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1 Introduction 
Interest in special functions stems in part from their 
direct use in solving applied problems and problems 
in mathematical physics; their connections to other 
elementary and special functions; and their 
contribution to the creation and expansion of our 
mathematical horizon, (cf. [1-3] and the references 
therein).  
     Of particular interest to the current work is a class 
of functions referred to as Einstein functions, which 
are combinations of exponential and logarithmic 
functions. Einstein functions have been the subject 
matter of various studies and tabulations due to their 
applications in the study of distributions, the 
determination of physical and chemical material 
constants, and in the study of Einstein’s field 
equations. For these and many other applications of 
Einstein functions, one is referred to the works of 
Abramowitz and Stegun, [1], Hilsenrath and Ziegler, 
[4], Cezairliyan, [5], and the references therein. 

     Computations, series representations and some 
properties of Einstein functions have been illustrated 
in Wolfram’s Mathworld, [6]. 
     Noteworthy in the study of Einstein functions is 
their connection to polylogarithmic functions, [7,8], 
which bridge a gap in our mathematical knowledge 
between Airy’s inhomoheneous ordinary differential 
equation (ODE) with homogeneities due to special 
functions, such as the sigmoid logistic function. This 
connection was recently studied and established by 
Roach and Hamdan, [9], and Hamdan and Roach, 
[10], whose work underscored the importance of 
connections between Airy’s functions, special 
functions and the Nield-Kuznetsov integral 
functions. Their work has inevitably lead to the 
current work where a connection is being sought 
between the Einstein functions, the Nield-Kuznetsov 
functions and the classic Airy’s functions, [11,12]. 
     The objective of this work is to provide particular 
and general solutions to Airy’s inhomogeneous 
ordinary differential equation (1), below, when the 
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inhomogeneity is due to Einstein functions. As 
already has been established in the literature, 
solutions to Airy’s inhomogeneous equation are 
expressed in terms of Airy’s functions of the first and 
second kind, and the standard Nield-Kuznetsov 
functions of the first and second kind, [13]. In order 
to put this in perspective, the interest is in the 
following form of Airy’s inhomogeneous ODE: 
 
𝑦′′ − 𝑥𝑦 = 𝑓(𝑥)                                                      (1) 
 
wherein “prime” notation denotes ordinary 
differentiation with respect to the independent 
variable, and the forcing function 𝑓(𝑥) is chosen in 
this work to be one of Einstein’s functions, [1]. 
     Solutions to the inhomogeneous ODE (1) are rare. 
In their elegant analysis, Miller and Musri, [14], 
introduced a specific-purpose method for solving (1); 
alas, the method is hardly practical and imposes 
restrictions on 𝑓(𝑥). A general-purpose approach 
was introduced by Hamdan and Kamel,[13], and can 
easily provide the general solution to (1) as long as 
𝑓(𝑥) is a differentiable function. Hamdan and Kamel, 
[13], expressed the general solution to (1) as: 
 
𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝜋𝐾𝑖(𝑥) − 𝜋𝑓(𝑥)𝑁𝑖(𝑥) (2) 
 
where 𝑁𝑖(𝑥) in the Standard Nield-Kuznetsov 
function of the first kind, defined by, [15]: 

𝑁𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ 𝐵𝑖(𝑡)𝑑𝑡
𝑥

0
− 𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝑑𝑡

𝑥

0
      (3) 

and 𝐾𝑖(𝑥) is the Standard Nield-Kuznetsov function 
of the second kind. The integral function, 𝐾𝑖(𝑥), is 
defined by the following equivalent forms, [13]: 

𝐾𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ {∫ 𝐵𝑖(𝑡)𝑑𝑡
𝜏

0
}

𝑥

0
𝑓′(𝜏)𝑑𝜏 −

𝐵𝑖(𝑥) ∫ {∫ 𝐴𝑖(𝑡)𝑑𝑡
𝜏

0
}

𝑥

0
𝑓′(𝜏)𝑑𝜏                                          (4) 

𝐾𝑖(𝑥) = 𝑓(𝑥)𝑁𝑖(𝑥) − {𝐴𝑖(𝑥) ∫ 𝑓(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡 −

𝐵𝑖(𝑥) ∫ 𝑓(𝑡)𝐴𝑖(𝑡)
𝑥

0
𝑑𝑡}                                (5) 

     The particular solution to (1) can thus be written 
in one of the equivalent forms: 
 
𝑦𝑝 = 𝜋𝐾𝑖(𝑥) − 𝜋𝑓(𝑥)𝑁𝑖(𝑥)                                   (6) 
 
𝑦𝑝 = 𝜋{𝐵𝑖(𝑥) ∫ 𝑓(𝑡)𝐴𝑖(𝑡)

𝑥

0
𝑑𝑡 −

𝐴𝑖(𝑥) ∫ 𝑓(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡}                                            (7) 

 
     This approach is robust and versatile, and both 
forms, (6) and (7), have recently been used to obtain 

particular solutions to (1) when 𝑓(𝑥) = 𝐴𝑖(𝑥), 𝐵𝑖(𝑥),
or 𝑁𝑖(𝑥), [16], and when 𝑓(𝑥) = 𝑆(𝑥) is the sigmoid 
logistic function, [10]. 
     It is worth noting that the work of Hamdan and 
Roach, [10], helped to establish a mathematically 
significant connection between Airy’s functions, the 
sigmoid functions and the dilogarithm function, and 
between the sigmoid function and the Nield-
Kuznetsov functions, 𝑁𝑖(𝑥) and 𝐾𝑖(𝑥). These forms 
of forcing functions gave rise to interesting integrals 
involving products of these special functions, and 
introduced new functions, such as the dilogarithm 
function, as building blocks of solutions to Airy’s 
ODE. 
     Those arising integrals enrich our mathematical 
knowledge and expand applicability of Airy’s 
inhomogeneous ODE to potential and arising 
subfields of mathematical physics, [17]. They also 
motivate the current work in which the interest is to 
solve ODE (1) when 𝑓(𝑥) is an Einstein’s function. 
The objective is to establish a connection between 
Einstein’s functions, Airy’s functions and the Nield-
Kuznetsov functions. The rise of polylogarithm 
functions is inevitable and helps connect these 
integral functions using Theorem 1 in this work. 
 
 

2 Solution to Airy’s 

Inhomogeneous ODE with Einstein 

Forcing Functions 
The general solution to the homogeneous part of 
Airy’s ODE (1) is given by the following 
complementary function: 
 
𝑦𝑐 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥)                                           (8) 
 
where 𝑐1 and 𝑐2 are arbitrary constants, and 
𝐴𝑖(𝑥) and 𝐵𝑖(𝑥) are the linearly independent Airy’s 
functions of the first and second kind, respectively, 
and whose non-zero Wronskian is given by, [1]: 
 
𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥)) = 𝐴𝑖(𝑥)

𝑑𝐵𝑖(𝑥)

𝑑𝑥
− 𝐵𝑖(𝑥)

𝑑𝐴𝑖(𝑥)

𝑑𝑥
=

1

𝜋
                                                                         

                                                                               (9) 
 
     Now, consider Airy’s ODE (1) with 𝑓(𝑥) =
𝐸𝑖(𝑥), where 𝐸𝑖(𝑥) is an Einstein function, namely 
 
𝑦′′ − 𝑥𝑦 = 𝐸𝑖(𝑥)                                                   (10) 
 
     General solution to (10) is of the form 
 
𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝑦𝑝                                (11) 
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where 𝑦𝑝 is given by the following equivalent forms: 

𝑦𝑝 = 𝜋𝐾𝑖(𝑥) − 𝜋𝐸𝑖(𝑥)𝑁𝑖(𝑥)                               (12) 
 
𝑦𝑝 = 𝜋{𝐵𝑖(𝑥) ∫ 𝐸𝑖(𝑡)𝐴𝑖(𝑡)

𝑥

0
𝑑𝑡 −

𝐴𝑖(𝑥) ∫ 𝐸𝑖(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡} = 𝜋(𝐼 − 𝐽)                     (13) 

 
where 
 
𝐼 = 𝐵𝑖(𝑥) ∫ 𝐸𝑖(𝑡)𝐴𝑖(𝑡)

𝑥

0
𝑑𝑡 =

𝐴𝑖(𝑥)𝐵𝑖(𝑥) ∫ 𝐸𝑖(𝑡)𝑑𝑡
𝑥

0
−

𝐴𝑖′(𝑥)𝐵𝑖(𝑥) ∫ {∫ 𝐸𝑖(𝑡)𝑑𝑡
𝜏

0
}

𝑥

0
𝑑𝜏                              (14) 

 
and 
 
𝐽 = 𝐴𝑖(𝑥) ∫ 𝐸𝑖(𝑡)𝐵𝑖(𝑡)

𝑥

0
𝑑𝑡 =

𝐴𝑖(𝑥)𝐵𝑖(𝑥) ∫ 𝐸𝑖(𝑡)𝑑𝑡
𝑥

0
−

𝐴𝑖(𝑥)𝐵𝑖′(𝑥) ∫ {∫ 𝐸𝑖(𝑡)𝑑𝑡
𝜏

0
}

𝑥

0
𝑑𝜏                             (15)  

 
Using (14) and (15) in (13) yields 

𝑦𝑝 = 𝜋[𝐴𝑖(𝑥)𝐵𝑖′(𝑥) −

𝐴𝑖′(𝑥)𝐵𝑖(𝑥)] ∫ {∫ 𝐸𝑖(𝑡)𝑑𝑡
𝜏

0
}

𝑥

0
                                 (16) 

Using (9) in (16) yields 

𝑦𝑝 = ∫ {∫ 𝐸𝑖(𝑡)𝑑𝑡
𝜏

0
}

𝑥

0
                                             (17) 

     In what follows equation (17) is evaluated for the 
following four Einstein functions: 

𝐸1(𝑥) =
𝑥

𝑒𝑥−1
                                                               (18) 

𝐸2(𝑥) = log(1 − 𝑒−𝑥)                                            (19) 

𝐸3(𝑥) =
𝑥

𝑒𝑥−1
− log(1 − 𝑒−𝑥)                                (20) 

𝐸4(𝑥) =
𝑥2𝑒𝑥

(𝑒𝑥−1)2                                                          (21) 

     Although graphs are provided for the functions 
representing the particular solutions in intervals 
around 𝑥 = 0, it is emphasized here that the 
particular solutions obtained for Airy’s 
inhomogeneous ODE in this work are valid for 𝑥 ≥

0. In the notation below, 𝑙𝑜𝑔 refers to the natural 
logarithm. 

 

Case 1:   𝑬𝟏(𝒙) =
𝒙

𝒆𝒙−𝟏
 

 
Integrating 𝐸1(𝑥) yields a convergent improper 
integral that can be used to obtain 𝑦𝑝, as follows. 
 
∫ 𝐸1(𝑡)𝑑𝑡 = lim

𝑟→0+
∫

𝑡

𝑒𝑡−1
𝑑𝑡 =

𝜏

𝑟

𝜏

0
𝜏𝑙𝑜𝑔(1 − 𝑒−𝜏) −

𝐿𝑖2(𝑒−𝜏) −
𝜋2

6
                                                         (22) 

 
𝑦𝑝 = ∫ {∫ 𝐸1(𝑡)𝑑𝑡

𝜏

0
}

𝑥

0
𝑑𝜏 = lim

𝑟→0+
∫ [𝜏𝑙𝑜𝑔(1 −

𝑥

𝑟

𝑒−𝜏) − 𝐿𝑖2(𝑒−𝜏) −
𝜋2

6
] 𝑑𝜏                                       (23) 

 
     Evaluating the limit, 𝑦𝑝 takes the following final 
form: 
𝑦𝑝 = 𝑥𝐿𝑖2𝑒−𝑥 + 2𝐿𝑖3𝑒−𝑥 −

𝜋2𝑥

6
− 2𝜁(3)                (24) 

 

and the following general solution is then obtained: 
 
𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝑥𝐿𝑖2𝑒−𝑥 + 2𝐿𝑖3𝑒−𝑥 −
𝜋2𝑥

6
− 2𝜁(3)                                                             (25) 

 
where 𝜁(𝑥) is the zeta function and 𝜁(3) =
1.2020569. 
     Graph of the particular solution is shown in Fig. 

1, below. 

 

 
Fig. 1. Graph of 𝒚𝒑 when 𝒇(𝒙) = 𝑬𝟏(𝒙) 

 

Case 2:  𝑬𝟐(𝒙) = 𝐥𝐨𝐠 (𝟏 − 𝒆−𝒙)  

Integrating 𝐸2(𝑥) yields a convergent improper 
integral that can be used to obtain 𝑦𝑝, as follows. 

∫ 𝐸2(𝑡)𝑑𝑡 = lim
𝑟→0+

∫ log(1 − 𝑒−𝑡) 𝑑𝜏 =
𝜏

𝑟

𝜏

0

𝐿𝑖2(𝑒−𝜏) −
𝜋2

6
                                                          (26) 

𝑦𝑝 = ∫ {∫ 𝐸1(𝑡)𝑑𝑡
𝜏

0
}

𝑥

0
𝑑𝜏 = lim

𝑟→0+
∫ [𝐿𝑖2(𝑒−𝜏) −

𝑥

𝑟

𝜋2

6
] 𝑑𝜏                                                                      (27) 
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     Evaluating the limit, 𝑦𝑝 takes the following final 
form: 

𝑦𝑝 = [−𝐿𝑖3(𝑒−𝑥) −
𝑥𝜋2

6
] − [𝐿𝑖3(1)] =

− [𝐿𝑖3(𝑒−𝑥) +
𝑥𝜋2

6
] − 𝜁(3)                                    (28) 

and the following general solution is then obtained: 
 
𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) − [𝐿𝑖3(𝑒−𝑥) +

𝑥𝜋2

6
] − 𝜁(3)                              

                                                                             (29) 
 

     Graph of the particular solution is shown in Fig. 

2, below. 
 

 
 

Fig. 2. Graph of 𝒚𝒑 when 𝒇(𝒙) = 𝑬𝟐(𝒙) 

 
Case 3: 𝑬𝟑(𝒙) =

𝒙

𝒆𝒙−𝟏
− 𝐥𝐨𝐠 (𝟏 − 𝒆−𝒙) 

Integrating 𝐸3(𝑥) yields a convergent improper 
integral that can be used to obtain 𝑦𝑝, as follows. 

∫ 𝐸3(𝑡)𝑑𝑡 = lim
𝑟→0+

∫ [
𝑡

𝑒𝑡−1
− log(1 − 𝑒−𝑡)] 𝑑𝑡 =

𝜏

𝑟

𝜏

0

𝜏𝑙𝑜𝑔(1 − 𝑒−𝜏) − 2𝐿𝑖2(𝑒−𝜏) +
𝜋3

3
                         (30) 

𝑦𝑝 = ∫ {∫ 𝐸3(𝑡)𝑑𝑡
𝜏

0
}

𝑥

0
𝑑𝜏 = lim

𝑟→0+
∫ [𝜏𝑙𝑜𝑔(1 −

𝑥

𝑟

𝑒−𝜏) − 2𝐿𝑖2(𝑒−𝜏) +
𝜋3

3
] 𝑑𝜏                                    (31) 

     Evaluating the limit, 𝑦𝑝 takes the following final 
form: 
𝑦𝑝 = − {𝑥[𝐿𝑖2(𝑒−𝑥)] + 3𝐿𝑖3(𝑒−𝑥) +

𝜋3

3
𝑥} − 6 𝜁(3)                                                                      

                                                                             (32) 
and the following general solution is then obtained: 
 
𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) − {𝑥[𝐿𝑖2(𝑒−𝑥)] +

3𝐿𝑖3(𝑒−𝑥) +
𝜋3

3
𝑥} − 6 𝜁(3)                                  (33) 

 

     Graph of the particular solution is shown in Fig. 

3, below. 

 

 
Fig. 3. Graph of 𝒚𝒑 when 𝒇(𝒙) = 𝑬𝟑(𝒙) 

 

Case 4: 𝑬𝟒(𝒙) =
𝑥2𝑒𝑥

(𝑒𝑥−1)2 

Integrating 𝐸3(𝑥) yields a convergent improper 
integral that can be used to obtain 𝑦𝑝, as follows. 

∫ 𝐸4(𝑡)𝑑𝑡 = lim
𝑟→0+

∫
𝑡2𝑒𝑡

(𝑒𝑡−1)2 𝑑𝑡 = 2𝐿𝑖2(𝑒𝜏) +
𝜏

𝑟

𝜏

0

2 τlog(1 − 𝑒𝜏) +
𝜏2𝑒𝜏

1−𝑒𝜏 −
𝜋2

3
                                    (34) 

𝑦𝑝 = ∫ {∫ 𝐸4(𝑡)𝑑𝑡
𝜏

0
}

𝑥

0
𝑑𝜏 = lim

𝑟→0+
∫ [2𝐿𝑖2(𝑒𝜏) +

𝑥

𝑟

2 τlog(1 − 𝑒𝜏) +
𝜏2𝑒𝜏

1−𝑒𝜏 −
𝜋2

3
] 𝑑𝜏                              (35) 

     Evaluating the limit, 𝑦𝑝 takes the following final 
form: 

𝑦𝑝 = −𝑥2𝑙𝑜𝑔(1 − 𝑒𝑥) − 4𝑥𝐿𝑖2(𝑒𝑥) + 6𝐿𝑖3(𝑒𝑥) −

𝑥𝜋2

3
− 6 𝜁(3)                                                           (36) 

and the following general solution is then obtained: 
 
𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) − 𝑥2𝑙𝑜𝑔(1 − 𝑒𝑥) −

4𝑥𝐿𝑖2(𝑒𝑥) + 6𝐿𝑖3(𝑒𝑥) −
𝑥𝜋2

3
− 6 𝜁(3)                 (37) 

 
     Graph of the particular solution is shown in Fig. 

4, below. 

 
Fig. 4. Graph of 𝒚𝒑 when 𝒇(𝒙) = 𝑬𝟒(𝒙) 
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3   Asymptotic Series Representations 

When 𝑥 ≫ 1, Airy’s and the Nield-Kuznetsov 
functions have the following asymptotic series 
representations (cf. Hamdan and Kamel, [13], 
and the references therein) that can be used in the 
evaluation of the general solution of ODE (1): 

𝐴𝑖(𝑥) ≈
exp(−𝜇)

2√𝜋𝑥
1
4

                                              (38) 

𝐵𝑖(𝑥) ≈
exp(𝜇)

√𝜋𝑥
1
4

                                                (39) 

𝑁𝑖(𝑥) ≈ −
exp(𝜇)

3√𝜋𝑥
1
4

                                            (40) 

𝐾𝑖(𝑥) ≈
exp(−𝜇)

2√𝜋𝑥
1
4

∫ {
exp(𝜑)

√𝜋𝑡
3
4

}
𝑥

0
𝐸𝑖′(𝑡)𝑑𝑡 −

exp(𝜇)

3√𝜋𝑥
1
4

𝐸𝑖(𝑥)                                                     (41) 

wherein 𝜇 =  
2

3
𝑥

3

2   and  𝜑 =  
2

3
𝑥

2

3.  
     While asymptotic series representations of 
𝐴𝑖(𝑥), 𝐵𝑖(𝑥), and 𝑁𝑖(𝑥) are independent of the 
forcing function of Airy’s ODE (1), that of 𝐾𝑖(𝑥) 
takes into account the forcing function. Equation 
(41) illustrates how Einstein’s function, 𝐸𝑖(𝑥), 
fits into the asymptotic series representation of 
𝐾𝑖(𝑥). 
 

 

4   Relationships between Einstein’s,  

    Airy’s and the Nield-Kuznetsov   

    Functions 
Equations (12), (13) and (17) establish the following 
theorem on relationships between Einstein functions, 
𝐸𝑖(𝑥), Airy’s functions, 𝐴𝑖(𝑥) and 𝐵𝑖(𝑥), and the 
Nield-Kuznetsov functions𝑁𝑖(𝑥) and 𝐾𝑖(𝑥): 
 

Theorem 1: Airy’s functions of the first and 

second kind, the Nield-Kuznetsov functions of the 

forst and second kind, and Einstein’s function, are 

related by: 

 

𝐾𝑖(𝑥) = 𝐸𝑖(𝑥)𝑁𝑖(𝑥) +
1

𝜋
∫ {∫ 𝐸𝑖(𝑡)𝑑𝑡

𝜏

0
}

𝑥

0
𝑑𝜏       (i) 

𝐾𝑖(𝑥) = 𝐸𝑖(𝑥){𝐴𝑖(𝑥) ∫ 𝐵𝑖(𝑡)𝑑𝑡
𝑥

0
−

𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝑑𝑡
𝑥

0
} +

1

𝜋
∫ {∫ 𝐸𝑖(𝑡)𝑑𝑡

𝜏

0
}

𝑥

0
       (ii) 

 

Relationships involving the polylogarithm 
functions are developed using the obtained 
particular solutions, and take the following 
forms: 

𝐾𝑖(𝑥) = 𝐸1(𝑥)𝑁𝑖(𝑥) +
𝑥

𝜋
𝐿𝑖2𝑒−𝑥 +

2

𝜋
𝐿𝑖3𝑒−𝑥 −

𝜋𝑥

6
−

2

𝜋
𝜁(3)                                                     (42) 

𝐾𝑖(𝑥) = 𝐸2(𝑥)𝑁𝑖(𝑥) − [
1

𝜋
𝐿𝑖3(𝑒−𝑥) +

𝑥𝜋

6
] −

1

𝜋
𝜁(3)                                                               (43) 

𝐾𝑖(𝑥) = 𝐸3(𝑥)𝑁𝑖(𝑥) − {
𝑥

𝜋
𝐿𝑖2(𝑒−𝑥) +

3

𝜋
𝐿𝑖3(𝑒−𝑥) +

𝜋2

3
𝑥} −

6

π
 𝜁(3)                             (44) 

𝐾𝑖(𝑥) = 𝐸4(𝑥)𝑁𝑖(𝑥) −
𝑥2

𝜋
𝑙𝑜𝑔(1 − 𝑒𝑥) −

4𝑥

𝜋
𝐿𝑖2(𝑒𝑥) +

6

𝜋
𝐿𝑖3(𝑒𝑥) −

𝑥𝜋

3
−

6

π
 𝜁(3)             (45) 

 
 

5   Conclusion 
In this work, particular solutions and general 
solutions to the inhomogeneous Airy’s ordinary 
differential equation were obtained when the sources 
of inhomogeneity are Einstein’s functions. The 
obtained solutions were expressed in terms of Airy’s 
functions, the Nield-Kuznetsov functions and the 
polylogarithm functions. These solutions set the 
stage for the challenging tasks of computing 
solutions to initial and boundary value problems, and 
establish a connection between Airy’s functions, the 
Nield-Kuznetsov functions and Einstein’s functions. 
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