Direct and Transform Methods to Higher Derivatives of $\mathbf{K i}(\mathbf{x})$

M.H. HAMDAN
Department of Mathematics and Statistics, University of New Brunswick
100 Tucker Park Road, Saint John, New Brunswick, E2L 4L5
CANADA
S. JAYYOUSI DAJANI
Department of Mathematics and Computer Science
Lake Forest College
Lake Forest, IL 60045, USA

Abstract

Higher derivatives and associated polynomials of the standard Nield-Kuznetsov function of the second kind are investigated in this work. Two approaches are introduced in this work. The first, is the direct method of differentiation and generalization of the nth derivative. This approach is dependent on higher derivatives of the Nield-Kuznetsov function of the first kind. The second is the transform method in which integral transforms associated with the Nield-Kuznetsov function of the second kind are introduce first, and higher derivatives are then obtained. The transform method is independent of the direct higher derivatives of the Nield-Kuznetsov function of the first kind. Both approaches are important in practical and theoretical mathematical analysis, and both give rise to associated Airy polynomials, discussed in this work.

Key-Words: - Higher derivatives, $\operatorname{Ki}(\mathrm{x})$, Airy's polynomials.
Received: August 19, 2021. Revised: March 26, 2022. Accepted: April 28, 2022. Published: June 6, 2022.

1 Introduction

In a previous article, Hamdan et.al. [1] provided analysis of the higher derivatives of the function $N i(x)$, and the associated Airy's polynomials that arise with, and define its nth derivative. The function $N i(x)$, better-known as the Nield-Kuznetsov function of the first kind, arises in the general and particular solutions to inhomogeneous equation when homogeneity is due to a constant forcing function, [2,3].

For the sake of clarity, Airy's inhomogeneous equation takes the form, $[4,5]$
$\frac{d^{2} y}{d x^{2}}-x y=R$
where R is a constant, and its general solution is of the form
$y=c_{1} A_{i}(x)+c_{2} B_{i}(x)-\pi R N_{i}(x)$
c_{1}, c_{2} are arbitrary constants, and $N_{i}(x)$ is defined as:

$$
\begin{equation*}
N i(x)=A i(x) \int_{0}^{x} B i(t) d t-B i(x) \int_{0}^{x} A i(t) d t \tag{3}
\end{equation*}
$$

where $A i(x)$ and $B i(x)$ are Airy's functions of the first and second kinds, respectively, [5,6].

Studies of higher derivatives of Airy's functions, [7], and of the Nield-Kuznetsov functions, [1], are imperative from both practical applications and theoretical implications. While a knowledge of higher derivatives and associated polynomials might lead to further applications in mathematical physics, quantum theory, and systems theory, [8], they also further our understanding of infinite series representations of the said functions and polynomials.

Success of studies of Airy's functions higher derivatives and polynomials, [7], and of $N i(x)$, [1], motivate the current work in which higher derivatives and associated polynomials of the Nield-Kuznetsov
function of the second kind, $\operatorname{Ki}(x)$, are investigated. This function arises in the particular and general solutions of Airy's equation (1), with the right-handside, R, replaced by a continuously differentiable function $f(x)$, [2]. This general solution takes the form:
$y=e_{1} A_{i}(x)+e_{2} B_{i}(x)+\pi K_{i}(x)-\pi f(x) N_{i}(x)$
The function $K i(x)$ is defined in either of the forms, [2]:
$K i(x)=f(x) N i(x)-\left\{A i(x) \int_{0}^{x} f(t) B i(t) d t-\right.$
$\left.B i(x) \int_{0}^{x} f(t) A i(t) d t\right\}$
$K i(x)=A i(x) \int_{0}^{x}\left\{\int_{0}^{t} B i(\tau) d \tau\right\} f^{\prime}(t) d t-$
$B_{i}(x) \int_{0}^{x}\left\{\int_{0}^{t} A i(\tau) d \tau\right\} f^{\prime}(t) d t$
To this end, the $n^{\text {th }}$ derivative of $\operatorname{Ki}(x)$ is obtained in two ways: a direct method in which (5) is differentiated and a generalization is obtained for the nth derivative, and a transform method in which integral transforms are developed for $\operatorname{Ki}(x)$ then the nth derivative is obtained.

2 Higher Derivatives of $\boldsymbol{N i}(\boldsymbol{x})$

Equation (5) shows that $K i(x)$ is defined in terms of $N i(x)$ and Airy's functions $A i(x)$ and $B i(x)$. Consequently, derivatives of $\operatorname{Ki}(x)$ must dpend on derivatives of $N i(x), A i(x)$ and $B i(x)$. Higher derivatives of $N i(x)$ are discussed in what follows.

In Hamdan et.al., [1], the first two derivatives of $N i(x)$ have been expressed as;
$N^{\prime} i(x)=A^{\prime} i(x) \int_{0}^{x} B i(t) d t-B^{\prime} i(x) \int_{0}^{x} A i(t) d t$
$N^{\prime \prime} i(x)=x N i(x)-\frac{1}{\pi}$
However, third and higher derivatives of $N i(x)$ have been expressed in terms of the functions $N i(x)$ and $N^{\prime} i(x)$, and the Wronskian of $A i(x)$ and $B i(x)$, $W(A i(x), B i(x))=\frac{1}{\pi}$.

The $n^{\text {th }}$ derivative of $N i(x)$ can then be expressed as, [1]:
$N i^{(n)}(x)=P_{n}(x) N i(x)+Z_{n}(x) N^{\prime} i(x)-R_{n}(x) / \pi$

With the knowledge of the nth derivative, the $\mathrm{n}+1^{\text {st }}$ derivative can be obtained as:
$N i^{(n+1)}(x)=\left[P^{\prime}{ }_{n}(x)+x Z_{n}(x)\right] N i(x)+\left[P_{n}(x)+\right.$ $\left.Z^{\prime}{ }_{n}(x)\right] N^{\prime} i(x)-\frac{1}{\pi}\left[Z_{n}(x)+R^{\prime}{ }_{n}(x)\right]$

Equation (10) takes the following form in terms of $A i(x)$ and $B i(x)$:
$N^{(n+1)}(x)=\left\{\left[P^{\prime}{ }_{n}(x)+x Z_{n}(x)\right] A i(x)+\left[P_{n}(x)+\right.\right.$
$\left.\left.Z_{n}^{\prime}(x)\right] A^{\prime} i(x)\right\} \int_{0}^{x} B i(t) d t-\left\{\left[P^{\prime}{ }_{n}(x)+\right.\right.$
$\left.x Z_{n}(x)\right] B i(x)+\left[P_{n}(x)+\right.$
$\left.\left.Z^{\prime}{ }_{n}(x)\right] B^{\prime} i(x)\right\} \int_{0}^{x} A i(t) d t-\left[Z_{n}(x)+\right.$
$\left.R^{\prime}(x)\right] W(A i(x), B i(x))$.
Using (9) in (10) yields the $\mathrm{n}+\mathrm{l}^{\text {st }}$ derivative as:
$N i^{(n+1)}(x)=P_{n+1}(x) N i(x)+Z_{n+1}(x) N^{\prime} i(x)-$
$\frac{R_{n+1}(x)}{\pi}$
Comparing (9) and (10), establishes the following:
$P_{n+1}(x)=P_{n}^{\prime}(x)+x Z_{n}(x)$
$Q_{n+1}(x)=Z_{n}^{\prime}(x)+P_{n}(x)$
$R_{n+1}(x)=R_{n}^{\prime}(x)+Z_{n}(x)$
It is worth noting that polynomials $P_{n}(x), Z_{n}(x)$ are the same polynomials that arise in the $n^{\text {th }}$ derivatives of $A i(x)$ and $\operatorname{Bi}(x)$, respectively, as obtained by Abramochkin and Razueva, [7].

Clearly, higher derivatives of $N i(x)$ can be expressed in terms of $N i(x)$ and its first derivative $N i^{\prime}(x)$, and the Wronskian $W(A i(x), B i(x))=\frac{1}{\pi}$, whose coefficients are polynomials. Associated with the $n^{\text {th }}$ derivative of $N i(x)$ are the polynomials $P_{n}(x), Z_{n}(x)$ and $R_{n}(x)$, wherein " n " denotes the order of the derivative. For instance, coefficients of $N i(x), N i^{\prime}(x)$ and the Wronskian for sample derivatives above are given in Table 1, below, for $n \geq 2$, (Hamdan et.al. [1])

Table 1. Polynomial Coefficients of $N i(x), N^{\prime} i(x)$

and $W(A i(x), B i(x))$			
n	$P_{n}(x)$	$Z_{n}(x)$	$R_{n}(x)$
2	x	0	1
3	l	x	0
5	$4 x$	x^{2}	3

10	$x^{5}+100 x^{2}$	$20 x^{3}+80$	$x^{4}+82 x$
15	$49 x^{6}$ $+4760 x^{3}$ +3640	$x^{7}+770 x^{4}$ $+8680 x$	$48 x^{5}$ $+4080 x^{2}$

3 Higher Derivatives of $\boldsymbol{K}_{\boldsymbol{i}}(\boldsymbol{x})$

Higher derivatives of $\operatorname{Ki}(x)$, defined by (5) and (6), can be obtained in two ways, one of which is following the method used for obtaining higher derivatives of $N i(x)$, above, and involves derivatives of $N i(x),[9,10]$, while the second method is independent of $N i(x)$, but requires the introduction of integral transforms. Both methods are discussed in what follows.

Method 1: The Direct Method

Using (5), the first few derivatives of $K i(x)$ are obtained as:
$K i^{\prime}(x)=f^{\prime}(x) N i(x)+f(x) N^{\prime}(x)-$
$\left\{A^{\prime} i(x) \int_{0}^{x} f(t) B i(t) d t-B^{\prime} i(x) \int_{0}^{x} f(t) A i(t) d t\right\}$.
$K i^{\prime \prime}(x)=2 f^{\prime}(x) N i^{\prime}(x)+f^{\prime \prime}(x) N i(x)+x K i(x)$.
$K i^{\prime \prime \prime}(x)=3 f^{\prime \prime}(x) N i^{\prime}(x)+\left[f^{\prime \prime \prime}(x)+\right.$
$\left.2 x f^{\prime}(x)\right] N i(x)+K i(x)+x K i^{\prime}(x)-$
$2 f^{\prime}(x) W(A i(x), B i(x))$.
Continuing in this manner, the $n^{\text {th }}$ derivative takes the form:
$K i^{(n)}(x)=[f(x) N i(x)]^{(n)}+$
$p_{n}(x)\left\{A i(x) \int_{0}^{x} f(t) B i(t) d t-\right.$
$\left.B i(x) \int_{0}^{x} f(t) A i(t) d t\right\}$
$+q_{n}(x)\left\{A i^{\prime}(x) \int_{0}^{x} f(t) B i(t) d t-\right.$
$\left.B i^{\prime}(x) \int_{0}^{x} f(t) A i(t) d t\right\}+r_{n}(x) W(A i(x), B i(x))$
where $p_{n}(x), q_{n}(x)$ and $r_{n}(x)$ are the polynomial coefficients of the integral terms and of the Wronskian that appear in the nth derivative, namely
$p_{n}(x)$ is coefficient of $\left\{A i(x) \int_{0}^{x} f(t) B i(t) d t-\right.$
$\left.B i(x) \int_{0}^{x} f(t) A i(t) d t\right\}$
$q_{n}(x)$ is coefficient of $\left\{A i^{\prime}(x) \int_{0}^{x} f(t) B i(t) d t-\right.$
$\left.B i^{\prime}(x) \int_{0}^{x} f(t) A i(t) d t\right\}$
$r_{n}(x)$ is coefficient of $W(A i(x), B i(x))=\frac{1}{\pi}$
Following Alderson and Hamdan, [9], and Jayyousi-Dajani and Hamdan, [10], relationships between polynomials $p_{n}(x), q_{n}(x)$ and $r_{n}(x)$ are given by:
$p_{n+1}(x)=p^{\prime}{ }_{n}(x)+x q_{n}(x)$
$q_{n+1}(x)=q_{n}^{\prime}(x)+p_{n}(x)$
$r_{n+1}(x)=r_{n}^{\prime}(x)+q_{n}(x)$
The $n+l^{\text {st }}$ derivative of $\operatorname{Ki}(x)$, obtained by differentiating (19), takes the form:
$K i^{(n+1)}(x)=\sum_{k=0}^{n+1}\binom{n+1}{k} N i^{(n+1-k)} f^{(k)}(x)$
$+\left[p_{n}{ }^{\prime}(x)+x q_{n}(x)\right]\left\{A i(x) \int_{0}^{x} f(t) B i(t) d t-\right.$
$\left.B i(x) \int_{0}^{x} f(t) A i(t) d t\right\}+\left[p_{n}(x)+\right.$
$q_{n}{ }^{\prime}(x)\left\{A i^{\prime}(x) \int_{0}^{x} f(t) B i(t) d t-\right.$
$\left.B i^{\prime}(x) \int_{0}^{x} f(t) A i(t) d t\right\}+\left[r_{n}^{\prime}(x)-\right.$
$\left.f(x) q_{n}(x)\right] W(A i(x), B i(x))$
Polynomials $p_{n}(x), q_{n}(x)$ and $r_{n}(x)$ are associated with the $n^{\text {th }}$ derivative of $K_{i}(x)$, where n refers to the order of the derivative and not the degree of the polynomial. These polynomials are the negatives of the polynomials associated with the $n^{\text {th }}$ derivatives of Airy's functions, $A i(x)$ and $B i(x)$, and the $n^{\text {th }}$ derivative of the standard Nield-Kuznetsov function of the first kind, $\operatorname{Ni}(x)$, [1]. Thus, for $n \geq$ 2 , the following relationships hold:
$p_{n}(x)=-P_{n}(x)$
$q_{n}(x)=-Z_{n}(x)$
$r_{n}(x)=-R_{n}(x)$
Table 2, below, lists the polynomials $p_{n}(x), q_{n}(x)$ and $r_{n}(x)$, for $n=0,1,2, \ldots, 10$.

Table 2. Coefficient Polynomials and Coefficient Function

n $=0$	$p_{n}(x)$	$q_{n}(x)$	$r_{n}(x)$
0	-1	0	0

1	0	-1	0
2	-x	0	0
3	-1	-x	0
4	$-x^{2}$	-2	$-x$
5	$-4 x$	$-x^{2}$	-3
6	$-4-x^{3}$	$-6 x$	$-x^{2}$
7	$-9 x^{2}$	$-10-x^{3}$	$-8 x$
8	$-28 x-x^{4}$	$-12 x^{2}$	$-x^{3}-18$
9	$-28-16 x^{3}$	$-52 x-x^{4}$	$-15 x^{2}$
10	$-100 x^{2}-x^{5}$	-80	$-82 x$
$-20 x^{3}$	$-x^{4}$		

Degrees of the coefficient polynomials may be determined for arbitrary order of derivative, n, and are provided in the following Table 3 in terms of the floor function.

Table 3. Degrees of Coefficient Polynomials

Polynomial	Degree
$p_{n}(x)$	$3\left\lfloor\frac{n-2}{2}\right\rfloor-n+3, n \geq 2$
$q_{n}(x)$	$3\left\lfloor\frac{n-3}{2}\right\rfloor-n+4, n \geq 3$
$r_{n}(x)$	$3\left\lfloor\frac{n-4}{2}\right\rfloor-n+5, n \geq 4$

Now, using (5), expression (26) can be written in the following form:

$$
\begin{align*}
& K i^{(n+1)}(x)=\sum_{k=0}^{n+1}\binom{n+1}{k} N i^{(n+1-k)}(x) f(x)^{(k)} \\
& +\left[p_{n}{ }^{\prime}(x)+x q_{n}(x)\right]\{f(x) N i(x)-K i(x)\} \\
& +\left[p_{n}(x)+q_{n}^{\prime}(x)\right]\{f(x) N i(x)-K i(x)\}+ \\
& \frac{1}{\pi}\left[r_{n}{ }^{\prime}(x)-f(x) q_{n}(x)\right] \tag{30}
\end{align*}
$$

Replacing $n+1$ by n in (23)-(25), the $n^{\text {th }}$ derivative of $\operatorname{Ki}(x)$, obtained from (30), takes the following form:
$K i^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} N i^{(n-k)}(x) f^{(k)}(x)$
$+\left[p_{n-1}(x)+p^{\prime}{ }_{n-1}(x)+x q_{n-1}(x)+\right.$
$\left.q^{\prime}{ }_{n-1}(x)\right]\{f(x) N i(x)-K i(x)\}+\frac{1}{\pi}\left[r^{\prime}{ }_{n-1}(x)-\right.$
$\left.f(x) q_{n-1}(x)\right] ; \mathrm{n}=1,2,3, \ldots$

The $n^{\text {th }}$ derivative of $\operatorname{Ki}(x)$ is thus given by (31), and the above discussion furnishes the following Theorem.

Theorem 1:

Let $f(x) \in C^{n}$ on $x \geq 0$. Then, the NieldKuznetsov function of the second kind, defined by

$$
\begin{aligned}
\operatorname{Ki}(x)=f(x) N & (x) \\
& -\left\{\operatorname{Ai}(x) \int_{0}^{x} f(t) B i(t) d t\right. \\
& \left.-B i(x) \int_{0}^{x} f(t) A i(t) d t\right\}
\end{aligned}
$$

is continuously differentiable with an $n^{\text {th }}$ derivative given by

$$
\begin{gathered}
K i^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} N i^{(n-k)}(x) f^{(k)}(x) \\
+\left[p_{n-1}(x)+p^{\prime}{ }_{n-1}(x)+x q_{n-1}(x)+{q^{\prime}}_{n-1}(x)\right] \\
\{f(x) N i(x)-K i(x)\} \\
+\frac{1}{\pi}\left[r^{\prime}{ }_{n-1}(x)-f(x) q_{n-1}(x)\right] ; \mathrm{n}=1,2,3, \ldots
\end{gathered}
$$

where $N i(x), p_{n}(x), q_{n}(x)$ and $r_{n}(x)$ are given by (3), (15)-(17), respectively.

Method 2: The Transform Method

Definition (6) of $K i(x)$ can be conveniently written in terms of the following transforms.

Define
$T i(x)=\int_{0}^{x}\left\{\int_{0}^{t} B i(\tau) d \tau\right\} f^{\prime}(t)$
$Q i(x)=\int_{0}^{x}\left\{\int_{0}^{t} A i(\tau) d \tau\right\} f^{\prime}(t)$
then (6) can be written as
$K i(x)=\operatorname{Ai}(x) T i(x)-\operatorname{Bi}(x) Q i(x)$
The first few derivatives of (32) and (32) take the form:

$$
\begin{align*}
& T i^{\prime}(x)=f^{\prime}(x) \int_{0}^{x} B i(t) d t \tag{35}\\
& Q i^{\prime}(x)=f^{\prime}(x) \int_{0}^{x} A i(t) d t \tag{36}\\
& T i^{\prime \prime}(x)=f^{\prime \prime}(x) \int_{0}^{x} B i(t) d t+f^{\prime}(x) B i(x) \tag{37}\\
& Q i^{\prime \prime}(x)=f^{\prime \prime}(x) \int_{0}^{x} A i(t) d t+f^{\prime}(x) A i(x) \tag{38}
\end{align*}
$$

$T i^{\prime \prime \prime}(x)=f^{\prime \prime \prime}(x) \int_{0}^{x} B i(t) d t+2 f^{\prime \prime}(x) B i(x)+$ $f^{\prime}(x) B i^{\prime}(x)$
$Q i^{\prime \prime \prime}(x)=f^{\prime \prime \prime}(x) \int_{0}^{x} A i(t) d t+2 f^{\prime \prime}(x) A i(x)+$ $f^{\prime}(x) A i^{\prime}(x)$
$T i^{i v}(x)=f^{i v}(x) \int_{0}^{x} B i(t) d t+3 f^{\prime \prime \prime}(x) B i(x)+$
$3 f^{\prime \prime}(x) B i^{\prime}(x)+f^{\prime}(x) B i^{\prime \prime}(x)$
$Q i^{i v}(x)=f^{i v}(x) \int_{0}^{x} A i(t) d t+3 f^{\prime \prime \prime}(x) A i(x)+$
$3 f^{\prime \prime}(x) A i^{\prime}(x)+f^{\prime}(x) A i^{\prime \prime}(x)$
$T i^{v}(x)=f^{v}(x) \int_{0}^{x} B i(t) d t+4 f^{i v}(x) B i(x)+$ $6 f^{\prime \prime \prime}(x) B i^{\prime}(x)+4 f^{\prime \prime}(x) B i^{\prime \prime}(x)+f^{\prime}(x) B i^{\prime \prime \prime}(x)$
$Q i^{v}(x)=f^{v}(x) \int_{0}^{x} A i(t) d t+4 f^{i v}(x) A i(x)+$
$6 f^{\prime \prime \prime}(x) A i^{\prime}(x)+4 f^{\prime \prime}(x) A i^{\prime \prime}(x)+f^{\prime}(x) A i^{\prime \prime \prime}(x)$
$T i^{\nu i}(x)=f^{v i}(x) \int_{0}^{x} B i(t) d t+5 f^{v}(x) B i(x)+$ $10 f^{i v}(x) B i^{\prime}(x)+10 f^{\prime \prime \prime}(x) B i^{\prime \prime}(x)+$
$5 f^{\prime \prime}(x) B i^{\prime \prime \prime}(x)+f^{\prime}(x) B i^{i v}(x)$
$Q i^{\nu i}(x)=f^{\nu i}(x) \int_{0}^{x} A i(t) d t+5 f^{v}(x) A i(x)+$
$10 f^{i v}(x) A i^{\prime}(x)+10 f^{\prime \prime \prime}(x) A i^{\prime \prime}(x)+$
$5 f^{\prime \prime}(x) A i^{\prime \prime \prime}(x)+f^{\prime}(x) A i^{i v}(x)$

Continuing this pattern, we see that the $n^{\text {th }}$ derivatives of $T i(x)$ and $Q i(x)$ take the forms:

$$
\begin{align*}
& T i^{(n)}(x)=f^{(n)}(x) \int_{0}^{x} B i(t) d t+ \\
& \sum_{k=1}^{n}\binom{n-1}{k} f^{(n-k)}(x) B i^{(k-1)}(x) \tag{47}\\
& Q i^{(n)}(x)=f^{(n)}(x) \int_{0}^{x} A i(t) d t+ \\
& \sum_{k=1}^{n}\binom{n-1}{k} f^{(n-k)}(x) A i^{(k-1)}(x) \tag{48}
\end{align*}
$$

The first few derivatives of (34) are as follows.

$$
\begin{align*}
& K i^{\prime}(x)=A i^{\prime}(x) T i(x)+A i(x) T i^{\prime}(x)- \\
& {\left[B i^{\prime}(x) Q i(x)+B i(x) Q i^{\prime}(x)\right.} \tag{49}
\end{align*}
$$

$$
\begin{align*}
& K i^{\prime \prime}(x)=A i^{\prime \prime}(x) T i(x)+2 A i^{\prime}(x) T i^{\prime}(x)+ \\
& A i(x) T i^{\prime \prime}(x)-\left[B i^{\prime \prime}(x) Q i(x)+2 B i^{\prime}(x) Q i^{\prime}(x)+\right. \\
& B i(x) Q i^{\prime \prime}(x) \tag{50}
\end{align*}
$$

$K i^{\prime \prime \prime}(x)=A i^{\prime \prime \prime}(x) T i(x)+3 A i^{\prime \prime}(x) T i^{\prime}(x)+$
$+3 A i^{\prime}(x) T i^{\prime \prime}(x)+A i(x) T i^{\prime \prime \prime}(x)-$
$\left[B i^{\prime \prime \prime}(x) Q i(x)+3 B i^{\prime \prime}(x) Q i^{\prime}(x)+\right.$
$+3 B i^{\prime}(x) Q i^{\prime \prime}(x)+B i(x) Q i^{\prime \prime \prime}(x)$
These derivatives generalize into the following $n^{\text {th }}$ derivative of $K i(x)$:
$K i^{(n)}=\sum_{k=0}^{n}\binom{n}{k}\left[A i^{(n-k)}(x) T i^{(k)}(x)-\right.$ $\left.B i^{(n-k)}(x) Q i^{(k)}(x)\right]$

Using (47) and (48), we write:
$T i^{(k)}=f^{(k)}(x) \int_{0}^{x} B i(t) d t+$
$\sum_{m=1}^{k}\binom{k-1}{m} f^{(k-m)}(x) B i^{(m-1)}(x)$
$Q i^{(k)}=f^{(k)}(x) \int_{0}^{x} A i(t) d t+$
$\sum_{m=1}^{k}\binom{k-1}{m} f^{(k-m)}(x) A i^{(m-1)}(x)$
Using the following general forms of derivatives of $A i(x)$ and $B i(x)$, given in Hamdan et.al., [1], and Abramochkin and Razueva, [7]:

$$
\begin{align*}
& A i^{(j)}(x)=P_{j}(x) A i(x)+Z_{j}(x) A i^{\prime}(x) \tag{55}\\
& B i^{(j)}(x)=P_{j}(x) B i(x)+Z_{j}(x) B i^{\prime}(x) \tag{56}
\end{align*}
$$

we write

$$
\begin{align*}
& A i^{(m-1)}(x)=P_{m-1}(x) A i(x)+Z_{m-1}(x) A i^{\prime}(x) \\
& B i^{(m-1)}(x)=P_{m-1}(x) B i(x)+Z_{m-1}(x) B i^{\prime}(x) \tag{57}
\end{align*}
$$

$A i^{(n-k)}(x)=P_{n-k}(x) A i(x)+Z_{n-k}(x) A i^{\prime}(x)$
$B i^{(n-k)}(x)=P_{n-k}(x) B i(x)+Z_{n-k}(x) B i^{\prime}(x)$
Using (57)-(60) in (52)-(54), we obtain the following form of the $n^{\text {th }}$ derivative of $\operatorname{Ki}(x)$:
$K i^{(n)}=\sum_{k=0}^{n}\binom{n}{k}\left[\left\{P_{n-k}(x) A i(x)+\right.\right.$
$\left.\left.Z_{n-k}(x) A i^{\prime}(x)\right\} T i^{(k)}(x)\right]$
$-\sum_{k=0}^{n}\binom{n}{k}\left[\left\{P_{n-k}(x) B i(x)+\right.\right.$
$\left.Z_{n-k}(x) B i^{\prime}(x)\right\} Q i^{(k)}(x)$
wherein
$T i^{(k)}=f^{(k)}(x) \int_{0}^{x} B i(t) d t+$
$\sum_{m=1}^{k}\binom{k-1}{m} f^{(k-m)}(x)\left[P_{m-1}(x) B i(x)+\right.$
$\left.Z_{m-1}(x) B i^{\prime}(x)\right]$
$Q i^{(k)}=f^{(k)}(x) \int_{0}^{x} A i(t) d t+$
$\sum_{m=1}^{k}\binom{k-1}{m} f^{(k-m)}(x)\left[P_{m-1}(x) \operatorname{Ai}(x)+\right.$
$\left.Z_{m-1}(x) A i^{\prime}(x)\right]$
With the knowledge of the $n^{\text {th }}$ derivative of $K i(x)$, we can obtain the $n+1^{\text {st }}$ derivative of as:
$K i^{(n+1)}=\sum_{k=0}^{n+1}\binom{n+1}{k}\left[\left\{P_{n+1-k}(x) A i(x)+\right.\right.$
$\left.\left.Z_{n+1-k}(x) A i^{\prime}(x)\right\} T i^{(k)}(x)\right]-$
$\sum_{k=0}^{n}\binom{n}{k}\left[\left\{P_{n+1-k}(x) B i(x)+\right.\right.$
$\left.Z_{n+1-k}(x) B i^{\prime}(x)\right\} Q i^{(k)}(x)$

Using (13) and (14) in the form
$P_{n+1-k}(x)=P_{n-k}(x)+x Z_{n-k}(x)$
$Z_{n+1-k}(x)=Z_{n-k}^{\prime}(x)+P_{n-k}(x)$
$K i^{(n+1)}=\sum_{k=0}^{n+1}\binom{n+1}{k}\left[\left\{\left[P_{n-k}(x)+\right.\right.\right.$
$\left.x Z_{n-k}(x)\right] A i(x)+\left[Z^{\prime}{ }_{n-k}(x)+\right.$
$\left.\left.\left.P_{n-k}(x)\right] A i^{\prime}(x)\right\} T i^{(k)}(x)\right]$
$-\sum_{k=0}^{n}\binom{n}{k}\left[\left\{\left[P_{n-k}(x)+x Z_{n-k}(x)\right] B i(x)+\right.\right.$
$\left.\left.\left[Z^{\prime}{ }_{n-k}(x)+P_{n-k}(x)\right] B i^{\prime}(x)\right\} Q i^{(k)}(x)\right]$
The polynomials $P_{n-k}(x)$ and $Z_{n-k}(x)$ appearing in (68) are of course known from the $n^{\text {th }}$ derivative of $K i(x)$. Now, replacing $n+1$ by n in (67) gives the final form of the $n^{t h}$ derivative of $\operatorname{Ki}(x)$, and furnishes the following theorem.

Theorem 2:

Let $f(x) \in C^{n}$ on $x \geq 0$. Then, the NieldKuznetsov function of the second kind, defined by

$$
\begin{aligned}
& \operatorname{Ki}(x) \\
& =\operatorname{Ai}(x) \int_{0}^{x}\left\{\int_{0}^{t} B i(\tau) d \tau\right\} f^{\prime}(t) d t \\
& -B_{i}(x) \int_{0}^{x}\left\{\int_{0}^{t} A i(\tau) d \tau\right\} f^{\prime}(t) d t
\end{aligned}
$$

is continuously differentiable with an $n^{\text {th }}$ derivative given by

$$
\begin{aligned}
& K i^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k}\left[\left\{\left[P_{n-1-k}(x)+\right.\right.\right. \\
& \left.x Z_{n-1-k}(x)\right] A i(x)+\left[Z^{\prime}{ }_{n-1-k}(x)+\right. \\
& \left.\left.\left.P_{n-1-k}(x)\right] A i^{\prime}(x)\right\} T i^{(k)}(x)\right]- \\
& \sum_{k=0}^{n-1}\binom{n-1}{k}\left[\left\{\left[P_{n-1-k}(x)+\right.\right.\right. \\
& \left.x Z_{n-1-k}(x)\right] B i(x)+\left[Z^{\prime}{ }_{n-1-k}(x)+\right. \\
& \left.\left.\left.P_{n-1-k}(x)\right] B i^{\prime}(x)\right\} Q i^{(k)}(x)\right] ; n=1,2,3, \ldots
\end{aligned}
$$

where $T i^{(k)}$ and $Q i^{(k)}$ are given by (53) and (54), respectively.

4 Values of the Derivatives at Zero

Although Theorems (1) and Theorem (2) provide equivalent forms of the $n^{t h}$ derivative of $\operatorname{Ki}(x)$, computations using Theorem 1 are easier to perform. Using Theorem 1 , values at $x=0$ of the $n^{\text {th }}$ derivative of $\operatorname{Ki}(x)$ are given by:

Equation (64) takes the following form:
$K i^{(n)}(0)=\sum_{k=0}^{n}\binom{n}{k} N i^{(n-k)}(0) f(0)^{(k)}+$
$\frac{1}{\pi}\left[r_{n-1}{ }^{\prime}(0)-f(x) q_{n-1}(0)\right] ; \mathrm{n}=1,2,3, \ldots$
where $\operatorname{Ni}(0)=N^{\prime} i(0)=0$, and
$N i^{(n)}(0)=P_{n}(0) N i(0)+Z_{n}(0) N^{\prime} i(0)-\frac{R(0)}{\pi}=$
$-\frac{R(0)}{\pi}$.

5 Conclusion

In this work, general forms of the $n^{\text {th }}$ derivative of the Standard Nield-Kuznetsov Function of the Second Kind, $\operatorname{Ki}(x)$ have been obtained using two approaches: the direct approach, which is dependent on the Nield-Kuznetsov function of the first kind, $N i(x)$, and its higher derivatives, and the second is based on the introduction of integral transforms for $K i(x)$. Both approaches are viable, yet the first approach is more suitable for evaluation of the derivatives. Airy's polynomials arising for these derivatives have been discussed and quantified, and relationships between them have been investigated.

References:

[1] M.H. Hamdan, S. Jayyousi Dajani and M.S. Abu Zaytoon, Higher Derivatives and Polynomials of the Standard Nield-Kuznetsov Function of the First Kind, Int. J. Circuits, Systems and Signal Processing, Vol. 15, 2021, pp. 1737-1743.
[2] M.H. Hamdan and M.T. Kamel, On the $\mathrm{Ni}(\mathrm{x})$ Integral Function and its Application to the Airy's Non homogeneous Equation, Applied Math. Comput., Vol. 21 No. 17, 2011, pp. 7349-7360.
[3] D.A. Nield and A.V. Kuznetsov, The Effect of a Transition Layer between a Fluid and a Porous Medium: Shear Flow in a Channel, Transport in Porous Media, Vol. 78, 2009, pp. 477-487.
[4] G.B. Airy, On the Intensity of Light in the Neighbourhood of a Caustic, Trans. Cambridge Phil. Soc. Vol. 6, 1838, pp. 379-401.
[5] O. Vallée and M. Soares, Airy Functions and Applications to Physics. World Scientific, London, 2004.
[6] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York 1984.
[7] E.G. Abramochkin and E.V. Razueva, Higher Derivatives of Airy's Functions and of Their Products", SIGMA, Vol. 14, 2018, pp. 1-26.
[8] A.Kh. Khanmamedov, M.G. Makhmudova1 and N.F. Gafarova, Special Solutions of the Stark equation, Advanced Mathematical Models \& Applications, Vol. 6(1), No.1, 2021, pp. 59-62.
[9] T.L. Alderson and M.H. Hamdan, Taylor and Maclaurin Series Representations of the NieldKuznetsov Function of the First Kind. WSEAS Transactions on Equations. Vol. 2, 2022, pp. 3847.
[10] S. Jayousi Dajani and M.H. Hamdan, Higher Derivatives of the Nield-Kuznetsov Integral Function of the Second Kind. 2 International Antalya Scientific Research and Innovative Studies Congress. March 17-21, 2022, Antalya, Turkey. pp. 518-525.

Contribution of individual authors

Both authors reviewed the literature, formulated the problem, provided independent analysis, and jointly wrote and revised the manuscript.

Sources of funding

No financial support was received for this work.

Creative Commons Attribution
 License 4.0 (Attribution 4.0 International , CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 https://creativecommons.org/licenses/by/4.0/deed.en US

