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1 Introduction 
A series of recent articles discussed the importance 
of Airy’s ordinary differential equation (ODE) in 
fundamental research in the fields of circuits, systems 
and signal processing (c.f. [1-3] and the references 
therein). Applications of Airy’s ODE to the study of 
Schrodinger and Tricomi equations have also been 
emphasized, in addition to its importance in the 
analysis of Stark equation and the study of Stark 
effect, [1-4]. Recent research in the area of Airy’s 
ODE reflects the fundamental importance of seeking 
solutions to the inhomogeneous version, and the need 
for representations and efficient computations of the 
integral functions that arise in the processes of 
obtaining its general and particular solutions, [5-8]. 
     The above needs give ris to the current work 
whose main objective is to develop Taylor series 
representation, and Taylor polynomial 
approximation, to the Standard Nield-Kuznetsov 
function of the first kind, 𝑁𝑖(𝑥), [5,9]. This function 
arises in the general solution to Airy’s, [10], 
inhomogeneous ordinary differential equation of the 
form, [11]: 

𝑑2𝑦

𝑑𝑥2
− 𝑥𝑦 = 𝑅 (1) 

where 𝑅 is any constant.      
     If 𝑅 = 0, general solution of (1) is given by 

𝑦 = 𝑐𝑖𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) (2) 

where 𝑐1, 𝑐2 are arbitrary constants and 𝐴𝑖(𝑥) and 
𝐵𝑖(𝑥) are the two linearly independent functions 
known as Airy’s homogeneous functions of the first 
and second kind, respectively. These functions are 
defined by the following integrals, [8]: 

𝐴𝑖(𝑥) =
1

𝜋
∫ cos(𝑥𝑡 +

𝑡3

3
)𝑑𝑡

∞

0

(3) 

𝐵𝑖(𝑥) =

1

𝜋
∫ sin(𝑥𝑡 +

𝑡3

3
) + exp(𝑥𝑡 −

𝑡3

3
)𝑑𝑡

∞

0

(4)
 

EQUATIONS 
DOI: 10.37394/232021.2022.2.7 T. L. Alderson, M. H. Hamdan

E-ISSN: 2732-9976 38 Volume 2, 2022



     The Wronskian of 𝐴𝑖(𝑥) and 𝐵𝑖(𝑥) is non-zero, 
as given by, [13]: 

𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥)) = 𝐴𝑖(𝑥)𝐵𝑖′(𝑥) − 𝐵𝑖(𝑥)𝐴𝑖′(𝑥) 
                                                                               (5) 

     If 𝑅 = 1

𝜋
 or − 1

𝜋
, general solutions to (1) are given, 

respectively, by 

𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝐻𝑖(𝑥) (6) 

𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝐺𝑖(𝑥) (7) 

where the functions 𝐺𝑖(𝑥) and 𝐻𝑖(𝑥) are the Scorer 
functions, [12], given by 

𝐺𝑖(𝑥) =
1

𝜋
∫ sin (𝑥𝑡 +

𝑡3

3
)𝑑𝑡

∞

0

(8) 

𝐻𝑖(𝑥) =
1

𝜋
∫ exp(𝑥𝑡 −

𝑡3

3
)𝑑𝑡

∞

0

(9) 

     If 𝑅 ≠ ∓ 1

𝜋
, obtaining a general solution to (1) in 

terms of the Scorer functions requires non-trivial 
changes of variables, [8]. A practical need to solve 
(1) for values of 𝑅 ≠ ∓ 1

𝜋
 arose in the analysis of the 

transition layer by Nield and Kuznetsov, [9], who 
found it convenient and necessary to introduce an 
integral function, 𝑁𝑖(𝑥), defined by 

𝑁𝑖(𝑥) = 𝐴𝑖(𝑥)∫ 𝐵𝑖(𝑡)𝑑𝑡
𝑥

0

− 𝐵𝑖(𝑥)∫ 𝐴𝑖(𝑡)𝑑𝑡.
𝑥

0

(10) 

Hamdan and Kamel, [5], showed that 𝑁𝑖(𝑥) 
possesses the integral representation 

𝑁𝑖(𝑥) =
2

3𝜋
∫ sin(𝑥𝑡 +

𝑡3

3
)𝑑𝑡

∞

0

−
1

3𝜋
∫ exp(𝑥𝑡 −

𝑡3

3
)𝑑𝑡

∞

0

(11)

 

and provided the following general solution to (1) in 
terms of 𝑁𝑖(𝑥), which they called the Standard 
Nield-Kuznetsov Function of the First Kind: 

𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) − 𝜋𝑅𝑁𝑖(𝑥) (12) 

     Several properties of 𝑁𝑖(𝑥) were explored by 
Hamdan and Kamel, [5], and further features 
continue to arise in the literature alongside its non-
trivial computations which invariably rely heavily on 
the infinite series representations. In particular, the 
following series representations for 𝑁𝑖(𝑥) have been 
developed and used in its computations, [5,14,15]: 

1.1  Asymptotic Series Approximation: 

Based on asymptotic series representations of Airy’s 
functions, 𝐴𝑖(𝑥) and 𝐵𝑖(𝑥), Hamdan and Kamel, [5], 
obtained the following asymptotic series for 𝑁𝑖(𝑥): 

𝑁𝑖(𝑥) =
1

2𝜋𝑥2
− 
exp(𝜇)

3√𝜋𝑥
1

4

(13) 

where = 2
3
𝑥3/2 . If 𝑥 is large, (13) can be 

approximated by the following, [9]: 

𝑁𝑖(𝑥) = − 
exp(𝜇)

3√𝜋𝑥
1

4

(14) 

1.2  Ascending Series Representation: 

Airy’s particles, 𝑎1 and 𝑎2, are defined as, [8, 13]: 

𝑎1 = 𝐴𝑖(0) =
1

3
2

3Γ (
2

3
)

(15) 

𝑎2 = −𝐴
′
𝑖(0) =

1

3
1

3Γ (
1

3
)

(16) 

wherein Γ(. ) is the Gamma function. The Airy’s 
particles and the following two series 

𝐹1(𝑥) = ∑(
1

3
)
𝑘

∞

𝑘=0

3𝑘𝑥3𝑘+1

(3𝑘 + 1)!
(17) 

𝐹2(𝑥) = ∑(
2

3
)
𝑘

∞

𝑘=0

3𝑘𝑥3𝑘+2

(3𝑘 + 2)!
(18) 

which employ the Pochhammer symbol, or shifted 

factorial   

(𝑏)𝑘 =
𝛤(𝑏 + 𝑘)

𝛤(𝑏)
= 𝑏(𝑏 + 1)(𝑏 + 2)… (𝑏 + 𝑘 − 1);

 (𝑏)0 = 1                                                                      (19)
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were employed by Hamdan and Kamel, [5], to obtain 
the following expression of 𝑁𝑖(𝑥): 

𝑁𝑖(𝑥) = 2√3𝑎1𝑎2{𝐹2𝐹
′
1 − 𝐹

′
2} (20) 

or, equivalently 

𝑁𝑖(𝑥) = 2√3𝑎1𝑎2

[
 
 
 
 
 
 
 
 
 
 
 {∑ (

1

3
)
𝑘

∞

𝑘=0

3𝑘𝑥3𝑘

(3𝑘)!
} ∗

{∑ (
2

3
)
𝑘

∞

𝑘=0

3𝑘𝑥3𝑘+2

(3𝑘 + 2)!
}

− {∑(
2

3
)
𝑘

∞

𝑘=0

3𝑘𝑥3𝑘+1

(3𝑘 + 1)!
} ∗

{∑ (
1

3
)
𝑘

∞

𝑘=0

3𝑘𝑥3𝑘+1

(3𝑘 + 1)!
}
]
 
 
 
 
 
 
 
 
 
 
 

(21) 

     Using Cauchy product, (21) can be written as, 
[14]: 

𝑁𝑖(𝑥) = 2√3𝑎1𝑎2 ∗

∑3𝑘𝑥3𝑘+2

{
 

 

∑

(
1

3
)
𝑙
(
2

3
)
𝑘−𝑙

(
−3𝑘 + 6𝑙 − 1

(3𝑙 + 1)! (3(𝑘 − 𝑙) + 2)!
) 

𝑘

𝑙=0
}
 

 ∞

𝑘=0

                                                                                      (22)

 

    
  Series representations (21) and (22) are the 
ascending series representations of 𝑁𝑖(𝑥). They can 
be used in the efficient computations of 𝑁𝑖(𝑥) for 
small enough values of 𝑥, [14]. 
     Both asymptotic and ascending series underscore 
the importance of investigating properties and 
representations of functions associated with the 
solutions of Airy’s homogeneous and 
inhomogeneous equation. In addition to providing 
invaluable insight into the behaviour of solutions to 
Airy’s equation and the expanded applications in 
mathematical physics, the relationships these arising 
functions have with other functions of mathematical 
physics serves not only to enrich, but to potentially 
expand and deepen mathematical knowledge (cf. [16-
18] and the references therein). This motivates the 
current work whose scope is to examine 
representations of 𝑁𝑖(𝑥) using Taylor and Maclaurin 
series, and its approximations using Taylor and 
Maclaurin polynomials. 
 

 

2 Taylor Series Expansion of 𝑵𝒊(𝒙) 
The function 𝑁𝑖(𝑥) is a smooth function with an 𝑛𝑡ℎ 
derivative expressible in terms of Airy’s 
polynomials, [3]. It can therefore be expanded in a 
Taylor series, about 𝑥 = 𝑥0, of the form:  

𝑁𝑖(𝑥) = ∑𝐶𝑘

∞

𝑘=0

(𝑥 − 𝑥0)
𝑘 = 𝐶0 + 𝐶1(𝑥 − 𝑥0) +

𝐶2(𝑥 − 𝑥0)
2 +⋯+ 𝐶𝑛(𝑥 − 𝑥0)

𝑛 +⋯              (23)

 

where 

𝐶𝑘 =
𝑁𝑖(𝑘)(𝑥0)

𝑘!
(24) 

and 𝑁𝑖(𝑘)(𝑥0) denotes the 𝑘𝑡ℎ derivative of 𝑁𝑖(𝑥) 
evaluated at 𝑥 = 𝑥0. 
     If 00 x  then Taylor series becomes Maclaurin 
series, namely: 

𝑁𝑖(𝑥) = ∑𝐶𝑘

∞

𝑘=0

𝑥𝑘 (25) 

where 

𝐶𝑘 =
𝑁𝑖(𝑘)(0)

𝑘!
(26) 

 
2.1  Derivatives of 𝑵𝒊(𝒙) 
In a recent article, Hamdan et.al., [3], obtained 
expressions for the higher derivatives of 𝑁𝑖(𝑥). The 
first ten derivatives can be obtained from 
equation(10) by direct differentiation, and are 
tabulated below. 

Table 1. The first ten derivatives of 𝑵𝒊(𝒙) 

𝑁𝑖(1)(𝑥) = 𝑁′𝑖(𝑥) = 𝐴𝑖′(𝑥)∫ 𝐵𝑖(𝑡)𝑑𝑡
𝑥

0

 

                                 −𝐵𝑖′(𝑥) ∫ 𝐴𝑖(𝑡)𝑑𝑡
𝑡

0
 

𝑁𝑖(2)(𝑥) = 𝑁′′𝑖(𝑥) = 𝑥𝑁𝑖(𝑥) −
1

𝜋
 

𝑁𝑖(3)(𝑥) = 𝑁𝑖(𝑥) + 𝑥𝑁′𝑖(𝑥) 

𝑁𝑖(4)(𝑥) = 𝑥2𝑁𝑖(𝑥) + 2𝑁′𝑖(𝑥) −
𝑥

𝜋
 

𝑁𝑖(5)(𝑥) = 4𝑥𝑁𝑖(𝑥) + 𝑥2𝑁′𝑖(𝑥) −
3

𝜋
 

𝑁𝑖(6)(𝑥) = (𝑥3 + 4)𝑁𝑖(𝑥) + 6𝑥𝑁′𝑖(𝑥) −
𝑥2

𝜋
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𝑁𝑖(7)(𝑥) = 9𝑥2𝑁𝑖(𝑥) + (𝑥3 + 10)𝑁′𝑖(𝑥) −
8𝑥

𝜋
 

 

𝑁𝑖(8)(𝑥) = (𝑥4 + 28𝑥)𝑁𝑖(𝑥) + 12𝑥2𝑁′𝑖(𝑥)

−
(𝑥3 + 18)

𝜋
 

𝑁𝑖(9)(𝑥) = (16𝑥3 + 28)𝑁𝑖(𝑥) + (𝑥4

+ 52𝑥)𝑁′𝑖(𝑥) −
15𝑥2

𝜋
 

𝑁𝑖(10)(𝑥) = (𝑥5 + 100𝑥2)𝑁𝑖(𝑥) + (20𝑥3

+ 80)𝑁′𝑖(𝑥) −
(𝑥4 + 82𝑥)

𝜋
 

     The second and higher derivatives of 𝑁𝑖(𝑥) can 
be expressed in terms of 𝑁𝑖(𝑥), 𝑁𝑖′(𝑥) and 
𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥))( =

1

𝜋
 ) with coefficients that are 

polynomials in 𝑥. The 𝑘𝑡ℎ derivative of 𝑁𝑖(𝑥), for 
𝑘 ≥ 2, can then be expressed as 

𝑁𝑖(𝑘)(𝑥) = 𝑃𝑘(𝑥)𝑁𝑖(𝑥) + 𝑄𝑘(𝑥)𝑁
′𝑖(𝑥)

−
𝑅𝑘(𝑥)

𝜋
(27)

                      

For derivative orders 𝑘 = 2 to 10, Table 2 lists 
𝑃𝑘(𝑥), 𝑄𝑘(𝑥), and 𝑅𝑘(𝑥):  
 

Table 2. Polynomial Coefficients of 𝑁𝑖(𝑥), 𝑁𝑖′(𝑥) 
and 𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥)) 

k 𝑃𝑘(𝑥) 𝑄𝑘(𝑥) 𝑅𝑘(𝑥) 

2 x 0 1 

3 1 x 0 

4 𝑥2 2 x 

5 4x 𝑥2 3 

6 𝑥3 + 4 6𝑥 𝑥2 

7 9𝑥2 𝑥3 + 10 8x 

8 𝑥4 + 28𝑥 12𝑥2 𝑥3 + 18 

9 16𝑥3 + 28 𝑥4 + 52𝑥 15𝑥2 

10 𝑥5

+ 100𝑥2 
20𝑥3 + 80 𝑥4 + 82𝑥 

     More generally, the degrees of these polynomials 
may be determined for arbitrary 𝑘, and are provided 
in the following Table 3 in terms of the floor 
function. 

Table 3. Degrees of Coefficient Polynomials 

Polynomial Degree 

𝑃𝑘(𝑥) 3⌊𝑘−2
2
⌋ − 𝑘 + 3, 𝑘 ≥ 2 

𝑄𝑘(𝑥)  3⌊𝑘−3
2
⌋ − 𝑘 + 4, 𝑘 ≥ 3 

𝑅𝑘(𝑥) 3⌊𝑘−4
2
⌋ − 𝑘 + 5, 𝑘 ≥ 5 

     The k+1st derivative of 𝑁𝑖(𝑥) takes the form: 

𝑁𝑖(𝑘+1)(𝑥) = 𝑃𝑘+1(𝑥)𝑁𝑖(𝑥) + 𝑄𝑘+1(𝑥)𝑁𝑖
′(𝑥)

−
𝑅𝑘+1(𝑥)

𝜋
. (28)

 

     In order to be able to compute the k+1st derivative 
with the knowledge of the 𝑘𝑡ℎ derivative, Hamdan 
et.al., [3], established the following relationships 
between the polynomial coefficients in (27) and (28): 

𝑃𝑘+1(𝑥) = 𝑃
′
𝑘(𝑥) + 𝑥𝑄𝑘(𝑥) (29) 

𝑄𝑘+1(𝑥) = 𝑄
′
𝑘
(𝑥) + 𝑃𝑘(𝑥) (30) 

𝑅𝑘+1(𝑥) = 𝑅
′
𝑘(𝑥) + 𝑄𝑘(𝑥) (31) 

     Once the 𝑘𝑡ℎ derivative is known, the polynomial 
coefficients from (27) can be used in (29)-(31) to 
compute the polynomial coefficients in (28). 
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     Now, using (27) in (24), the following 
coefficients are obtained in the Taylor series 
expansion of 𝑁𝑖(𝑥): 

𝐶𝑘 =
𝑁𝑖(𝑘)(𝑥0)

𝑘!
= {𝑃𝑘(𝑥0)𝑁𝑖(𝑥0) +

𝑄𝑘(𝑥)𝑁
′𝑖(𝑥0) −

𝑅𝑘(𝑥0)

𝜋
}/𝑘!                            (32)                                                       

and (23) can be written as: 

𝑁𝑖(𝑥) = 𝑁𝑖(𝑥0) + 𝑁𝑖′(𝑥0)(𝑥 − 𝑥0) +

𝑁𝑖(𝑥0)∑
𝑃𝑘(𝑥0)(𝑥−𝑥0)

𝑘

𝑘!
+∞

𝑘=2

𝑁′𝑖(𝑥0)∑
𝑄𝑘(𝑥0)(𝑥−𝑥0)

𝑘

𝑘!

∞
𝑘=2 −

1

𝜋
∑

𝑅𝑘(𝑥0)(𝑥−𝑥0)
𝑘

𝑘!

∞
𝑘=2                                       (33)                                                                                                                          

In order to find 𝑃𝑘(𝑥), 𝑄𝑘(𝑥) and 𝑅𝑘(𝑥) in terms 
of previously calculated polynomials, (29)-(31) 
are used in the form: 

𝑃𝑘(𝑥) = 𝑃′𝑘−1(𝑥) + 𝑥𝑄𝑘−1(𝑥)                       (34)                                                                                                                           

𝑄𝑘(𝑥) = 𝑄
′
𝑘−1

(𝑥) + 𝑃𝑘−1(𝑥)                       (35)                                                                                                                       

𝑅𝑘(𝑥) = 𝑅′𝑘−1(𝑥) + 𝑄𝑘−1(𝑥)                       (36)                                                                                                                 

Using (34)-(36) in (32), the following 
coefficients are obtained: 

𝐶𝑘 =
{[𝑃′𝑘−1(𝑥0) + 𝑥0𝑄𝑘−1(𝑥0)]𝑁𝑖(𝑥0) +}

𝑘!
 

+
{[𝑄′𝑘−1(𝑥0) + 𝑃𝑘−1(𝑥0)]𝑁

′𝑖(𝑥0) }

𝑘!
 

        −
{ 
[𝑅′𝑘−1(𝑥0)+𝑄𝑘−1(𝑥0)]

𝜋
}

𝑘!
                        (37) 

Equation (45)(33) can then by replaced by the 
following final form of Taylor series expansion 
of 𝑁𝑖(𝑥) about 𝑥 = 𝑥0: 

𝑁𝑖(𝑥) = 𝑁𝑖(𝑥0) + 𝑁𝑖
′(𝑥0)(𝑥 − 𝑥0) +

1

2
𝑁𝑖′′(𝑥0)(𝑥 − 𝑥0)

2 +

𝑁𝑖(𝑥0)∑
{𝑃′𝑘−1(𝑥0)+𝑥0𝑄𝑘−1(𝑥0)}(𝑥−𝑥0)

𝑘

𝑘!
+∞

𝑘=3

𝑁′𝑖(𝑥0)∑
{𝑄′𝑘−1(𝑥0)+𝑃𝑘−1(𝑥0)}(𝑥−𝑥0)

𝑘

𝑘!

∞
𝑘=3 −

1

𝜋
∑

{𝑅′𝑘−1(𝑥0)+𝑄𝑘−1(𝑥0)}(𝑥−𝑥0)
𝑘

𝑘!

∞
𝑘=3                     (38)                                                                                             

If 𝑥0 = 0 then 𝑁𝑖(0) = 𝑁𝑖′(0) = 0 and  

𝑁𝑖(𝑘)(0) = −
𝑅𝑘(0)

𝜋
                                          (39) 

𝑁𝑖(𝑘+1)(0) = −
𝑅𝑘+1(0)

𝜋
= −

[𝑄𝑘(0)+𝑅
′
𝑘(0)]

𝜋
     (40) 

Equation (38) becomes the following Maclaurin 
series expansion of 𝑁𝑖(𝑥): 

𝑁𝑖(𝑥) = −
1

2𝜋
𝑥2 −

1

𝜋
∑

{𝑅′𝑘−1(0)+𝑄𝑘−1(0)}𝑥
𝑘

𝑘!

∞
𝑘=3                                                                                                         

                                                                      (41) 
 

 

3 Convergence of Taylor Series of 
𝑵𝒊(𝒙) 

This series converges for values of 𝑥 satisfying 
|𝑥 − 𝑥0| < 𝑟, where 𝑟 is the radius of convergence 
defined by 

1

𝑟
= lim

𝑘→∞
|
𝐶𝑘+1
𝐶𝑘

| = lim
𝑘→∞

|
𝑁𝑖(𝑘+1)(𝑥0)

(𝑘 + 1)𝑁𝑖(𝑘)(𝑥0)
|

= lim
𝑘→∞

|
𝐿

(𝑘 + 1)
| = 0 (42)

 

where 𝐿 = 𝑁𝑖(𝑘+1)(𝑥0)

𝑁𝑖(𝑘)(𝑥0)
 is finite since the maximum 

degrees of the polynomials involved in 𝑁𝑖(𝑘)(𝑥0) and 
𝑁𝑖(𝑘+1)(𝑥0) are comparable. Hence, the radius of 
convergence 𝑟 is infinite and series (38) converges 
for all 𝑥. The same is true for Maclaurin series (41). 

This furnishes the following Theorem on 
convergence. 

Theorem 1.  

The Taylor series expansion (38) of 𝑵𝒊(𝒙) about 𝒙𝟎 

converges for all values of 𝒙. 

 

 

4  Values of Polynomials and  

    Derivatives of 𝑵𝒊(𝒙) at 𝒙 = 𝟎 
Values of polynomials 𝑃𝑘(𝑥), 𝑄𝑘(𝑥), and 𝑅𝑘(𝑥) and 
derivatives of 𝑁𝑖(𝑥) at 𝑥 = 0 are shown in the 
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following Table 4 for 𝑘 = 2 to 15. At the outset, it is 
noted that for any given derivative, only one of the 
polynomials is non-zero at 𝑥 = 0. Furthermore, 
𝑁𝑖(𝑘)(0) is non-zero whenever 𝑅𝑘(0) is non-zero, 
and the following recursive relations can easily be 
established: 

𝑅𝑘+3(0) = (𝑘 + 1)𝑅𝑘(0);  𝑘 ≥ 2 (43) 

𝑃𝑘+3(0) = (𝑘 + 1)𝑃𝑘(0);  𝑘 ≥ 3 (44) 

𝑄𝑘+3(0) = (𝑘 + 1)𝑄𝑘(0);  𝑘 ≥ 4 (45) 

𝑁𝑖(𝑘)(0) = −
𝑅𝑘(0)

𝜋
 

= (𝑘 − 2)𝑁𝑖(𝑘−3)(0);  𝑘 ≥ 3 (46) 

𝑁𝑖(𝑘+1)(0) = −
𝑅𝑘+1(0)

𝜋
= (𝑘 − 1)𝑁𝑖(𝑘−2)(0);  𝑘 ≥ 2 (47)

 

 

Table 4. Values of Coefficient Polynomials and 
Derivatives of 𝑁𝑖(𝑥) at 𝑥 = 0 

 

k 𝑃𝑘(0) 𝑄𝑘(0) 𝑅𝑘(0) 𝑁𝑖(𝑘)(0) 

2 0 0 1 −1/𝜋 

3 1 0 0 0 

4 0 2 0 0 

5 0 0 3 −3/𝜋 

6 4 0 0 0 

7 0 10 0 0 

8 0 0 18 −18/𝜋 

9 28 0 0 0 

10 0 80 0 0 

11 0 0 162 −162/𝜋 

12 280 0 0 0 

13 0 880 0 0 

14 0 0 1944 −1944/𝜋 

15 3640 0 0 0 

     It may also be convenient to note the closed 
formulae for the respective values as represented in 
the following table. As indicated, the values depend 
on the congruence of 𝑘 modulo 3, and employ the 
triple factorial notation, n!!! = n(n − 3)(n −
6)(n − 9)⋯ (n − a);  3 ≥  (n − a)  >  0. 

Table 5. Values of Coefficient Polynomials and 
𝑁𝑖(𝑘)(𝑥) at 𝑥 = 0 as related to congruence of 𝑘 
modulo 3.  

k 𝑃𝑘(0) 𝑄𝑘(0) 𝑅𝑘(0) 𝑁𝑖(𝑘)(0) 

𝑘

= 3𝑚 

(3𝑚

− 2)‼! 
0 0 0 

𝑘

= 3𝑚

+ 1 
0 

(3𝑚

− 1)‼! 
0 0 

𝑘

= 3𝑚

+ 2 
0 2 (3𝑚)‼! −

(3𝑚)‼!

𝜋
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5   Taylor Polynomial Approximation  

     to 𝑵𝒊(𝒙) 
If the Taylor series of 𝑁𝑖(𝑥) is terminated after n+1 
terms, then a Taylor polynomial, 𝑇𝑛(𝑥), of degree n 
results. This polynomial approximates the function 
𝑁𝑖(𝑥) near 0xx  , namely 

𝑁𝑖(𝑥) ≈ 𝑇𝑛(𝑥) = ∑
𝑁𝑖(𝑘)(𝑥0)

𝑘!
(𝑥 − 𝑥0)

𝑘𝑛
𝑘=0                                                                                                                     

= 𝑁𝑖(𝑥0) + 𝑁𝑖
′(𝑥0)(𝑥 − 𝑥0) + 𝑁𝑖

′′(𝑥0)
(𝑥 − 𝑥0)

2

2!

+⋯+ 𝑁𝑖(𝑛)(𝑥0)
(𝑥 − 𝑥0)

𝑛

𝑛!
                                  (48)

 

Equation (48) takes the following form in terms of 
Airy’s polynomials: 

𝑁𝑖(𝑥) ≈ 𝑇𝑛(𝑥) = 𝑁𝑖(𝑥0) + 𝑁𝑖
′(𝑥0)(𝑥 − 𝑥0)

+
1

2
𝑁𝑖′′(𝑥0)(𝑥 − 𝑥0)

2 

+𝑁𝑖(𝑥0)∑
{𝑃′𝑘−1(𝑥0) + 𝑥0𝑄𝑘−1(𝑥0)}(𝑥 − 𝑥0)

𝑘

𝑘!

𝑛

𝑘=3

 

+𝑁′𝑖(𝑥0)∑
{𝑄′𝑘−1(𝑥0) + 𝑃𝑘−1(𝑥0)}(𝑥 − 𝑥0)

𝑘

𝑘!

𝑛

𝑘=3

−
1

𝜋
∑

{𝑅′𝑘−1(𝑥0) + 𝑄𝑘−1(𝑥0)}(𝑥 − 𝑥0)
𝑘

𝑘!

𝑛

𝑘=3

(49)

 

If 00 x  then the Taylor polynomial becomes 

Maclaurin polynomial, 𝑀𝑛(𝑥):  

𝑁𝑖(𝑥) ≈ 𝑀𝑛(𝑥) = −
1

2𝜋
𝑥2

−
1

𝜋
∑

{𝑅′𝑘−1(0) + 𝑄𝑘−1(0)} 𝑥
𝑘

𝑘!

𝑛

𝑘=3

  (50)
 

 = −
1

2𝜋
𝑥2 −

1

𝜋
∑

𝑅𝑘(0)𝑥
𝑘

𝑘!

𝑛

𝑘=3

(51) 

where 𝑅𝑘(0) can be generated using (43). 

As an example, the 14th degree Maclaurin polynomial 
approximation of  𝑁𝑖(𝑥) takes the form 

𝑀14(𝑥) = −
1

𝜋
⋅ (

1

2!
𝑥2 +

3

5!
𝑥5 +

18

8!
𝑥8 +

162

11!
𝑥11 +

1944

14!
𝑥14

) (52) 

 

6   Remainder and Error Terms 
When approximating 𝑁𝑖(𝑥) by an 𝑛𝑡ℎ degree Taylor 
polynomial, 𝑇𝑛(𝑥), an error term, 𝐸𝑛(𝑥) = 𝑁𝑖(𝑥) −
𝑇𝑛(𝑥), is introduced. Explicitly,  𝐸𝑛(𝑥) is given by: 

𝐸𝑛(𝑥) = ∑
𝑁𝑖(𝑘)(𝑥0)

𝑘!
(𝑥 − 𝑥0)

𝑘

∞

𝑘=0

−∑
𝑁𝑖(𝑘)(𝑥0)

𝑘!
(𝑥 − 𝑥0)

𝑘

𝑛

𝑘=0

= ∑
𝑁𝑖(𝑘)(𝑥0)

𝑘!
(𝑥 − 𝑥0)

𝑘

∞

𝑘=𝑛+1

(53)

 

     On an arbitrary interval [𝑎, 𝑏] around 𝑥0, 
continuity of 𝑁𝑖(𝑥) and each of it’s derivatives 
deems that 𝑁𝑖(𝑛+1)(𝑥) is bounded, say 
|𝑁𝑖(𝑛+1)(𝑥)| ≤ 𝑀. As such, Taylor’s inequality 
provides 

|𝐸𝑛(𝑥)| ≤ 𝑀
|𝑥 − 𝜏|𝑛+1

(𝑛 + 1)!
(54) 

For all 𝜏 ∈ [𝑎, 𝑏].  Consequently,  

0 ≤ |𝐸𝑛(𝑥)| ≤ 𝑀
|𝑥 − 𝜏|𝑛+1

(𝑛 + 1)!

≤ 𝑀 ⋅
(𝑏 − 𝑎)𝑛+1

(𝑛 + 1)!
(55)

 

Taking limits in (55) shows   

lim
𝑛→∞

𝐸𝑛 = 0 (56) 

In other words, 𝑁𝑖(𝑥) is equal to it’s Taylor Series 
(everywhere). 
 
 
7   Tangent Line Approximation 
If n=1 then Taylor polynomial approximation to 
𝑁𝑖(𝑥) becomes: 

𝑁𝑖(𝑥) ≈ 𝑇1(𝑥) = 𝑁𝑖(𝑥0) + 𝑁𝑖′(𝑥0)(𝑥 − 𝑥0) (57) 
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     In the first derivative of 𝑁𝑖(𝑥), Airy’s 
polynomials are not involved. Therefore, using (10), 
the following expressions for 𝑁𝑖(𝑥0) and 𝑁𝑖′(𝑥0) are 
obtained, respectively 

𝑁𝑖(𝑥0) = 𝐴𝑖(𝑥0)∫ 𝐵𝑖(𝑡)𝑑𝑡
𝑥0

0

−𝐵𝑖(𝑥0)∫ 𝐴𝑖(𝑡)𝑑𝑡
𝑥0

0

(58)

 

𝑁𝑖′(𝑥0) = 𝐴𝑖
′(𝑥0)∫ 𝐵𝑖(𝑡)𝑑𝑡

𝑥0

0

−𝐵𝑖′(𝑥0)∫ 𝐴𝑖(𝑡)𝑑𝑡
𝑥0

0

(59)

 

Using (59) and (60) in (58) yields 

𝑁𝑖(𝑥) ≈ 𝑇1(𝑥)  

= [𝐴𝑖(𝑥0) + (𝑥 − 𝑥0)𝐴𝑖
′(𝑥0)] ∫ 𝐵𝑖(𝑡)𝑑𝑡

𝑥0

0

−[𝐵𝑖(𝑥0) + (𝑥 − 𝑥0)𝐵𝑖
′(𝑥0)]∫ 𝐴𝑖(𝑡)𝑑𝑡

𝑥0

0

(60)

 

     Equation (61) is the tangent line approximation to 
𝑁𝑖(𝑥) near 𝑥 = 𝑥0. It is written here in terms of 
Airy’s functions and integrals. 
     Equation (58) also gives an approximation to the 
slope of the tangent line, 𝑁𝑖′(𝑥0), in terms of the 
slope of the secant line, namely 

𝑁𝑖′(𝑥0) ≈
𝑁𝑖(𝑥) − 𝑁𝑖(𝑥0)

(𝑥 − 𝑥0)
(61) 

     If 𝑥0 = 0, then the right-hand-side of (59) is zero 
and  

𝑁𝑖′(0) = 0. (62) 

8   Sample Results 
In using 10 terms of series ascending series (21), 
Alzahrani et.al. obtained the following values for 
𝑁𝑖(𝑥) when 10 decimal places are retained: 

𝑁𝑖(1) = −0.1672560919  

𝑁𝑖(0.1) = −0.0015911629  

     In using asymptotic series (13), which is valid for 
𝑥 ≫ 1, the following approximation is obtained: 

𝑁𝑖(1) = −0.2071421427 

     It is believed that the computed value of 𝑁𝑖(1) is 
more accurate when the ascending series is used.  
     By comparison, in using Maclaurin polynomial, 
(52), of various degrees, the following 
approximations are obtained for 𝑁𝑖(1) (Table 6) and 
𝑁𝑖(0.1) (Table 7) while retaining 10 decimal places. 
All Maclaurin polynomials used give an excellent 
agreement with the values computed using ascending 
series (21). 
 

Table 6. Computed Values of 𝑁𝑖(1) Using 
Maclaurin Polynomials 

 

𝑵𝒊(𝒙) ≈ 𝑴𝒏(𝒙) 
 

𝑵𝒊(𝟏) ≈
𝑴𝒏(𝟏) 

 

𝑀2(𝑥) = −
1

𝜋

𝑥2

2!
 

-0.1591549430 

𝑀5(𝑥) = −
1

𝜋
(
𝑥2

2!
+
3𝑥5

5!
) 

 

-0.1671126902 

𝑀8(𝑥) = −
1

𝜋
(
𝑥2

2!
+
3𝑥5

5!

+
18𝑥8

8!
) 

 

-0.1672547928 

𝑀11(𝑥) = −
1

𝜋
(
𝑥2

2!
+
3𝑥5

5!

+
18𝑥8

8!

+
162𝑥11

11!
) 

 

-0.1672560818 

𝑀14(𝑥) = −
1

𝜋
⋅ (
𝑥2

2!
+
3𝑥5

5!

+
18𝑥8

8!

+
162𝑥11

11!

+
1944𝑥14

14!
) 

 

-0.1672568251 
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Table 7. Computed Values of 𝑁𝑖(0.1) Using 
Maclaurin Polynomials 

 

𝑵𝒊(𝒙) ≈ 𝑴𝒏(𝒙) 
 

𝑵𝒊(𝟎. 𝟏) ≈
𝑴𝒏(𝟎. 𝟏) 

 

𝑀2(𝑥) = −
1

𝜋

𝑥2

2!
 

-0.0015915494 

𝑀5(𝑥) = −
1

𝜋
(
𝑥2

2!
+
3𝑥5

5!
) 

 

-0.001591628977 

𝑀8(𝑥) = −
1

𝜋
(
𝑥2

2!
+
3𝑥5

5!

+
18𝑥8

8!
) 

 

-0.0015916289784 

𝑀11(𝑥) = −
1

𝜋
(
𝑥2

2!
+
3𝑥5

5!

+
18𝑥8

8!

+
162𝑥11

11!
) 

-0.0015916289784 

𝑀14(𝑥)

= −
1

𝜋

⋅ (
𝑥2

2!
+
3𝑥5

5!
+
18𝑥8

8!

+
162𝑥11

11!
+
1944𝑥14

14!
) 

-0.0015916289784 

 
 

9 Conclusion 
In this work, Taylor and Maclaurin series expansions 
of the Standard Nield-Kuznetsov function of the first 
kind, 𝑁𝑖(𝑥), were obtained in order to provide further 
insight into the behavior of this integral function. 
Convergence criteria were also investigated in order 
to show that Taylor series representation of 𝑁𝑖(𝑥) 
converges for all 𝑥. Errors incurred in representing 
this function by Taylor and Maclaurin polynomials 
were quantified and tangent line approximation was 
obtained. Results obtained in computing 𝑁𝑖(𝑥) using 
Maclaurin polynomial agree well with results 
obtained using ascending series representation for 
small values of x. 
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