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ARGENTINA

Abstract: Current supercomputers are composed by nodes containing a combination of general purpose computing units
(CPUs) and specific mathematical coprocessors. In this way, GPGPUs or Xeon Phi cards are attached to the nodes to improve
its performance. Both types of processors, CPUs and coprocessors, have many differences, like their architecture, the clock
rate of the processors and the operation of the related memory. These are the main factors that conform an heterogeneous
multiprocessor. A parallel program that wants to achieve the sum of the performance of both types of processors, must con-
sider not only the complexity of the parallel algorithm, but also the differences in the architecture of processors, increasing its
complexity. As a contribution on this problem, this paper presents a model of parallel execution based on Petri Nets, called
PN-PEM, that is used not only to model a parallel algorithm, but also to execute it directly on a computer with heterogeneous
multiprocessors. An asynchronous execution of tasks and a dynamic scheduler are the main characteristics that allow execute
a parallel program on this type of parallel computer. Tests done on a multicore computer with two Xeon Phi cards reach the
aggregate performance of both type of processors, confirming the quality of the model used.

Keywords:Heterogeneous Multiprocessor, Parallel Algorithm, Petri Nets, Asynchronous Parallel Execution, Dynamic Sched-
uler.

1 Introduction

In these days, supercomputers are composed by nodes
which are a combination of symmetric multiprocessors
(SMP) and coprocessors (or accelerators) used to improve
numerical processing [13]. The tendency is to incorporate
more and more this type of coprocessors specifically de-
signed to this type of processing.

Without going into details of most used accelerators,
they provide an unbeatable power of computing due to its
specific architecture optimized to mathematical and logi-
cal processing. The key of the performance are hardware
parallel threads that allow to run a high number of tasks in
parallel. Also the memory layout in the card plays a rol in
the performance. Althouth the clock rate is slower than the
clock rate of CPUs, the existence of a large number threads
provides a high performance.

Nevertheless, main processors have also a computing
power that has not to be neglected. Mainly by the faster
clock rate and by the specific hardware designed to execute
instructions with 256 or 512 bits registers. Thus, the com-
puting power available is a mix of the traditional CPUs and
the new coprocessors cards, conforming an heterogeneous
multiprocessor computer.

To run a parallel program that uses both type of proces-
sors requires of a scheduler that launches tasks on each type

of processors properly. A synchronous execution between
both types produces a loss of performance due to the load
unbalance. An asynchronous execution is recommended in
order to avoid idleness in the processors, with the drawback
of increasing the parallel processing overload.

In a pair of previous papers [15, 16], it has been proved
that Petri Nets are a good tool to model and control the
execution of a complex parallel algorithm. It was intro-
duced an algorithm modelization based on Colored Petri
Nets (CPN) [9]. The strategy to model with CPNs is based
on two concepts: each task of the algorithm is represented
by a transition and its data parameters are represented by
places linked to the transition that represents the corre-
sponding task.

The execution of a parallel program based on CPN is
complex due to its high level semantics. If some constraints
are followed in the stages of modeling with CPN, the net
obtained can be transformed into a simple Token Petri Net
(TPN) model that preserves its semantics. The TPN model
of the algorithm is used as a basis for the parallel execution.

A framework named PN-PEM, from Petri Net Parallel
Execution Model, was developed to execute a parallel pro-
gram from its TPN representation. It allows to configure
the number and kind of processors to execute in parallel
the algorithm, and also allows to assign to each processor,
the routine used to execute each task. In other words, it
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is needed to provide the kernels that implement each task
of the algorithm and assign them to the respective hard-
ware.Another point of configuration is the scheduling pol-
icy to launch tasks in each processor, which is not limited
to be a single general policy, but a multiple and proper to
each processor.

The configuration of the framework, by the means of
the definition of processors, the kernels for each type of
processor and the scheduling policy, allows to the user con-
figure the parallel computer to obtain the best results of
the execution. In the practice, if the parallel computer is
symmetric, is needed only one kernel that implements each
task. If it is heterogeneous, multiple kernels for each task
are needed, according the kind of processors .

This paper presents an implementation of a parallel
algorithm executed on an heterogeneous multiprocessors
computer with Xeon Phi accelerators. The work is a contin-
uation of the ones cited before, introducing an assignment
of tasks in an heterogeneous multiprocessor. The main ob-
jective is to achieve a performance close to the sum of the
individual performance each type of processor. The hy-
pothesis is that the flexibility to adapt the scheduling policy
according the type of processor will play an important role
in the performance reached.

The algorithm used as testbed is the Cholesky factor-
ization. This algorithm has an intermediate level of data de-
pendency along its execution, and it has been widely stud-
ied with a large number of proposed solutions with high
performance [3, 7].

The rest of the paper is organized as follows: next sec-
tion presents a brief summary of the PN-PEM model devel-
oped before. Section three introduces the execution model
of the framework. Tests and results are discussed in Sec-
tion four and finally, related works, conclusions and future
research are presented.

2 The Petri Net Model of the Parallel
Algorithm

Directed Acyclic Graphs (DAG) have been used to model
algorithms, with vertices representing the tasks and edges
that represent the dependency among them. The resulting
graph is also known as Dependency Graph. It helps the
scheduler to follow the dependency between tasks when se-
lecting the next to be executed [3].

The Petri Net model is a mathematical model that rep-
resents processes that have concurrency between them [8].
It is based in the graph theory, adding the notion of execu-
tion of the model. It conforms a theoretical model suitable
to represent parallel algorithms as it is showed in a recent
work [2]. Nevertheless, it exists a gap between the model
and the execution of the algorithm, under which, it is not
widely used.

The main focus of the framework PN-PEM is to take

advantage of the modeling features of the Petri Nets while
it solves the execution gap problem. Two guidelines were
kept in its developing. First, preserve the semantics of the
CPN model of the algorithm in its stage of execution, and
second, give to the user the maximum flexibility to config-
ure the parameters of parallel execution.

In the PN-PEM framework, Petri Nets (PN) are used
to model the algorithm, based on two premises. First, tran-
sitions of the PN represent operations (kernels to execute),
and second, the places represent the data involved in the
operations. Input places of a transition represent the data
parameters of the task, and output places represent its re-
sults. A token in an input place represents that the respec-
tive data are available to process. A transition is available
when all its input places have tokens, thus, all data needed
is present. The data dependency between tasks is implicit
when a place acts as output of a transition and as input of
other transition, namely, the result of a task is used as input
of other task.

The asynchronous execution of the PN is represented
through the out of order firing of transitions. Since transi-
tions represent actions, the semantics of the firing is not the
immediate execution as in the simple PN model, due to it
involves a time lapse. This fact is well formalized by the
model of Timed Petri Nets [14]. In the PN-PEM model,
when a transition is fired, tokens are absorbed immediately
from the input places and are injected into the output places
once the time involved in the execution of the correspond-
ing task is elapsed.

Colored Petri Nets (CPN) allow to model complex nets
with high level of abstraction in a simple manner. In the
Dependency Graphs, each task is represented by a vertex,
which implies that, as it increases the number in which the
overall algorithm is divided in order to execute it in paral-
lel, it increases also the number of vertex in the graph, diffi-
culting its understanding, as can be seen in the LAWN 243
[7]. The color in the tokens of the CPN allows to generalize
the model without increasing the number of transitions and
places.

The data division in this work follows the “Tiled Algo-
rithms” of the LAWN 191 [3]. Thus, data is divided in a
2D pattern, naming each block by a row-column pair. Pairs
are used to define the domain of the places of the CPN.

The Cholesky factorization was chosen as a testbed al-
gorithm. The computations use the same kernels as in the
LAWN 223 [10] for tiled algorithms. These kernels are
xPOTRF, xGEMM, xTRSM and xSYRK, where x can be
’s’ or ’d’ depending on whether single or double precision
data are used. The kernels provided to the framework are
just the implementation of these routines in the respectives
physical processors that execute them.

Figure 1 shows the CPN that represents Cholesky’s al-
gorithm. It has only four transitions and eight places; each
transition represents a task and each place represents one
of its data parameters. The name of the transitions follows
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potr1 trsm2

potr

< i, i >

< i, i >

{n− i}

trsm1

syrk1

gemm2 gemm1

trsm

< j, i >
< i, i >

< j, i >

{n− j}< j, i >

{j − i− 1}

< j, i >

syrk2

syrk

< j, i >

< j, j, i >

< j, j, i + 1 >

if(i + 1 < j)

< j, j >

if(i + 1 = j)

gemm3 gemm

< i, q >
< j, q >

< j, i, q >

< j, i, q + 1 > if(q < i− 1)

< j, i >

if(q = i− 1)

Figure 1: Colored Petri Net that represents Cholesky’s fac-
torization algorithm.

the name of the routine that it implements. The name of
each place is the number of the block used in each opera-
tion, which follows the 2D data division of the matrix; then,
colored tokens are represented by the pair< x,y>. CPNs
use multisets, whose repetitions are represented by braces
{x}. In addition, the arcs may have functions associated
with them, which are restricted to be Booleans functions of
the formif(cond).

The domains of places are shown in Table 1, where
< n > is the parameter that represents the number of tile
divisions. This last element completes the model of the
algorithm.

The direct execution of the algorithm represented by
the CPN is complex and expensive in terms of high perfor-
mance computing, due to the high level semantics of the
CPN. It would be necessary to implement a runtime in-
terpreter that translates color domains into block positions
in the matrix, and evaluates boolean expressions, which is
costly in terms of performance.

Nevertheless, the CPN developed as described before
meets the definition of well-formed CPNs [4]. This type
of net can be transformed into a TPN, which has a simpler
computational implementation.

The transformation of a CPN into a TPN is called “un-
folding” and is defined in Diaz et.al. [4]. The unfolding
takes each placePj in the CPN and produces as many
places in the TPN as the cardinality of its domainD(Pj)

in the CPN. Hence, each place in the TPN has an associa-
tion with a unique value of its color.

Transitions are unfolded by generating as many transi-

Places Domain
potr1

< i, i >, i = 1 . . . n
trsm2
trsm1 < j, i > j = 2 . . . n, i = 1 . . . j − 1
syrk1 j > i

gemm1
gemm2 < j, i >, j = 3 . . . n, i = 1 . . . j − 2,

j > i

syrk2 < j, j, i >, j = 2 . . . n ∧
i = 1 . . . j − 1 ∧ j > i

gemm3 < j, i, q >, j = 3...n, i = 2...n− 1,
q = 1 . . . i− 1 ∧ j > i ∧ i > q

Table 1: Domains of the places of the CPN in Fig.1 .

tions in the TPN as the cardinality of the Cartesian Product
of the domains of its input places. Therefore, each tran-
sition in the TPN is associated with a unique combination
of input places of the Cartesian Product. Only guards with
true values produce results. By construction, each unfolded
transition represents an individual event that is associated
with a single combination of tokens.

The unfolding of a CPN into a TPN generates a sim-
pler but semantically equivalent net and is the key to solve
the gap problem between model and execution cited before.
Since Petri Nets are good to model a parallel process, the
unfolded net allows to analyze restrictions and other condi-
tions of the parallel execution of the algorithm.

Other key factor to model with Petri Nets is the execu-
tion of the parallel algorithm using the unfolded net. Each
transition in the TPN represents univocally a task, and each
input place represents univocally a data block used as pa-
rameter of this task, thus, the traditional concept of firing a
transition in the PN model is related with the execution of
a routine in a computer.

The unfolded net of Fig.1 is shown in Fig. 2, with a
tile division of four (n = 4). The similarity with a Depen-
dency Graph can be observed, but this latter only represents
dependency between tasks without information of the ele-
ments that determine its dependency, in our case, the blocks
of data. The Dependency Graphs also lack of two elements
present in a PN, as they are, the concept of execution and
the generality of the model.

To execute the algorithm, the PN-PEM framework uses
a net developed in this way. It also needs the configuration
of the processors to be used in the execution and the rela-
tions of the transitions with the tasks and the tokens with
data blocks. Thus, once the algorithm is modeled with the
CPN, it can be executed in parallel by a series of processors
taken as parameters by the framework [16]. The execution
details are explained in the next section.
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potr

trsm trsm trsm

syrk syrk syrk gemm gemm gemm

potr

trsm trsm

syrk syrk gemm

potr

trsm

syrk

potr

Figure 2: Token Petri Net unfolded from the Colored Petri
Net in Fig.1 using a tile divisionsn = 4.

3 The PN-PEM execution model
The TPN produced by the CPN unfolding as explained in
the previous section, is used as input for the parallel ex-
ecution of the framework, but is only one element of the
set needed. Others elements are the set of logical proces-
sors used run the program in parallel, the relation between
transitions and tasks to execute, and finally, the relation be-
tween tasks and kernels. The behavior is briefly explained
in this section and all details can be seen in [17].

The framework uses the matricial form of the TPN [8],
which is composed byP, T, I−, I+,M , where:

• P is a set of placesPi, with cardinality|P | = p.

• T is a set of transitionsTj, with |T | = t.

• I− and I+ are the negative and positive incidence
matrixes of the TPN, with dimensionp × t (I− and
I+ ∈ N

p×t).

• M , is the Mark Vector for places,p× 1.

Then, the PN-PEM model is conformed by:

• The unfolded TPN represented by its matricial form.

• A set of logical processorsΠ .

• One Mutual Exclusion mechanismχ .

• A set of tasksS.

• A set of executable kernelsK.

• A functionτ between transitions and tasksτ : T → S.

• For each logical processorΠi there is a functionγi
between the tasks and kernels,γi : S → K.

Each processorΠi has a Boolean variablee (Πi.e),
which is set as either true or false to indicate if it is running
or if it is idle. The mutual exclusion mechanism,χ, is used
to guarantee the exclusion when updatingM .

The setS is the set of Tasks that the algorithm must
perform. τ is a function that relates the set of transitions
T with the set of TaskS. For each ProcessorΠi there is
a functionγi that relates a tasks ∈ S with a kernel in K

executed by the Processor.
The PN-PEM is very close to Timed Petri Nets [14].

Both share the concept that firing a transition is not instan-
taneous because there is a time elapsed between the start
and the end of the firing. In PN-PEM, the firing action
represents the execution of a task, but the semantics of the
firing is different than in Timed Petri Nets, because firing is
done by an idle ProcessorΠi that selects a transition to fire
among the enabled ones. After the transition is selected,
the Processor takes its related task fromS and launch the
kernel defined by the functionγi. In other words, the Pro-
cessor is the responsible of the execution.

The number of enabled transitions can be lower or
higher than the number of Processors. As a result of this,
there may be idle Processors with no transitions to fire or
enabled transitions waiting for a free Processor, depend-
ing on the number of enabled transitions in relation to the
number of idle Processors. In the first case, the execution
speed up will be poor, and this situation must be avoided.
In the second case, the Processor must select the appropri-
ate transition to fire. To do this, a function that prioritizes
transitions must be implemented by the programmer and
assigned to each processor. This function defines the prior-
ity of the available transitions to select the next kernel to be
launched. It may not be unique for all processors, defining
it properly to each processor.

The framework needs one Mutual Exclusion (mutex)
mechanism to avoid concurrent reading and writing opera-
tions over vectorM , because it is updated after each tran-
sition firing. In this sense, the Processors act serially when
selecting the next transition to fire, waiting for the mutex
enabled. The vectorM represents the existence of tokens
in each place, defining in our case, the algorithm state.

The Pseudo-code of the PN-PEM execution algorithm
is depicted in Fig. 3. In round-robin style, each idle Pro-
cessorΠi makes the search for the task to perform by com-
puting available transitions through matricial operations on
I− andM (step 3). The next step weighs up the available
ones, by applying the priority function to the set of enabled
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transitions choosing the transition with highest value,Tk

(step 4).

1 . Whi le main a l g o r i t h m no t f i n i s h e d
2 . I f can ho ld t h e mutua l e x c l u s i o n
3 . Get t h e a v a i l a b l e t r a n s i t i o n s
4 . E v a l u a t e t o s e l e c t one t o e x e c u t e ( Tk )
5 . Update M a b s o r b i n g Tk ’ s i n p u t t o k e n s
6 . F ree t h e e x c l u s i o n
7 . Task e x e c u t i o n
8 . I n j e c t t o k e n s i n M
9 . E l se

10 . Delay
11 . End i f
12 . End

Figure 3: Pseudo-code of the task selection algorithm.

The priority function takes as input parameter the Mark
Vector and the Incidence matrices. In consequence, it eval-
uates the best selection according the state of computations.
Data locality is also considered by using an stack that pre-
serves data of the last task done. Additionally, as each log-
ical processor can have a different valuation function, the
scheduling policy is dynamic in the sense that the prior-
ity depends on the state of computations and the kind of
processor involved. This design allows a flexible configu-
ration of the framework in heterogeneous computers and is
the key for achieve high performance in these systems.

Continuing with the execution algorithm, steps 5 and
8 of the pseudo-code represent the evolution of the execu-
tion. Similar to Timed Petri Nets, tokens are absorbed and
injected at two times. In step 5 the tokens from the input
places ofTk are absorbed, and in step 8, they are injected
into their output places and potentially new transitions be-
come enabled.

4 Experiments
The PN-PEM framework was developed in Fortran for
shared memory computers using OpenMP directives to run
parallel threads. It reads from the configuration files the
TPN to execute, the Processors configuration, the mapping
between tasks and transition, and the kernels to execute.

The computer used in our experiments is a dual socket
Intel Xeon server, with two Xeon E5-2630 six core proces-
sors, 2.3 Ghz clock, performing twelve AVX 256 bits float-
ing point units, and 64 GB RAM. Also, they are available
two Xeon Phi 31S1P coprocessors, 57 cores at 1.1 Ghz, 8
GB RAM per card. The theoretical Rpeak for each type of
processor are 441 Gflops for the CPU processors and 2001
Gflops for each coprocessor, single precision, and the half
for double precision.

The Intel’s suite Composer XE 2013 was used as the
Fortran compiler and the MKL library of this suite, as the
BLAS implementation. For each of the routines needed to

execute in the Cholesky algorithm, i.e. xPOTRF, xGEMM,
xTRSM and xSYRK, two kernels where coded, one for the
CPU’s processors and other for the Xeon Phi processors.
For the laters, the offload mode was used.

Tests done involve four different ways of processors
utilization, differing in the way the CPU cores are used
alone or combined with the coprocessors, and in the form
to grouping the cores. For the CPU cores, the -xAVX com-
piler option was always used, because it uses the AVX unit
provided by the processor, which is specific to improve the
performance of the floating point operations.

Thereby, in the used computer, a maximum of twelve
parallel tasks can be executed on the CPU. They were
grouped in one logical processor composed by twelve cores
or in two groups of six cores, dividing them by affinity of
hardware. These are called in the rest of the paper as “CPU
based processors”.

In both cases, the parallelism at internal level of the
CPU based processor is managed by the parallel imple-
mentation of the MKL library of the routine called by the
kernel. At a high level, the parallelism is managed by the
PN-PEM framework, according the scheduling algorithm
explained before. On the other hand, for the coprocessors,
the whole board is used as a logical processor at the PN-
PEM level, and the internal parallelism is derived to the
MKL implementation for the Xeon Phi devices.

In this way, the four configurations defined for tests
were1 × 0, 2 × 0, 0 × 2 and2 × 2, called according the
number of logical processors of each type used, the first
value for the number of “CPU based processors”, and the
second for the number of coprocessors used. Thus, the2×2

is the configuration that use jointly both kind of physical
processors, grouped by two “CPU based processors” of six
cores each, and two Xeon Phi cards.

Tests were done with a size of matrix that justify the
use of the joint computing resources, i.e., ranges of 48000,
60000, 74000 and 96000, for single and double precision.
The number of tile divisions was fixed at eight, namely, the
matrix is divided in 64 square blocks, eight rows by eight
columns. This number of tile division defines 120 tasks,
with a series of 19 sequential tasks [16] and determine a
data division with a block size that has a good processor
performance, while the number of tasks is enough to get a
large number of parallel tasks.

A number lower than eight in the tiled data division
improves the performance of an individual processor but
provides fewer tasks to run in parallel, and, in opposition,
more than eight divisions, increase the parallel possibilities
but decreases the performance of processors, with an over-
all outcome with fewer gflops.

The most remarkable results of tests are shown in Ta-
bles 2 and 3, for single and double precision numbers re-
spectively. The best results are obtained for the larger ma-
trix range, as expected.

The first two columns of both Tables, the configura-

EQUATIONS 
DOI: 10.37394/232021.2021.1.7 Gustavo Wolfmann

E-ISSN: 2732-9976 51 Volume 1, 2021



Prcs. 1 × 0 2 × 0 0 × 2 2 × 2

Size secs flps secs flps secs flps secs flps
48K 98.8 385 91.8 417 66.8 570 48.3 788
60K 200.1 369 172.5 428 108.6 680 80.7 914
72K 308.0 412 295.9 429 165.0 770 134.1 947
84K 502.4 400 460.5 437 264.8 760 193.1 1042
96K 850.8 352 671.0 446 360.0 832 268.3 1116

Table 2: Time in seconds and Gflops observed for single
precision tests.

Prcs. 1 × 0 2 × 0 0 × 2 2 × 2

Size secs flps secs flps secs flps secs flps
48K 201.3 189 180.4 211 144.3 264 100.8 378
60K 409.5 180 346.9 213 265.2 278 184.7 400
72K 755.6 168 594.9 214 381.8 333 287.6 442
84K 997.8 202 945.1 213 562.9 357 435.3 462

Table 3: Time in seconds and Gflops observed for double
precision tests.

Block Size 10.5K 10.5K 9K 9K
Pres
Proc

SGL
CPU

SGL
Phi

DBL
CPU

DBL
Phi

trsm 7.37 4.31 12.30 7.21
syrk 7.92 2.86 10.46 4.37
gemm 12.82 5.43 17.69 7.86

Table 4: Observed time for the kernels executed over the
CPUs (six cores) and the coprocessor, in seconds.

tions1×0 and2×0, correspond to the tests that use twelve
cores as one ”CPU based processor” or as two; in the later
case, assigning six cores to each of these.

Analyzing the results of these columns, it can be seen
that the logical division of cores provides more Gflops,
thus, using the PN-PEM framework with the MKL library
brings better performance than using the library alone. An
explication of this fact is the bigger number of cache fails
when using all the cores to perform a single task than when
dividing the cores as two processors, respecting the physi-
cal affinity.

The internal logs of tests point out that the execution
of a any task, takes more time in a “CPU based processor”
than in the coprocessor, as expected. The Table 4 shows
the average time for the tasks executed on the CPUs (six
cores) and on the coprocessor for two cases of different
block range and precision. In both cases, for the GEMM
routine, which is dominant in the computations, takes more
that the double of time to execute on CPU based processors
than in one Xeon Phi coprocessor. This is the effect of the
heterogeneity of processors.

The PN-PEM model allows two ways to solve the het-
erogeneity problem: by a dynamic scheduler that launches
tasks when processors become idle, or by a double granu-
larity, assigning smaller data blocks to slower processors.

In the case of this work, the solution is to assign dy-
namically tasks to the ”CPU based processors” with the
same granularity than for the coprocessors, but respecting
its rythm and the advance of the computations.

Consider the relative velocity of faster processors with
respect to slower. In our case, it is considerated that copro-
cessors can be two times faster than CPUs, rounding num-
bers. When the number of available tasks is greater than
two, i.e., there are three or more tasks available, the slower
processor can execute a task without interfere in the over-
all performance selecting a task out of the “critical path”
of execution. In the other case, when there are one or two
available tasks, the slower processor must remain idle and
leave the execution of these task to the coprocessors. This
feature is implemented in the PN-PEM framework by con-
figuring the priority function for each type of processor, as
explained before.

Coming back to Tables 2 and 3, it can be seen that the
computing power of each coprocessor is almost the double
of the ”CPU based processors”, for single and double preci-
sion. The utilization of both type of processors, CPU cores
and Xeon Phi jointly, does not scale linearly. Nevertheless,
the Gflops obtained are almost the sum of both: the sums
of the Gflops of the tests2 × 0 plus the0 × 2 for different
matrix sizes and numerical presicion, it is between the 80%
and 90% of the value of the corresponding test for2× 2.

The last result was obtained after a series of tuning
tests by changing the valuation function of the processors,
prioritizing the next task to execute with different criteria.

The Fig. 4 shows a timeline of an execution. It shows
the results of the test for2 × 2 processors with a matrix
range of 84000, single precision. The upper two lines rep-
resent the execution of coprocessors while the lower two
the execution of CPUs. White spaces represent the proces-
sors idleness. Can be noted that they exist only at the be-
ginning and at the end of the execution, and they are nonex-
istent when there are tasks available to run in parallel.

In tests where both types of processors are used jointly,
each type can execute any of the four tasks, implementing
them by proper kernels to each architecture. In last stages
of the execution, the processing becomes almost sequen-
tial, as is show in Fig. 2, fact also noted in the final phase
of execution in Fig. 4. There is seen that only coproces-
sors execute the last tasks, leaving inactive the “CPU based
processors”.

Also can be remarkable that the real performance
reached by the “CPU based processors” is near its Rpeak,
and for the coprocessors, it is just a quarter. For the former,
the hyperthreading technology allows to use the processor
in a task while another task is awaiting for data coming
from the main memory. For the later, the Rpeak does not
consider the time involved in the copy of data from main
memory to the memory of the board, which involves a pass
by the pci channel, which takes most of the elapsed time.
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Used routines
gemm potr syrk trsm

Elapsed time between 0 secs. to 97 secs.

1
po01 sy02 sy04 sy04 sy04tr02 tr08tr04 tr06 tr06ge02 ge02 ge02ge03 ge03ge04 ge05 ge03 ge03ge05 ge04

2
sy03 sy05tr04 tr07 tr05 tr07tr04 tr05ge02 ge02ge03 ge03 ge04 ge04 ge06ge03 ge04 ge04ge04

3
po02 po03 po04sy03tr03 tr03 tr08 tr07ge02 ge05ge03 ge03

4
sy05 sy05 sy06tr05 tr06 tr05ge03 ge04 ge04

Elapsed time between 97 secs. to 194 secs.

1
po08sy05 sy06 sy07 sy07 sy08sy08 sy08tr08 tr07 tr07 tr08ge06 ge07ge05 ge07ge06 ge07ge05 ge06 ge07 ge07

2
sy06 sy06sy07 sy07tr08 tr06 tr08 tr08ge06 ge06ge04 ge04ge05 ge06ge05 ge06 ge06 ge06 ge07

3
po06 po07sy06sy07 sy08 sy08 sy08tr07ge05 ge05

4
po05 sy07 sy08tr06ge04 ge05 ge05 ge05

1

Figure 4: Execution timeline, divided in two sections,2 × 2 processors, 84000 range, single precision. Timelines 1 and 2
represent the coprocessors, and timelines 3 and 4, “CPU based processors” (six cores each).

5 Related Works

The PN-PEM scheduler is related to the dynamic scheduler
of the Quark project [18]. This last prioritizes data locality
as a policy of improvement performance. Instead, the PN-
PEM design allows to define a policy not only restricted to
data locality, but instead, to the availability of tasks to run
in parallel. Also, each Processor may adapt a scheduling
policy appropriate to its performance, allowing more than
one scheduler for system.

StarPU is a runtime system developed at the INRIA
Institute that launches tasks in parallel over a set of proces-
sors, using a dynamic scheduler [1]. It is based on kernels
provided by the user that implement the solution appropri-
ate to each processor. The scheduler uses estimated time to
select the task to execute. The definitions of tasks, depen-
dencies and data partition must be coded by the programer.
Changes in any of these involve changes in the code, which
is a drawback.

XKaapi is another runtime system developed at In-
ria that launches tasks in parallel [6], with a different ap-
proach: it works based on compiler directives introduced
in the source code that defines the tasks to run in parallel.
The scheduler is dynamic following a FIFO order without
considering any other factor of optimization.

Shetti et.al. implements the HEFT (Heterogeneous
Earliest-Finish-Time) scheduling algorithm in a CPU-GPU
environment [11], which is similar to the scheduler imple-
mented in the PN-PEM framework. It has the drawback
that the assignment of tasks priorities is done before run-
ning.

A recent work introduces the implementation of the

MAGMA library [12] using Xeon Phi cards [5]. It uses
a DAG to determine task dependencies, nevertheless, it is
not explained how is the criteria and the algorithm to select
the next task when there are many available. By other side,
the scheduling policy directs tasks in the “critical path” to
CPUs, and the remaining to the accelerator, differing with
the showed in this paper.

6 Conclusions
As a continuation of the previous work, tests were extended
to an heterogeneous parallel machine without a big effort.
It was needed to configure the type of processor used in the
computations and its corresponding kernels. In order to op-
timize performance, two different priority functions were
assigned, one for the “CPU based processors” and other
for the Xeon Phi cards.

Test gave results that ensures that the main objectives
of this study were achieved. The performance reached is
very close to the aggregate power of computation of the
two types of processors used, as is established by the ob-
jectives of the work. This fact was a result of tuning the
dynamic scheduler of the PN-PEM framework according
the algorithm, the state of the computations and the proper-
ties of the machine used.

Compared with related systems, at the best of our
knowledge, the PN-PEM model and framework is more
flexible and quickly adaptable to changes. The model helps
to analyze, execute, and tune the execution, with a negligi-
ble overload.

Future work will focus on applying the PN-PEM
model and framework with others algorithms. Also will be
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considered to extend the framework to a distributed mem-
ory architecture.
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