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1 Introduction
Modeling many problems of science, engineering,
physics, and other disciplines-leads to linear and non-
linear Fredholm and Volterra integral equations of the
second kind. These are usually difficult to solve an-
alytically and in many cases the solution must be ap-
proximated. Therefore, in recent years several numer-
ical approaches have been proposed [5, 6, 7, 20].

The basic idea and arithmetics of fuzzy sets were
first introduced by Zadeh in [25]. The concept of
fuzzy derivatives and fuzzy integration were studied
in [10, 12] and then some generalization have been
investigated in [9, 10]. The topic of fuzzy integral
equations has been rapidly grown recent years.

Abbasbandy et. al [1] proposed a numerical algo-
rithm for solving linear Fredholm fuzzy integral equa-
tions of the second kind by using parametric form of
fuzzy number and converting a linear fuzzy Fredholm
integral equation to two linear systems of integral
equation of the second kind in crisp case. Babolian
et. al [3] proposed another numerical procedure for
solving fuzzy linear Fredholm integral of the second
kind using Adomian method. Moreover, Friedman et.
al [11] proposed an embedding method to solve fuzzy
Volterra and Fredholm integral equations. However,
there are several research papers about obtaining the
numerical integration of fuzzy-valued functions and
solving fuzzy Volterra and Fredholm integral equa-
tions [2, 4, 8, 13, 14, 15, 16, 17, 18, 22, 24].

The fuzzy Laplace transform method solves FDEs
and corresponding fuzzy initial and boundary value
problems [2]. In this way fuzzy Laplace transforms
reduce the problem of solving a FDE to an algebraic
problem [19]. This switching from operations of cal-
culus to algebraic operations on transforms is called
operational calculus, a very important area of applied
mathematics, and for engineers, the fuzzy Laplace
transform method is practically the most important

operational method.
Recently, Allahviranloo and Barkhordari in [2] pro-
posed fuzzy Laplace transforms for solving first or-
der fuzzy differential equations under generalized H-
differentiability. By such benefits, we develop fuzzy
Laplace transform method to solve fuzzy convolu-
tion Volterra integral equation (FCVIE) of the second
kind. So, the original FCVIE is converted to two crisp
convolution integral equations in order to determine
the lower and upper function of solution, using fuzzy
convolution operator.

The paper is organized as follows. In section 2,
some basic definitions which will be used later in the
paper are provided. In section 3, the fuzzy Laplace
transform is studied. In section 4, the fuzzy convolu-
tion Volterra and Fredholm integral equations of the
second kind with fuzzy convolution kernel is stud-
ied. Then, the fuzzy Laplace transforms are applied to
solve such special fuzzy integral equation in section
5. Illustrative examples are also considered to show
the ability of the proposed method in section 6, and
the conclusion is drawn in section 7.

2 Preliminaries
In this section, we will recall some basics def-

initions and theorems needed throughout the paper
such as fuzzy number, fuzzy-valued function and the
derivative of the fuzzy-valued functions [9, 10, 12, 23,
25].

We denote the set of all real numbers by R.
A fuzzy number is a mapping u : R −→ [0, 1]

with the following properties:

• (a) u is upper semi-continuous,

• (b) u is fuzzy convex, i.e., u(λx+ (1− λ)y) ≥
min{u(x), u(y)} for all x, y ∈ R, λ ∈ [0, 1],

• (c) u is normal, i.e., ∃x0 ∈ R for which u(x0) =
1,
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• (d) suppu = {x ∈ R|u(x) > 0} is the support
of the u, and its closure cl(suppu) is compact.
Let E be the set of all fuzzy numbers on R. The
α− levelset of a fuzzy number u ∈ E, 0 ≤ α ≤
1, denoted by [u]α, is defined as

[u]α =

{
{x ∈ R|u(x) ≥ α} if 0 < α ≤ 1

cl(suppu) if α = 0.

It is clear that the α − level set of a fuzzy num-
ber is a closed and bounded interval [u(α), u(α)],
where u(α) denotes the left-hand endpoint of [u]α
and u(α) denotes the right-hand endpoint of [u]α.
Since each y ∈ R can be regarded as a fuzzy number
ỹ defined by

ỹ(t) =

{
1 if t = y

0 if t ̸= y.

An equivalent parametric definition is also given in
[12] as:

Definition 1. A fuzzy number u in parametric form is
a pair (u, u) of functions u(α), u(α), 0 ≤ α ≤ 1,
which satisfy the following requirements:

• 1. u(α) is a bounded non-decreasing left con-
tinuous function in (0, 1], and right continuous at
0,

• 2. u(α), is a bounded non-increasing left contin-
uous function in (0, 1], and right continuous at
0,

• 3. u(α) ≤ u(α), 0 ≤ α ≤ 1.

A crisp number α is simply represented by u(α) =
u(α) = α, 0 ≤ α ≤ 1. We recall that for a < b <
c which a, b, c ∈ R, the triangular fuzzy number
u = (a, b, c) determined by a, b, c is given such that
represented by u(α) = a + (b − a)α and u(α) =
c−(c−b)α are the endpoints of the alpha-level sets,
for all α ∈ [0, 1]. The Hausdorff distance between
fuzzy numbers given by d : E× E −→ R+ ∪ {0}.

d(u, v) = sup
α∈[0,1]

max{|u(α)− v(α)|, |u(α)− v(α)|}

where u = (u(α), u(α)), v = (v(α), v(α)) ⊂ R is
utilized in [10]. Then, it is easy to see that d is a metric
in E and has the following properties

• (i) d(u+ w, v + w) = d(u, v), ∀u, v, ω ∈ E,

• (ii) d(ku, kv) = |k|d(u, v), ∀k ∈ R, u, v ∈ E,

• (iii) d(u + v, w + e) ≤ d(u,w) +
d(v, e), ∀u, v, w, e ∈ E,

• (iv) (d,E), is a complete metric space

Definition 2. [8], Let f : R −→ E be a fuzzy
valued function. If for arbitrary fixed t0 ∈ R and
ϵ > 0, a δ > 0 such that

|t− t0| < δ =⇒ d(f(t), f(t0)) < ϵ.

f is said to be continuous

Theorem 1. [12] Let f(x) be a fuzzy-valued function
on [a,∞) and it is represented by (f(x, α), f(x, α)).
For any fixed r ∈ [0, 1], assume f(x, α) and
overlinef(x, α) are Riemann integrable on [a, b] for
every b ≥ a, and assume there are two positive M(α)

and M(α)) such that
∫ b
a |f(x, α)|dx ≤ M(α) and∫ b

a |f(x, α)|dx ≤ M(α) for every b ≥ a. Then f(x)
is improper fuzzy Riemann integrable on [a,∞) and
the improper fuzzy Riemann integral is a fuzzy num-
ber. Further more, we have:∫ ∞

a
f(x)dx =

(∫ ∞

a
f(x, α)dx,

∫ ∞

a
f(x, α)|dx

)
.

Proposition 1. [12] If each of f(x) and g(x) is
fuzzy-valued function and fuzzy Riemman integrable
on I = [a,∞) then f(x) + g(x) is fuzzy Riemman
integrable on I . Moreover, we have∫

1
(f(x) + g(x))dx =

∫
1
f(x)dx+

∫
1
g(x)dx.

3 Fuzzy Laplace transforms
Suppose that f is a fuzzy-valued function and s is a
real parameter. We define the fuzzy Laplace trans-
form of f as following:

Definition 3. The fuzzy Laplace transform of fuzzy-
valued function f(t) is defined as following

F (s) = L(f(t)) =

∫ ∞

0
e−stf(t)dt (1)

= lim
τ−→∞

∫ τ

0
e−stf(t)dt,

whenever the limits exist.
The L(f) be also used to denote the fuzzy Laplace
transform of fuzzy-valued function f(t), and the in-
tegral is the fuzzy Riemann improper integral. The
symbol L is the fuzzy Laplace transformation, which
acts on fuzzy-valued function f = f(t) and gener-
ates a new fuzzy-valued function, F (s) = L(f(t)).
Consider fuzzy-valued function f , then the lower and
upper fuzzy Laplace transform of this function are de-
noted, based on the lower and upper of fuzzy-valued
function f and 0 ≤ α ≤ 1 as following:

F (s;α) = L(f(t;α)) = [L(f(t;α)),L(f(t;α)),
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where

L(f(t;α)) =

∫ ∞

0
e−stf(t;α))dt

= lim
τ−→∞

∫ τ

0
e−stf(t;α))dt,

L(f(t;α)) =

∫ ∞

0
e−stf(t;α))dt

= lim
τ−→∞

∫ τ

0
e−stf(t;α))dt.

4 Fuzzy Volterra and Fredholm
integral equations

In this section, we investigate the solution of fuzzy
convolution Fredholm and Volterra equations of the
second kind [21].

4.1 Fuzzy Fredholm integral equations
The fuzzy convolution Fredholm integral equation of
the second kind is defined as

x̃(t) = f̃(t) +

∫ T

0
k̃(s− t)x̃(s)ds, t ∈ [0, T ], (2)

where x̃(t) = x̃(t;α) = [x(t;α), x(t;α)], f̃(t) =

f̃(t;α) = [f(t;α), f(t;α)], and k̃(s − t) is an arbi-
trary given fuzzy-valued convolution kernel function
and f̃ is a continuous fuzzy-valued function. The so-
lution of Eq. (2) can be obtained by solving the fol-
lowing system integral equations:

x(t;α) = f(t;α) +

∫ T

0
k(s− t;α)x(s;α)ds, (3)

x(t;α) = f(t;α) +

∫ T

0
k(s− t;α)x(s;α)ds. (4)

We adopt fuzzy Laplace transform to solve the given
problem such that by taking fuzzy Laplace transform
on both sides of Eqs. (3)-(4) and using fuzzy convo-
lution, we get solution of Eq. (2) directly.

4.2 Fuzzy Volterra integral equations
The fuzzy convolution Volterra integral equation of
the second kind is defined a

x̃(t) = f̃(t) +

∫ t

0
k̃(s− t)x̃(s)ds, t ∈ [0, T ], (5)

where x̃(t) = x̃(t;α) = [x(t;α), x(t;α)], f̃(t) =

f̃(t;α) = [f(t;α), f(t;α)], and k̃(s − t) is an arbi-
trary given fuzzy-valued convolution kernel function

and f̃ is a continuous fuzzy-valued function. The so-
lution of Eq. (5) can be obtained by solving the fol-
lowing system integral equations:

x(t;α) = f(t;α) +

∫ t

0
k(s− t;α)x(s;α)ds, (6)

x(t;α) = f(t;α) +

∫ t

0
k(s− t;α)x(s;α)ds. (7)

We adopt fuzzy Laplace transform to solve the given
problem such that by taking fuzzy Laplace transform
on both sides of Eqs. (6)-(7) and using fuzzy convo-
lution, we get solution of Eq. (5) directly. So, the
concept of fuzzy convolution must be introduced.

4.3 Fuzzy convolution
The convolution of two fuzzy-valued functions f and
g defined for t > 0 by

(f ∗ g)(t) =
∫ t

0
f(τ).g(t− τ)dτ, (8)

which of course exists if f and g are, say, piece-wise
continuous. Substituting u = t− τ give

(f ∗ g)(t) =
∫ t

0
f(τ).g(t− u)du = (g ∗ f)(t) (9)

that is, the fuzzy convolution is commutative. Other
basic properties of the fuzzy convolution are as fol-
lows:

(i) c(f ∗ g) = cf ∗ g = f ∗ cg, c is constant

(ii) f ∗ (g ∗h) = (f ∗g)∗h (associative property)
Property (i) is routine to verify. As for (ii)

[f ∗ (g ∗ h)](t)

=

∫ t

0
f(τ)(g ∗ h)(t− τ)dτ

=

∫ t

0
f(τ)

(∫ t−τ

0
g(x)h(t− τ − x)dx

)
dτ

=

∫ t

0

(∫ t−τ

0
f(τ)g(u− τ)h(t− τ)dx

)
dτ

= [(f ∗ g) ∗ h](t),

while having reverse the order of integration. One of
the very significant properties possessed by the fuzzy
convolution in connection with the fuzzy Laplace
transform is that the fuzzy Laplace transform of the
convolution of two fuzzy-valued functions is the
product of their fuzzy Laplace transform.
Theorem 2. (Convolution Theorem), If f and g
are piecewise continuous fuzzy-valued functions on
[0,∞] and of exponential order p, then

L{(f ∗ g)(t)} = L{(f(t)}.L{(g(t)} = F (s).G(s). (10)
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Proof. Let us start with the produce

L{(f(t)}.L{(g(t)}

=
(∫ ∞

0
e−sτf(τ)dτ

)
.
(∫ ∞

0
e−sug(u)du

)
=

∫ ∞

0

(∫ ∞

0
e−s(τ+u)f(τ)g(u)du

)
dτ,

substituting t = τ + u, and noting that τ is fixed in
the interior integrals, so that du = dt, we have

L{(f(t)}.L{(g(t)} (11)

=

∫ ∞

0

(∫ ∞

τ
e−stf(τ)g(t− τ)dt

)
dτ.

If we define g(t) = 0̃ for t < 0 , then g(t − τ) =

0̃ for t < τ and we can write (11) as

L{(f(t)}.L{(g(t)}

=

∫ ∞

0

(∫ ∞

τ
e−stf(τ)g(t− τ)dt

)
dτ

Due to the hypotheses on f, g, the fuzzy Laplace in-
tegrals of f, g converge absolutely and hen∫ ∞

0

∫ ∞

0
|e−st)f(τ)g(t− τ)|dτ,

converges. This fact allows us to reverse the order of
integration, so that

L{(f(t)}.L{(g(t)}

=

∫ ∞

0

∫ ∞

0
e−stf(τ)g(t− τ)dτdt

=

∫ ∞

0

(∫ t

0
e−stf(τ)g(t− τ)dτ

)
dt

=

∫ ∞

0
e−st

(∫ t

0
f(τ)g(t− τ)dτ

)
dt

= L{(f ∗ g)(t)}.

Please notice that in the fuzzy case, we should investi-
gate more accurately than the deterministic case. So,
mentioned calculation is assumed valid under suitable
conditions.

5 Fuzzy Laplace transform method
for FIE

Here, we shall obtain the solution of fuzzy convolu-
tion Fredholm integral equation using fuzzy Laplace
transform. Indeed, our method is constructed on
applying fuzzy convolution. Consider the original
Eq.(2), then by taking fuzzy Laplace transform on
both sides of it we get the following:

L{(x̃(t)} = L{(f̃(t)}+ L
{∫ T

0
k̃(s− t)x̃(s)ds

}
,

then, we get by using fuzzy convolution and definition
of fuzzy Laplace transform:

L{x(t;α)} = L{f(t;α)}+ L{k(t;α)}L{x(t;α)},

and

L{x(t;α)} = L{f(t;α)}+ L{k(t;α)}L{x(t;α)}.
Now, we should discuss L{k(t;α)}L{x(t;α)} and
Lk(t;α) Lx(t;α).

To this end, we have the following cases:
Case 1- if k(t;α) and x(t;α) are positive, then we get

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)},

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)}.
Case 2- if k(t;α) is positive and x(t;α) is negative,
then we get

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)},

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)}.

Case 3- if k(t;α) is negative and x(t;α) is positive,
then we get

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)},

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)}.

Case 4- if k(t;α) and x(t;α) are negative, then we
get

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)},

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)}.

Notice that, it is assumed that zero does not exist in
support. We obtain explicit formula for Case 1 and
the others are similar. Indeed, we can write case 1 in
a compact form

L{x(t;α)} =
L{f(t;α)}

1− L{k(t;α)}
and

L{x(t;α)} =
L{f(t;α)}

1− L{k(t;α)}
.

Finally, using the inverse of fuzzy Laplace transform
we get the solution:

x(t;α) = L−1
( L{f(t;α)}
1− L{k(t;α)}

)
and

x(t;α) = L−1
( L{f(t;α)}
1− L{k(t;α)}

)
for all 0 ≤ α ≤ 1, provided that a fuzzy valued
function is define.
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5.1 Fuzzy Laplace transform method for
VIE

Here, we shall obtain the solution of fuzzy convo-
lution Fredholm and Volterra integral equations us-
ing fuzzy Laplace transform. Indeed, our method is
constructed on applying fuzzy convolution. Consider
the original Eq.(2) and Eq.(5), then by taking fuzzy
Laplace transform on both sides of it we get the fol-
lowing:

L{(x̃(t)} = L{(f̃(t)}+ L
{∫ T

0
k̃(s− t)x̃(s)ds

}
,

and

L{(x̃(t)} = L{(f̃(t)}+ L
{∫ t

0
k̃(s− t)x̃(s)ds

}
,

then, we get by using fuzzy convolution and definition
of fuzzy Laplace transform:

L{x(t;α)} = L{f(t;α)}+ L{k(t;α)}L{x(t;α)},

and

L{x(t;α)} = L{f(t;α)}+ L{k(t;α)}L{x(t;α)}.

Now, we should discuss L{k(t;α)}L{x(t;α)} and
Lk(t;α) Lx(t;α).

To this end, we have the following cases:
Case 1- if k(t;α) and x(t;α) are positive, then we get

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)},

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)}.

Case 2- if k(t;α) is positive and x(t;α) is negative,
then we get

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)},

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)}.

Case 3- if k(t;α) is negative and x(t;α) is positive,
then we get

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)},

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)}.

Case 4- if k(t;α) and x(t;α) are negative, then we
get

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)},

L{k(t;α)}L{x(t;α)} = L{k(t;α)} L{x(t;α)}.

Notice that, it is assumed that zero does not exist in
support. We obtain explicit formula for Case 1 and

the others are similar. Indeed, we can write case 1 in
a compact form

L{x(t;α)} =
L{f(t;α)}

1− L{k(t;α)}

and

L{x(t;α)} =
L{f(t;α)}

1− L{k(t;α)}
.

Finally, using the inverse of fuzzy Laplace transform
we get the solution:

x(t;α) = L−1
( L{f(t;α)}
1− L{k(t;α)}

)
and

x(t;α) = L−1
( L{f(t;α)}
1− L{k(t;α)}

)
for all 0 ≤ α ≤ 1, provided that a fuzzy valued
function is define.

6 Examples
In this section, we give some examples to obtain the
solution of fuzzy convolution Volterra and Fredholm
integral equations of the second kind.

Example 1. Consider the following fuzzy Volterra
integral equation

x̃(t) = (α, 2− α).et +

∫ t

0
sin(t− τ).x̃(τ)dτ.

We apply the fuzzy Laplace transform to both sides of
the equation, so tha

L{x̃(t)} = L{(α, 2− α).et}+ L{sin(t)}.L{x̃(t)}

i.e

L{x(t;α)} = L{(α).et}+ L{sin(t)}.L{x(t;α)},

L{x(t;α)} = L{(2− α).et}+ L{sin(t)}.L{x(t;α)},

Hence . we get

L{x(t;α)} = (α)
( 2

s− 1
− 1

s2
− 1

s

)
, 0 ≤ α ≤ 1

L{x(t; r)} = (2− α)
( 2

s− 1
− 1

s2
− 1

s

)
, 0 ≤ α ≤ 1

By taking the inverse of fuzzy Laplace transform on
both sides of above relations, we have the following

x(t;α) = (α)(2et − t− 1),

x(t;α) = (2− α)(2et − t− 1).
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Example 2. Consider the following fuzzy Fredholm
integral equation

x̃(t) =
1

2
(α+ 1),

1

2
(3− α)).t+

∫ 2

0

1

4
(t− τ).x̃(τ)dτ.

We apply the fuzzy Laplace transform to both sides of
the equation, so that

L{x̃(t)} =
1

2
L{((α+ 1), (3− α)).t}+ 1

4
L{t}.L{x̃(t)}

i.e

L{x(t;α)} =
1

2
L{(α+ 1).t}+ 1

4
L{t}.L{x(t;α)},

L{x(t;α)} =
1

2
L{(3− α).t}+ 1

4
L{t}.L{x(t;α)}.

Hence we get

L{x(t;α)} =
2(α+ 1)

4s2 − 1
,

L{x(t; r)} =
2(3− α)

4s2 − 1
.

By taking the inverse of fuzzy Laplace transform on
both sides of above relations, we have the following

x(t;α) = (α+ 1). sinh(
t

2
),

x(t;α) = (3− α). sinh(
t

2
).

Example 3. Consider the following fuzzy Volterra
integral equation

x̃(t) = (1 + α, 3− α). cosh t+
∫ t

0
et−τ .x̃(τ)dτ.

Similarly, by taking fuzzy Laplace transform on both
sides of equation, we get the

L{x̃(t)} = L{(1 + α, 3− α). cosh(t)}
+L{et}.L{x̃(t)}

i.e

L{x(t;α)} = L{(1 + α). cosh t}+ L{et}.L{x(t;α)},

L{x(t;α)} = L{(3− α). cosh t}+ L{et}.L{x(t;α)},

i.e

L{x(t;α)} =
(1 + α)s

(s+ 1)(s− 2)
,

L{x(t;α)} =
(3− α)s

(s+ 1)(s− 2)
, 0 ≤ α ≤ 1.

Hence, we get

L{x(t; r)} = (1 + α)
( 2

3(s− 2)
+

1

3(s+ 1)

)
,

L{x(t;α)} = (3− α)
( 2

3(s− 2)
+

1

3(s+ 1)

)
.

Finally, by applying the inverse of fuzzy Laplace
transform, we get the following:

x(t;α) = (1 + α)(
2

3
e2t +

1

3
e−t), 0 ≤ α ≤ 1

x(t;α) = (3− α)(
2

3
e2t +

1

3
e−t), 0 ≤ α ≤ 1.

7 Conclusion
In the present paper, the fuzzy Laplace transform
method was applied to approximate the solution of
fuzzy Volterra and Fredholm integral equations. We
transformed our problem to a system of algebraic
equations so that by solving this system we obtained
the solution of this kind of equations by considering
the type of differentiability. Finally, the solution ob-
tained using the suggested method shows that this ap-
proach can solve the problem effectively.

An interesting extension of our study would be to
discuss method with neural networks and finite-time
stability for the Volterra and Fredholm integral equa-
tions. This topic will be the subject of a forthcoming
paper.
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