of uniform 

rotation Ω⃗⃗ (0,0, Ω). The Coriolis force acting on 

the particles is also neglected under the 

assumptions made in the problem. The linearized 

non-dimensional perturbation equations of 

motion for the fluid are 

𝑝1
−1
𝜕𝑢

𝜕𝑡

= −
𝜕

𝜕𝑥
𝛿𝑝 + 𝜔(𝑙 − 𝑢) + 𝑇𝐴

1 2⁄ 𝑣

+ (
1

𝜀
∇2 −

1

𝑃
)𝑢,                                                   (40) 

𝑝1
−1
𝜕𝑣

𝜕𝑡

= −
𝜕

𝜕𝑦
𝛿𝑝 + 𝜔(𝑟 − 𝑣) − 𝑇𝐴

1 2⁄ 𝑢

+ (
1

𝜀
∇2 −

1

𝑃
)𝑣,                                                   (41) 

𝑝1
−1
𝜕𝑤

𝜕𝑡

= −
𝜕

𝜕𝑧
𝛿𝑝 + 𝜔(𝑠 − 𝑤) + 𝑅𝜃 − 𝑆𝛾

+ (
1

𝜀
∇2 −

1

𝑃
)𝑤,                                                (42) 

where 𝑇𝐴 =
4Ω2𝑑4

𝜀2𝜈2
 is the non-dimensional number 

accounting for rotation, and equations (14) – (19) 

remain unaltered. 

Eliminating 𝑉𝑑⃗⃗⃗⃗ (𝑙, 𝑟, 𝑠) with the help of (16) and 

then eliminating 𝑢, 𝑣, 𝛿𝑝 between equations (40) 

– (42), we obtain 

(𝐿1 +
𝐿2
𝑃
−
𝐿2
𝜀
∇2)

2

∇2𝑤 + 𝐿2
2𝑇𝐴

𝜕2𝑤

𝜕𝑧2

= 𝐿2 (𝐿1 +
𝐿2
𝑃
−
𝐿2
𝜀
∇2)∇1

2(𝑅𝜃

− 𝜆𝑆𝛾).                                   (43) 

Eliminating 𝜃 and 𝛾 between equations (21), (22) 

and (43) and using expression (23), we get 
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[𝐷2 − 𝑘2 − 𝑛(𝐸 + ℎ𝜀)][𝐷2 − 𝑘2

− 𝜆𝑛(𝐸′

+ ℎ′𝜀)] [{𝐿1 +
𝐿2
𝑃

−
𝐿2
𝜀
(𝐷2 − 𝑘2)}

2

(𝐷2 − 𝑘2)

+ 𝐿2
2𝑇𝐴𝐷

2]𝑊

= {𝐿1 +
𝐿2
𝑃
−
𝐿2
𝜀
(𝐷2 − 𝑘2)} 𝑘2 

[(
𝐺 − 1

𝐺
) {𝐷2 − 𝑘2 − 𝜆𝑛(𝐸′ + ℎ′𝜀)}(𝜏𝑛 + 𝐻)𝑅 

− 𝜆{𝐷2 − 𝑘2 − 𝑛(𝐸 + ℎ𝜀)}(𝜏𝑛

+ 𝐻′)𝑆]𝑊  .                                                             (44)  

Theorem III: For the case of stationary 

convection, the suspended particles have a 

destabilizing effect, whereas the rotation and 

stable solute gradient have stabilizing effects on 

the system under consideration. The medium 

permeability has both stabilizing and 

destabilizing effects, depending on the rotation 

parameter. 

Proof: For the stationary convection 𝑛 = 0 and 

equation (44) reduces to 

(𝐷2 − 𝑘2) [{
1

𝑃
−
(𝐷2 − 𝑘2)

𝜀
}

2

(𝐷2 − 𝑘2)

+ 𝑇𝐴𝐷
2]𝑊

= 𝑘2 {
1

𝑃
−
(𝐷2 − 𝑘2)

𝜀
} [(

𝐺 − 1

𝐺
)𝑅𝐻

− 𝜆𝑆𝐻′]𝑊 .                                                        (45) 

Considering again the case of two free 

boundaries with constant temperature and solute 

concentration and using the proper solution (35), 

we obtain from equation (45) 

𝑅

= (
𝐺

𝐺 − 1
)

[
 
 
 
 
 

𝜋2 + 𝑘2

𝑘2𝐻

{
 
 

 
 (𝜋2 + 𝑘2) (

1

𝑃
+
𝜋2+𝑘2

𝜀
)
2

+𝜋2𝑇𝐴

(
1

𝑃
+
𝜋2+𝑘2

𝜀
)

}
 
 

 
 

+ 𝜆𝑆
𝐻′

𝐻

]
 
 
 
 
 

  .                                                         (46) 

It is evident from equation (46) that 

𝑑𝑅

𝑑𝑇𝐴
= (

𝐺

𝐺 − 1
)

𝜋2(𝜋2 + 𝑘2)

(
1

𝑃
+
𝜋2+𝑘2

𝜀
)𝑘2𝐻

  ,         (47) 

𝑑𝑅

𝑑𝐻

= −(
𝐺

𝐺 − 1
) (𝜋2

+ 𝑘2) [
(
1

𝑃
+
𝜋2+𝑘2

𝜀
)
2

(𝜋2 + 𝑘2) + 𝜋2𝑇𝐴

(
1

𝑃
+
𝜋2+𝑘2

𝜀
)𝑘2𝐻2

+ 𝜆𝑆
𝐻′

𝐻2
]  ,                                                          (48) 

𝑑𝑅

𝑑𝑆

= 𝜆 (
𝐺

𝐺 − 1
)
𝐻′

𝐻
   .                                         (49) 

Therefore the suspended particles have a 

destabilizing effect, whereas the rotation and 

stable solute gradient have stabilizing effects 

on the system under consideration. 

Equation (46) also yields 

𝑑𝑅

𝑑𝑃

= (
𝐺

𝐺 − 1
)
(𝜋2 + 𝑘2)

𝑘2𝐻
[−
𝜋2 + 𝑘2

𝑃2

+
𝜋2𝑇𝐴

𝑃2 (
1

𝑃
+
𝜋2+𝑘2

𝜀
)
2]  .                                       (50) 

If 
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𝑇𝐴 > (1 +
𝑘2

𝜋2
)(
1

𝑃
+
𝜋2 + 𝑘2

𝜀
)

2

  ,         

then 𝑑𝑅 𝑑𝑃⁄  is positive. 

If  

𝑇𝐴 < (1 +
𝑘2

𝜋2
)(
1

𝑃
+
𝜋2 + 𝑘2

𝜀
)

2

  ,         

then 𝑑𝑅 𝑑𝑃⁄  is negative. 

Thus the medium permeability has both 

stabilizing and destabilizing effects, depending 

on the rotation parameter, whereas in the 

absence of rotation as concluded earlier from 

equation (36) that medium permeability always 

has destabilizing effect.  
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