
A Hybrid Architecture for Mission–Critical, Real–Time Web Client
Applications

EFREN CORONEL, ILSE LEAL
Instituto de Investigaciones Electricas

Gestion Integral de Procesos
Reforma 113 Col. Palmira, Cuernavaca Mor.

MEXICO

Abstract: This paper describes a hybrid software architecture that can be used to develop powerful, real–time Web
applications for monitoring industrial processes with a high degree of reliability and availability. Our architecture
enables developers to combine traditional desktop software development techniques with new Web development
methodologies in order to achieve multiplatform, mission–critical applications that are visually attractive, flexible
and modern.

Key–Words: Web Application, Real-Time, Process Monitoring

1 Introduction

In practice, mission-critical monitoring systems are
developed using proprietary software with highly spe-
cialized code. These systems usually communicate
with data acquisition modules or measurement in-
struments using different proprietary protocols like
ModBus [1], DNP3 [2], OPC [3], IEC 61850 [4],
etc. Therefore, these systems are platform–dependent.
Since these systems are used to supervise and monitor
critical processes, they must operate with a high level
of reliability and availability.

Over the years, as technology has advanced, mon-
itoring systems have become obsolete. Hence, organi-
zations face the need to migrate their systems, which
implies large investments and operational risks.

The hybrid architecture that we describe in this
paper, can be used to develop mission–critical, mod-
ern Web applications that are capable of acquiring
data in real time from different data sources using a
wide range of specialized protocols. Therefore, sys-
tems based on our architecture can offer reliable data
and high availability. By incorporating modern Web
technologies, our architecture enables the develop-
ment of responsive, attractive and flexible human ma-
chine interfaces that can be used in different devices.
In addition, because our architecture supports multi-
platform development, the resulting systems can op-
erate in different operating systems such as Windows,
Linux and OS X. This helps reduce development and
deployment costs.

2 Hybrid architecture
To understand our concept of hybrid architecture, we
start with a conceptual model which is based on the
fact that critical process monitoring systems were de-
veloped as platform–dependent desktop applications.
With this, developers seek to ensure that resulting sys-
tems are fast and robust enough to operate reliably for
extended periods of time. This kind of systems offer
real–time communication mechanisms with excellent
performance and unmatched multiprocessing capac-
ity.

However, over the years, new application devel-
opment technologies have emerged and progressed
rapidly. These new technologies are mainly oriented
to the creation of modern Web systems, which can of-
fer superior flexibility to design highly functional hu-
man machine interfaces that can be deployed in a wide
variety of devices: from desktops to smart phones.

In this paper, we propose a Web architecture
that combines the best of both worlds: the robust-
ness, availability and real–time responsiveness of tra-
ditional desktop systems with the flexibility and mul-
tiplatform capacity of modern Web systems.

2.1 Mission-critical systems requirements
By definition, mission critical systems have substan-
tial impact on an organization’s processes and opera-
tions. For critical industrial process, it is important to
have highly effective and reliable monitoring systems
that reduce or eliminate operational risks that could
cause service shortages, financial losses or security

EQUATIONS
DOI: 10.37394/232021.2022.2.1 Efren Coronel, Ilse Leal

E-ISSN: 2732-9976 1 Volume 2, 2022

risks. The following are some of the most important
requirements in a mission–critical system:

◦ High degree of reliability and availability

◦ Low latency in communication and the capacity to
acquire data from several data sources

◦ Ease of use

◦ Correct and timely presentation of information

◦ Secure access to critical data

In light of the foregoing requirements, the rea-
son why most mission–critical systems use special-
ized software that runs on well–known, robust plat-
forms becomes clear [5]. Still, only a few companies
develop this kind of systems. Therefore, their soft-
ware licenses are usually very expensive.

Web applications, developed with the most recent
open standards, offer the advantage of minimizing the
cost of software licenses while making it possible to
develop attractive user interfaces. Nevertheless, their
main disadvantage is the lack of reliable and low–
latency communication and data acquisition mecha-
nisms.

2.2 Why use Web Technologies?
Web application development has been on the up-
swing mainly due to great advances in consumer de-
vices as well as new hardware technologies that are
more efficient and powerful. Additionally, new soft-
ware development standards improve user productiv-
ity because of their flexibility.

One of the main advantages of Web applications
is their ease of development because of the wide range
of standards that can be used. HTML5 offers an ideal
set of features that facilitates the development of in-
tuitive and attractive user interfaces. CSS3 provides
great flexibility by making it possible to easily define
and modify the appearance of a Web page. Another
powerful standard is SVG (Scalable Vector Graphics),
which makes it possible to specify two–dimensional
vector images in XML format.

In addition, JavaScript makes it possible to ac-
cess HTML, CSS3 and SVG elements through ob-
jects, which are instantiated in memory. Therefore,
with JavaScript, developers can directly modify ele-
ment behaviors, styles and shapes within Web appli-
cations. This enables Web developers to generate rich,
dynamic content.

However, traditional Web applications are not
usually used to develop mission–critical applications
due to certain disadvantages regarding the way they
operate internally. One of the most important fac-
tors is that, in this type of applications, there is only

Browser Client

Ajax Web Application Model

Server-side systems

AJAX Engine

Web and/or XML Server

Datastores, backend processing, legacy
systems

User Interface

HTTP Request

HTML + CSS Data

JavaScript Call

XML Data

Figure 1: Tradicional Web Application

one main execution thread. Therefore, multiprocess-
ing is not possible. Even though developers can use
timers and event handlers that can be launched asyn-
chronously, these elements are still executed in the
main thread cycle. This can lead to problems that
cause the application to become intermittently unre-
sponsive.

Finally, by considering advantages and disadvan-
tages of both architectures, desktop and Web, we have
created a hybrid architecture that combines the best of
both, managing to meet the requirements described in
section 2.1.

2.3 Main concept
As we have mentioned, the key idea in our architec-
ture is to integrate high performance, low–latency and
high availability communication mechanisms, which
are available in traditional desktop systems, with the
advantages of flexible, multiplatform, modern Web
applications that can operate offline, without the need
for a Web server. This is possible because in our ar-
chitecture, application elements are loaded only once.
Therefore, our applications have all the information
they need to operate and do not need to query a Web

EQUATIONS
DOI: 10.37394/232021.2022.2.1 Efren Coronel, Ilse Leal

E-ISSN: 2732-9976 2 Volume 2, 2022

server since objects can be accessed directly in mem-
ory. We have achieved this by designing a layered
architecture that combines Java and Javascript along
with other standards such as HTML5, CSS3 and SVG.
Figure 2 shows the various modules that make up our
architecture.

Java handles the core modules of the application.
These modules communicate with JavaScript in order
to link communication and data processing tasks. Pre-
sentation tasks, such as the display of information, are
executed in the Web browser.

As we mentioned before, in a traditional Web ap-
plication, there is only one main thread, which runs
on a browser and can be accessed by JavaScript. By
implementing core modules in Java, we can incorpo-
rate Java threads and achieve true multiprocessing ca-
pabilities. In order to integrate Java capabilities to
Web applications, our architecture enables informa-
tion exchange between Java and JavaScript. With this
methodology, data acquisition from legacy systems,
databases or Web services can be performed directly
in Java by using asynchronous execution threads.
Once acquired data are in memory, they can be ac-
cessed through JavaScript and presented in real–time
to users. This mechanism is explained in more detail
in section 4.1.

3 Solving Traditional Web Systems
Limitations

One of the most important elements in any monitoring
system is the possibility to connect to different data
sources. This enables information exchange between
measurement devices or data servers and the system.
This is usually done by implementing different com-
munication protocols. In traditional Web applications,
there are very few technologies that can be used to
communicate with data acquisition devices which use
protocols based on TCP/IP such as ModBus, DNP3,
RTP, etc. The same applies for SQL connectors or
Web services, which are done with server–side tech-
nologies. In our architecture, information requests are
performed directly by the client.

Another important limitation is multiprocessing
capacity, which is essential for real–time systems that
must operate asynchronously in order to be able to
perform several tasks in parallel.

3.1 Real-time data acquisition
Real–time systems are defined as computer systems
that are subject to time constraints and therefore must
respond in a certain amount of time. For this kind
of systems, correctness is not enough by itself: tasks

JavaScript Engine

Browser Web App Client

Java Plug-in

User Interface

Ja
va

Sc
ri

p
t

M
e

m
o

ry

Java Connector

Communications

Processing

D
at

a
M

e
m

o
ry

HTML5 CSS3 SVG

EVENTS

JavaScript Engine

AJAX Engine

WEB SERVER
(Host: HTML Pages, CSS Documents, JavaScript Files)

HTTP Request

HTML + CSS + JS Data

GET APP

Legacy System
(ModBus)

Legacy System
(DNP3)

Legacy System
(any TCP/IP based

protocol)

Legacy System
(IEC 61850)

Modern System
(SQL Database)

Modern System
(Web Services)

TC
P

/I
P

 S
O

C
K

ET
S

Figure 2: Main Concept

must execute in a certain period of time [10]. There
are two types of real–time systems: hard real–time
systems, in which time constraints are very strict and
soft real–time systems, which can tolerate occasional
delays.

The correct implementation of mission–critical
systems, such as industrial monitoring systems, using
Web technologies is particularly complicated, mainly
because these technologies were not designed with
high–demand systems in mind. New technologies are
emerging to fill this gap, but they have limitations.

One example is Websockets [6], which enables
the use of sockets in Web applications. However, this
technology is still at an early stage of development and
has some major limitations. One of the most impor-
tant is that developers cannot implement proprietary
TCP/IP protocols. This is due to the fact that, in order
to develop applications, developers need access to a
Websockets server.

By using Java as the core of an application, de-
velopers can take advantage of a considerable set of
software libraries that allow applications to connect to
different data sources through native TCP/IP sockets.
With this, proprietary protocols can be implemented

EQUATIONS
DOI: 10.37394/232021.2022.2.1 Efren Coronel, Ilse Leal

E-ISSN: 2732-9976 3 Volume 2, 2022

just as if Web applications were traditional, platform–
dependent desktop applications. Therefore, applica-
tions developed using our architecture can communi-
cate with both legacy and modern servers.

3.2 Historical data acquisition

In section 3.1 we mentioned real–time data acquisi-
tion. However, another key feature in our hybrid ar-
chitecture is the capacity to acquire historical data. To
achieve this, evidently, it is necessary to have access to
servers that store and provide this information. With
historical data, systems can provide reports or trend
graphs that illustrate the state of monitored processes.

Java’s extensibility makes it possible to access
Web services, perform SQL queries or communicate
with OPC or PI (OSIsoft) servers. In Java, this infor-
mation can be obtained through a dedicated acquisi-
tion thread or can be triggered on–demand by users as
they interact with the user interface.

3.3 Multiprocessing

In the context of Web systems, there is no hard
multiprocessing concept such as the one needed for
mission–critical monitoring applications. Instead,
there are several techniques that are used to simulate
multiprocessing through asynchronous data requests
via AJAX or PHP. One example is a new technology
known as “Web Workers” [7], which enables the ex-
ecution of small pieces of JavaScript code in parallel.
However, there is a limitation on the maximum num-
ber of Web Workers that can be executed simultane-
ously. In addition, web workers do not have access to
the DOM (Document Object Model).

Java offers a very useful and powerful alterna-
tive, which is widely used in high-level languages:
multithreading. With multithreading, it is possible
to create several threads that can be used for differ-
ent purposes. For example, developers can create one
thread for each connection to legacy systems. In this
way, if an application needs to connect to 20 differ-
ent devices, it is possible to create 20 threads. In this
scenario, each thread would execute at its own pace,
asynchronously acquiring data at different frequen-
cies. This information can be stored in shared memory
areas which can be accessed by the Web browser and
then presented to users. Threads can also be used to
perform complex computations without affecting sys-
tem responsiveness. Threads allow developers to take
efficient advantage of hardware resources, especially
with new multi–core processors, which allow execut-
ing each thread on a different core.

4 Developing a Mission-critical Sys-
tem with our Hybrid Architecture

Our hybrid architecture is not just a conceptual de-
sign. Instead, it is intended as a specification of var-
ious layers of software that enable developers to de-
sign and develop mission–critical Web–based systems
in an easy and reliable manner. Therefore, developers
do not need to start from scratch or dig deep in techni-
cal aspects to achieve their objective. In addition, our
architecture is flexible because all modules that make
up the Business, Data Exchange and Presentation lay-
ers are fully customizable.

4.1 Bussiness Layer
Our architecture’s business layer is in charge of the
logic to acquire and process the information that is
displayed to users. This layer is comprised of data
acquisition, data processing and information storage
modules. This information is used by the upper lay-
ers. In this layer, events are generated in order to ex-
change information with other layers. It consists of a
software core with structured Java objects and classes
that can execute in the browser’s internal memory.
It also implements interoperability between Java and
JavaScript by enabling access to objects in memory
and making it possible to invoke Java methods from
JavaScript and vice versa. In this layer, processes op-
erate asynchronously to handle connections, data ac-
quisition and data processing. This prevents applica-
tions from becoming unresponsive or blocked when
data are being acquired or processed. With this ar-
chitecture, data are available in memory and can be
retrieved immediately thus, achieving excellent per-
formance.

Figure 3 shows a block diagram that illustrates the
operation and structure of this layer.

4.2 Data Exchange Layer
The Data Exchange Layer is used as a link between
the objects stored in the Business Layer and the Pre-
sentation Layer. Its main task is to serve as an inter-
mediary by using basic exchange objects, which are
based on JSON (JavaScript Object Notation) in order
to achieve a high degree of compatibility and reliabil-
ity in data transport.

This layer also processes requests triggered by
events in the Business Layer or in the Presentation
Layer through data serialization. Data are encapsu-
lated in text strings that are exchanged between ob-
jects. Next, this information is deserialized and in-
stantiated as an object that can be used in the Presen-
tation Layer. Since these objects are set up using an

EQUATIONS
DOI: 10.37394/232021.2022.2.1 Efren Coronel, Ilse Leal

E-ISSN: 2732-9976 4 Volume 2, 2022

TC
P

/I
P

 S
O

C
K

ET
S

Ja
va

Sc
ri

p
t

En
gi

n
e

Bussiness Layer

Java Plug-in

Ja
va

 C
o

n
n

ec
to

r
Memory

Concurrent
Access

Controller
D

at
a

M
e

m
o

ry

EVENTS
Legacy System

(ModBus)

Legacy System
(DNP3)

Legacy System
(any TCP/IP based

protocol)

Legacy System
(IEC 61850)

Modern System
(SQL Database)

Modern System
(Web Services)

C
o

m
m

u
ni

ca
ti

o
n

s

Thread 1

Thread 2

Thread 3

Thread n

Thread n+1

Thread n+2

Thread 1

Processing

Thread 2

Thread 3

Thread n

Adquisition
ControllerJavaScript

Memory

C
o

n
n

ec
to

r
Ex

ch
an

ge
 L

ay
er

Figure 3: Bussiness Layer

open standard, they are entirely customizable and can
be adapted to developers’ needs.

4.3 Presentation Layer
Users interact directly with the Presentation Layer.
This layer allows to set up a series of visual cues that
enable users to visualize their information effectively
and easily. HTML5 is used to develop the basic struc-
ture of Web pages. CSS3 is used to specify the layout
of elements and to incorporate animation and inter-
active effects. SVG is used to create line diagrams
that represent different processes. For example, in a
power plant, SVG could be used to model the state of
elements such as turbines, pipes, pressure indicators,
valves, switches, etc. JavaScript is used to add interac-
tive behaviors to display data in real time and to mod-
ify elements on the fly, depending on users’ actions.
It also possible to to dynamically create elements and
insert them in HTML5 documents at run time. Hence,
this layer is built with HTML5 documents that contain
static information that can be modified dynamically
using JavaScript.

Figure 4 shows a sequence diagram that illustrates
the relation between this layer and the Exchange and
Business Layers.

5 Security Considerations
While Web applications offer users attractive user in-
terfaces and ease of use, this kind of applications
present certain risks that need to be addressed [8].

Regarding security, we have implemented several
techniques to enforce security measures. Since appli-
cations based on our archirecture are client–based, all

Presentation
Layer

Exchange
Layer

Bussiness
Layer

Data Sources

Activate Acquisition Request Data

Data Response

Low Latency < 5ms

JS
O

N
JS

O
N

Request Data Request Data

Request DataRequest Data

Response DataResponse Data

Response Data Response Data

bucle

W
rite

 M
e

m
o

ry

User Interaction

User Interaction

Figure 4: Sequence Diagram

operations can be performed within a closed and pro-
tected Intranet environment. In addition, the Business
layer requires a certificate signed by a trusted certifi-
cate authority to operate.

Another relevant aspect is that our architecture
enforces an adquate separation between browser pro-
cesses and Java processes. With this approach, our
software creates a secure sandbox environment for its
processes.

In addition, with Java it is possible to implement
diverse authentication mechanisms and data encryp-
tion mechanisms that ensure secure data transmission.

6 Conclusion
While desktop systems require users to use specific
hardware, modern Web applications can be used in
many other platforms including mobile phones and
tablets. Mobile devices allow users to view the in-
formation they need quickly and make important deci-
sions, even if they are out of their office. In the context
of industrial monitoring systems, this has tremendous
potential to improve users’ workflow. For example,
in power plants, operators could be viewing the in-
formation they need on site instead of being confined
to an office. However, traditional Web technologies
have certain limitations that makes them unsuitable
for real–time, critical systems.

In this paper we have presented a hybrid architec-
ture for developing powerful, real–time Web client ap-
plications. With our architecture, we have been able to
solve two typical limitations of Web systems: lack of
communication and multiprocessing capabilities. Our
architecture enables developers to create modern yet
reliable mission–critical systems that can be used to

EQUATIONS
DOI: 10.37394/232021.2022.2.1 Efren Coronel, Ilse Leal

E-ISSN: 2732-9976 5 Volume 2, 2022

monitor industrial processes.
One of the most important benefits of our ar-

chitecture is that applications developed with it are
platform–independent thus greatly reducing software
licensing costs. In addition, our architecture is highly
flexible and can be used to develop powerful Web ap-
plications for monitoring industrial applications.

7 Results
Our architecture has been used to develop a mission–
critical, real–time Web system for a nuclear power
plant [9]. This system has been thoroughly tested,
with good results.It acquires data at very high speeds
from several data souces including RTP acquisition
systems, legacy systems and other devices. It per-
forms complex computations and displays histori-
cal data, with excellent performance. Since it was
developed using our architecture, it is platform–
independent and can be run on any browser, in a vari-
ety of devices.

References:

[1] ModBus Organization. http://www.modbus.org/

[2] DNP Users Group, Overview
of the DNP3 Protocol.
http://www.dnp.org/Pages/AboutDefault.aspx

[3] OPC Foundation, The Interoperabil-
ity Standard for Industrial Automation
https://opcfoundation.org/

[4] Ralph Mackiewicz, ”Technical Overview and
Benefits of the IEC 61850 Standard for Substa-
tion Automation”, SISCO, Inc. Sterling Heights,
MI.

[5] Gabriella Carrozza, Roberto Pietrantuono, Ste-
fano Russo, ”Defect Analysis in Mission-critical
Software Systems: a Detailed Investigation”,
JOURNAL OF SOFTWARE: EVOLUTION
AND PROCESS; 00:128.

[6] Jin-tae Park1, Hyun-seo Hwang1, Jun-soo Yun1
and Il-young Moon1 Study of HTML5 Web-
Socket for a Multimedia Communication Inter-
national Journal of Multimedia and Ubiquitous
Engineering Vol.9, No.7 (2014), pp.61-72

[7] Web Hypertext Application Technology Work-
ing Group. Web workers draft recommenda-
tion, 2010. http://www.whatwg.org/specs/web-
workers/current-work/.

[8] SANS Institute. A Security Checklist for Web
Application Design, 2004.

[9] Coronel Flores Efren Ruben, and Ilse Leal
Aulenbacher. ”A Real-Time Web-based Graphic
Display System using Java LiveConnect Tech-
nology for the Laguna Verde Nuclear Power
Plant”. WSEAS, Advances in Information Sci-
ence and Applications - Volume I, July 2014,
ISBN: 978-1-61804-236-1

[10] Stankovic, John A., and Krithi Ramamritham.
”What is predictability for real-time systems?.”
Real-Time Systems 2.4 (1990): 247-254.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

EQUATIONS
DOI: 10.37394/232021.2022.2.1 Efren Coronel, Ilse Leal

E-ISSN: 2732-9976 6 Volume 2, 2022

