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Abstract: - In this study, the zeroing property of the first two moments is used to construct an algorithm for
splitting spline wavelets of the seventh degree. The presentation is based on the system of basic spline wavelets
of the seventh degree, constructed in the previous article, which implements the conditions of orthogonality to
all polynomials of any degree. Then, using homogeneous Dirichlet boundary conditions, the system is adapted
to orthogonality to all polynomials up to the first degree on a finite interval. Implicit finite relationships are
obtained between the spline coefficients in the original scale, on the one hand, and the spline coefficients and
wavelet coefficients in the nested scale, on the other hand. After eliminating the even rows of the system, the
transformation matrix has seven diagonals instead of five, as in the previous case studied. The resulting system
has been modified to ensure strict diagonal dominance and, hence, computational stability, in contrast to the five-
diagonal case.
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1 Introduction

Haar wavelets and Daubechies wavelets were the
first compactly supported orthonormal wavelets [1-
3]. Compactness means that there are explicit finite
formulas for the discrete wavelet decomposition. The
locality property of wavelets gives them an advan-
tage over Walsh and sine-cosine functions commonly
used in digital signal processing [4, 5]. The unique
hierarchical property of wavelets allow the develop-
ment of a basis in which the data representation can
be expressed with a small number of non-zero coeffi-
cients. This property makes wavelets attractive for
data compression, including video and audio infor-
mation. The wavelet transform can be considered as
one of the methods of primary signal processing to in-
crease the efficiency of its compression. In this case,
direct compression is carried out by classical meth-
ods only for significant coefficients of the wavelet de-
composition of the signal, and its reconstruction from
these coefficients is performed at the stage of restora-
tion (decompression) [6]. As multimedia becomes
more and more popular, the conflict between massive
data and limited storage devices is ever-increasing;
thus, a more convenient, efficient and high-quality
transmission and storage technology is required, and
fast wavelet analysis is what people want to use for a
high-performance compression technology [7-10].

The generalization of orthonormal wavelets were

constructed by Cohen et al. in the form of biorthog-
onal wavelets [11, 12]. But the disadvantage of these
wavelets is that the expansion coefficients are calcu-
lated by the formulas of local averaging, that is, when
processing data, information is lost at the edges of
the image [13]. It is for this reason that it is usu-
ally advised to use interpolating cubic spline wavelets
[14] instead of orthogonal wavelets. Wavelet trans-
forms based on interpolation splines have their draw-
backs. First, in the problem of processing measure-
ment information, interpolating spline wavelets [15]
are calculated by solving interpolation problems on
sequences of nested grids, so the expansion coeffi-
cients are equal to the values of the function at some
nodes of a dense grid, which is a kind of data decima-
tion. Secondly, from the point of view of data noise
reduction, the function values are not filtered at all,
although the best root-mean-square approximation of
the derivative is provided [16].

Meanwhile, in the work of the author [17], non-
orthogonal wavelets of the third degree with the first
six zero moments, i.e., orthogonal to all polynomi-
als of the fifth degree, were considered; the existence
of finite implicit decomposition relations was proved
and an efficient even-odd splitting algorithm based on
them for wavelet analysis was substantiated. The im-
portance of the new algorithm in wavelet theory lies
in its stability and ease of implementation, since at
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each resolution step amatrix with strict diagonal dom-
inance is solved.

The first attempt to find out whether there is an al-
gorithm for splitting non-orthogonal wavelets of the
seventh degree was made in the work of the author
[18], the method of five-diagonal splitting was stud-
ied, and the absence of strict diagonal dominance in
the resulting system was established. In this article,
we justify the stability of the solution for the seven-
diagonal splitting method; presents the results of nu-
merical experiments on the approximation of a dis-
cretely given function. Section 2 discusses the prop-
erties of splines of degreem of smoothness Cm−1 on
a uniform infinite grid of knots and of non-orthogonal
spline wavelets with n + 1 vanishing moments. In
subsection 2.1, similar properties of splines of the sev-
enth degree are discussed in the case of a finite seg-
ment, with corresponding changes near the bound-
aries. Subsection 2.2 discusses the use of matrix no-
tation for the wavelet transform of hierarchical spline
bases, and section 3 proposes the basic idea of pre-
processing the system ofwavelet transform equations.
As a result, in Theorem 1, the case of seventh-degree
spline wavelets with two zero moments is completely
resolved and in subsection 3.1 the wavelet decompo-
sition algorithm on a finite interval is implemented.

2 Construction of spline wavelets

with vanishing moments [18]
To construct wavelets, we need a set of approximat-
ing spaces . . . VL−1 ⊂ VL ⊂ VL+1 . . . such that each
basis function in VL can be represented as a linear
combination of basis functions in VL+1. In particu-
lar, this property is possessed by splines, which are
smooth functions glued together from pieces of poly-
nomials of degree m on a nested sequence of grids.
The essence of the wavelet transform is formulated as
follows: it allows one to decompose a given function
VL+1 into a rough approximate representation VL and
the locally refined details WL = VL+1 − VL. This
procedure can be applied recursively to VL. Hence,
the original function can be represented as a hierar-
chy of rough versions of VL, VL−1, ... and refinements
WL,WL−1, .... Such a recursive process is called di-
rect wavelet transformation (decomposition or analy-
sis) [1, p. 46]. Conversely, the function VL+1 can be
reconstructed from the most compact representation
(reconstruction). Moreover, the values of the coeffi-
cients of the wavelet decomposition can be used to
judge the significance of the corresponding details of
the refinement. Insignificant details can be removed
to compress the information. In the case when splines
are suitable as a basis for the spaceWL, themain thing
here is to find fast one-to-one formulas for the direct
and inverse wavelet transforms for it.

As the space VL we will use the space of splines
of degreem of smoothnessCm−1 on the uniform grid
of knots∆L : xi+1 = xi+1/2L, which continues in-
definitely in both directions for all i. It is well known
that the basis in this space is generated by functions
ϕm(v − i)∀i, where v = 2Lx, formed by a function
of the form [1, p. 89]:

ϕm(t) =
1

m!

m+1∑
j=0

(−1)j
(
m+ 1

j

)
(t− j)m+ ,

where tm+ = (max{t, 0})m.
It is known that they satisfy the calibration relation

[1, p. 91]:

ϕm(t) = 2−m
m+1∑
k=0

(
m+ 1

k

)
ϕm(2t− k), (1)

and they have the following supports,

suppϕm = [0,m+ 1].

As a result, any spline on the mesh∆L can be rep-
resented as

sL(x) =
∞∑
−∞

cLi ϕm(2Lx− i). (2)

We need to solve, for example, the cardinal inter-
polation problem:

sL(xi) = f(xi), −∞ < i <∞,

to determine the coefficients cLi ∀i.
Let the grid ∆L−1 be obtained from the grid ∆L

by removing every second node. Then the corre-
sponding base functionsϕm(v/2−i)∀i have supports
twice as wide, and the space VL−1 is embedded in VL.
The complement of VL−1 to VL is defined as wavelet
space: WL−1 = VL − VL−1 [1].

Non-orthogonal wavelets [19] orthogonal to all
polynomials of degree n, are defined as

wm,n(t) = 2−m
n+1∑
k=0

(−1)k
(
n+ 1

k

)
ϕm(2t−k). (3)

It can be evaluated that they have t n+1 zero mo-
ments∫ ∞

−∞
xkwm,n(x)dx = 0, k = 0, 1, . . . , n,

and, accordingly, they have the following supports,

suppwm,n = [0,
m+ n

2
+ 1].
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2.1 The case of a finite segment
Recall that for the case of interpolation by splines on a
finite interval [0, 2L], the most productive approach to
constructing basis functions is to set multiple nodes at
the ends of the interval, which corresponds to zeroing
of the approximating spline and some of its deriva-
tives at the ends of the interval [2]. Then the left sev-
enth degree basic functions have the view forms [18].
They have the following supports,

suppϕb1 = [0, 7], suppϕb2 = [0, 6],

and they satisfy the calibration relations

ϕb1(t) =
1

64
ϕb1(2t) +

19

134
ϕ7(2t) +

+
59

160
ϕ7(2t− 1) +

327

640
ϕ7(2t− 2) +

+
41

96
ϕ7(2t− 3) +

167

768
ϕ7(2t− 4) +

+
1

16
ϕ7(2t− 5) +

1

128
ϕ7(2t− 6),

ϕb2(t) =
1

32
ϕb2(2t) +

147

640
ϕb1(2t) +

12299

25600
ϕ7(2t) +

+
371

800
ϕ7(2t− 1) +

399

1600
ϕ7(2t− 2) +

+
7

96
ϕ7(2t− 3) +

7

768
ϕ7(2t− 4).

As to boundary seventh-degree basic wavelets,
then because of the future need for splitting the de-
composition matrix we can use the method of con-
structing wavelets that are orthogonal to all first-
degree polynomials and include only even basic
splines [18],

wb1(t) =
7

48
ϕb2(2t)−

15

64
ϕb1(2t) +

49

512
ϕ7(2t),

wb2(t) =
1

16
ϕb2(2t)−

11

128
ϕ7(2t) +

5

128
ϕ7(2t− 2).

They have the following supports

suppwb1 = [0, 5], suppwb2 = [0, 4],

and, accordingly, they have two zero moments∫ 5

0
xkwb1(x)dx =

∫ 4

0
xkwb2(x)dx = 0,

for k = 0, 1.
The basic functions at the right end of the segment

mirror the functionsϕb1,2(t), wb1,2(t). So for any grid

∆L, L ≥ 3, a seventh-degree spline can be repre-
sented as

sL(v) = cL−2ϕb2(v) + cL−1ϕb1(v) + (4)

+
2L−8∑
i=0

cLi ϕ7(v − i) + cL2L−7ϕb1(2
L − v) +

+cL2L−6ϕb2(2
L − v), 0 ≤ v ≤ 2L.

To difine the coefficients cLi ∀i we can solve, for ex-
ample, the interpolation problem:

sL(i) = f(i), i = 2, 3, . . . , 2L − 2,

while zero boundary conditions are satisfied automat-
ically(

sL
)(r)

(v) = 0, r = 0, 1, . . . , 4, v = 0, 2L.

The graphs of basis spline functions and wavelets
of the 7th degree, orthogonal to all polynomials of the
1st degree, were shown in [18].

2.2 Construction of the defining system of

wavelet transform equations
Let us write the basic spline functions in a single-line
matrix form,

ϕL(v) = [ϕb2(v), ϕb1(v), ϕ7(v), . . .

. . . , ϕ7(v − 2L + 8), ϕb1(2
L − v), ϕb2(2

L − v)
]
.

Introduce the notation

cL =
[
cL−2, c

L
−1, c

L
0 , . . . , c

L
2L−7, c

L
2L−6

]T
for a vector consisting of spline coefficients. Then we
can write formula (2) in vector form

sL(x) = ϕL(x)cL.

In the same way, we can write basic wavelet func-
tions at the decomposition level L− 1 in the form of
a single row matrix as

ψL−1(v) = [wb2(v), wb1(v), w7,1(v), w7,1(v − 2), . . .

. . . , w7,1(v − 2L + 10), wb1(2
L − v), wb2(2

L − v)
]
.

We denote the corresponding wavelet approxima-

tion coefficients by dL−1
i ,−2 ≤ i ≤ 2L−1 − 3, and

introduce the column vector

dL−1 =
[
dL−1
−2 , dL−1

−1 , . . . , dL−1
2L−1−3

]T
.

By definition the spaces VL−1 andWL−1 are sub-
spaces of VL. So the functions ϕ

L−1(x) and ψL−1(x)
can be represented as linear combinations of the func-
tions ϕL(x):

ϕL−1(x) = ϕL(x)PL,

ψL−1(x) = ϕL(x)QL.
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Here the columns of the matrix PL are built from
the relation coefficients (1), and the elements of the
columns of the matrix QL consist of the relation co-
efficients (3) with the corresponding changes near the
boundaries.

Therefore, there is a chain of equalities:

ϕL(x)cL = ϕL−1(x)cL−1 + ψL−1(x)dL−1 =

= ϕL(x)PLcL−1 + ϕL(x)QLdL−1.

Then the coefficients cL can be obtained from the
known coefficients cL−1 and dL−1 as follows

cL = PLcL−1 +QLdL−1. (5)

Equality (5) can be rewritten in the form of block
matrices,

cL =
[
PL | QL

] [ cL−1

dL−1

]
. (6)

Formula (6) is nothing more than a recovery algo-
rithm [1, p. 248], for the implementation of which,
due to the tape matrices PL and QL the moving av-
erage scheme is successfully used. For example, for

the case m = 7, n = 1, the matrix
[
PL | QL

]
takes

the following form:[
PL | QL

]
=

1

128
·

·



...
. . . 0
. . . 1

...
. . . 8 0
. . . 28 1

. . .
...

. . . 56 8
. . .

. . . 0
. . . 70 28

. . .
. . . 1

...
. . . 56 56

. . .
. . . −2 0

. . .

. . . 28 70
. . .

. . . 1 1
. . .

. . . 8 56
. . .

. . . 0 −2
. . .

. . . 1 28
. . .

... 1
. . .

. . . 0 8
. . . 0

. . .
... 1

. . .
...

0
. . .

...



.

Unfortunately, for the reverse process of calculat-
ing from the coefficients cL the coarser version cL−1

and the refining coefficients dL−1, following the de-
composition algorithm [1, p. 247][

cL−1

dL−1

]
=

[
AL

BL

]
cL,

we obtain, that the rows of matrices AL and BL are
completely filled numerical sequences, and their trun-
cation leads to errors.

3 The new algorithm with splitting
Now we will use the method of even-odd splitting to
the resulting system solving [17]. We choose for this
purpose some preconditioning matrix RL to receive
an easy invertible matrix

GL =
[
PL | QL

]
RL

by the conditions:
a) a matrix GL is a tape matrix with the minimum
possible number of nonzero diagonals;
b) RL is a tape matrix, with the minimum possible
number of elements.

By zeroing the elements spaced by an odd number
of steps from the main diagonal of the matrixGL, it is
possible to use an efficient sweep method to solve the
computational scheme; and additionally zeroing the
elements outside the main diagonal of the matrixGL,
one can look for the possibility of splitting the system
into even and odd rows. And also place as many ze-
ros as possible in the upper and lower parts of each
column of the matrix RL to ensure its compactness.

Then, assuming that the matrixGL is nonsingular,
we multiply the left and right sides of equality (5) by

the matrix RLGL−1
to receive the equalities

RLGL−1
cL =

= RL
([
PL | QL

]
RL
)−1 [

PL | QL
] [ cL−1

dL−1

]
=

= RLRL−1

[
AL

BL

] [
PL | QL

] [ cL−1

dL−1

]
=

=

[
cL−1

dL−1

]
.

Thus, instead of directly solving a system of a form
(6), we can solve the system

GLhL = cL (7)

with respect to some values of hL and then just cal-
culate the values of cL−1 and dL−1 using the linear
transformation [

cL−1

dL−1

]
= RLhL. (8)
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For the matrix,
[
PL | QL

]
, the nine-diagonal ma-

trix [
PL | QL

]′
=

1

128
·

·



. . .
...

...
. . . 0 0

...
. . . 0 1 0

...
. . . 0 8 0 0

...
. . . 1 28 0 1 0

. . .

. . . −2 56 0 8 0 0 · · ·

. . . 1 70 1 28 0 1 0 · · ·

. . . 0 56 −2 56 0 8 0 · · ·

. . . 0 28 1 70 1 28 0
. . .

· · · 0 8 0 56 −2 56 0
. . .

· · · 0 1 0 28 1 70 1
. . .

. . . 0 0 8 0 56 −2
. . .

... 0 1 0 28 1
. . .

... 0 0 8 0
. . .

...
...

. . .
. . .

. . .


is obtained by permuting the columns of the matrix[
PL | QL

]
so that the columns of thematricesPL and

QL alternate. In practice, such a permutation is ac-
companied by a change in the order of the unknowns
in the system (6) and is often done to give the sys-
tem a tape-like form to facilitate the numerical solu-
tion of the system [2]. Let the matrix corresponding
to the indicated permutation of columns is denoted by
T . Then the representation is true [20][

PL | QL
]′
=
[
PL | QL

]
T. (9)

From the representation (9) we find[
PL | QL

]−1
·GL = T ·

[
PL | QL

]′−1
·GL. (10)

Thus, the problem of finding the matrices RL and
GL is reduced to finding a solution of the system of
matrix equalities[

PL | QL
]′
j
RL′

j = GL
j , ∀j. (11)

Here, the subscripts in the notation of the matrices
indicate which elements of the columns of the matrix
RL′

are calculated by the corresponding system (11).
Specifically, according to the assumed stepped struc-

ture of the matrices RL′
and GL and provided that

the equations corresponding to zero rows of the ma-
trix GL are removed from the system, the inner part
of the system (11) splits into blocks with matrices of
the following form:

[
PL | QL

]′
j,j+1,...,j+6

=
1

128
·



1 28 0 1
−2 56 0 8
1 70 1 28 0 1
0 56 −2 56 0 8
0 28 1 70 1 28 0 1
0 8 0 56 −2 56 0 8

1 0 28 1 70 1 28 0 1
0 0 8 0 56 −2 56 0 8

0 1 0 28 1 70 1 28
0 8 0 56 −2 56

1 0 28 1 70 1
0 8 0 56 −2

1 0 28 1



.

This system is solvable and underdetermined.
Therefore, we can choose non-trivial solutions that
interest us from the point of view of diagonal dom-
ination, namely:

1) r0 = r10 = −4; r1 = r9 = 0;

r2 = r8 = 20; r3 = r7 = −1;

r4 = r6 = 304; r5 = 12;

g0 = g12 = −5;

g1 = g2 = g3 = g5 = g7 =

= g9 = g10 = g11 = 0;

g4 = g8 = 589; g6 = 1392;

2) r0 = r1 = r2 = r3 = r5 = r6 =

= r7 = r8 = r9 = r10 = 0; r4 = 1;

g0 = g1 = g2 = g3 = g7 = g8 =

= g9 = g10 = g11 = g12 = 0;

g4 = g6 = 1; g5 = −2;
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3) r0 = r1 = r2 = r3 = r4 = r5 =

= r7 = r8 = r9 = r10 = 0; r6 = 1;

g0 = g1 = g2 = g3 = g4 = g5 =

= g9 = g10 = g11 = g12 = 0;

g6 = g8 = 1; g7 = −2.

As a result, the matrixGL acquires a tape structure
with seven nonzero diagonals of the form

. . .
. . .

. . .

. . . 0 0 0 −5

. . . 0 0 0 0
. . .

. . . 1 589 0 0
. . .

. . . −2 0 0 0
. . .

. . . 1 1392 1 589 0
. . .

. . . 0 0 −2 0 0
. . .

. . . 0 589 1 1392 1
. . .

. . . 0 0 0 0 −2
. . .

. . . 0 0 0 589 1
. . .

. . . 0 0 0 0
. . .

−5 0 0 0
. . .

. . . 0 0
. . .

. . .
. . .

. . .



,

while the matrix RL′
turns out to have the following

form:

. . .
. . .

. . .

. . . 0 0
. . .

. . . 0 20 0 −4
. . .

. . . 0 −1 0 0
. . .

. . . 1 304 0 20 0
. . .

. . . 0 12 0 −1 0
. . .

. . . 0 304 1 304 0
. . .

. . . 0 −1 0 12 0
. . .

. . . 0 20 0 304 1
. . .

. . . 0 0 −1 0
. . .

. . . −4 0 20 0
. . .

. . . 0 0
. . .

. . .
. . .

. . .



. (12)

To prepare the system (6) for the odd-even split-
ting near the boundaries we need to solve the system

(11) for indices j = −2,−1, . . . , 5with the following
matrix [

PL | QL
]′
−2,−1,...,5

=
1

128
·

·



8 56
3 4 0

0 −30 147
5 0 2

−11 49
4

12299
200 1 1216

67 0 1
0 0 1484

25 −2 236
5 0 8

5 0 798
25 1 327

5 1 28 0
0 0 28

3 0 164
3 −2 56 0

0 7
6 0 167

6 1 70 1
0 0 8 0 56 −2

0 1 0 28 1


,

provided that the equations corresponding to zero
rows of the matrix GL are removed from the system.
This system is solvable and underdetermined. There-
fore, we can choose any non-trivial solutions that in-
terest us from the point of view of diagonal domina-
tion, for example:

1) r−2 = 1;

r−1 = r0 = . . . = r9 = 0;

g−1 = g1 = g3 = g4 = . . . = g10 = 0;

g−2 = 8; g0 = −11; g2 = 5;

2) r−2 = r0 = r1 = . . . = r9 = 0;

r−1 = 1;

g−2 =
56
3 ; g−1 = −30; g0 =

49
4 ;

g1 = g2 = . . . = g10 = 0;

3) r−2 = −418
25 ; r−1 =

147
25 ;

r0 = 6; r1 =
4452
25 ; r3 = 28;

r2 = r4 = r5 = . . . = r9 = 0;

g−2 = g−1 = g1 = g3 =

= g5 = g6 = . . . = g10 = 0;

g0 = 803; g2 = 314; g4 = 35;

4) r−2 = r−1 = r0 =

= r2 = r3 = . . . = r9 = 0;

r1 = 1;

g−2 = g−1 = g3 = g4 = . . . = g10 = 0;

g0 = g2 = 1; g1 = −2;

5) r−2 =
2811263
3668250 ; r−1 = − 6928323

26900500 ;

r0 = − 533981
1614030 ; r1 =

278031899
20175375 ;

r2 = 1; r3 =
62437363
2421045 ; r5 = 4;

r4 = r6 = r7 = . . . = r9 = 0;

g−2 = g−1 = g0 = g1 = g3 =

= g5 = g7 = g8 = g9 = g10 = 0;
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g2 =
475695383
4842090 ;

g4 =
110858263
1936836 ; g6 = 5;

6) r−2 = r−1 = r0 = r1 =

= r2 = r4 = r5 = . . . = r9 = 0;

r3 = 1;

g−2 = g−1 = g0 = g1 =

= g5 = g6 = . . . = g10 = 0;

g2 = g4 = 1; g3 = −2;

7) r−2 = r−1 = r0 = r2 = r8 = 0;

r1 = 4; r3 =
394
15 ; r4 = 1; r5 =

238
15 ;

r6 = −13
30 ; r7 = −122

15 ; r9 = −26
15 ;

g−2 = g−1 = g1 = g3 =

= g5 = g7 = g9 = 0;

g0 = 5; g2 =
347
6 ; g4 = 100;

g6 =
27
5 ; g8 = −21; g10 = −13

6 .

So, the first seven columns of the matrix GL are



8 56
3 0 0 0 0 0

0 −30 0 0 0 0 0
−11 49

4 803 1 0 0 5
0 0 0 −2 0 0 0
5 0 314 1 475695383

4842090 1 347
6

0 0 0 0 0 −2 0
0 0 35 0 110858263

1936836 1 100
0 0 0 0 0 0 0
0 0 0 0 5 0 27

5
0 0 0 0 0 0 0
0 0 0 0 0 0 −21
0 0 0 0 0 0 0
0 0 0 0 0 0 −13

6
...

...
...

...
...

...
...



.

From the structure of the matrixGL it immediately
follows, that the values of hL at odd nodes are calcu-
lated from the explicit equations

cLi
hi

=

{
30, i = −1, 2L − 3;
2, i = 1, 3, . . . , 2L − 5,

,

while
8hi = ri, i = −2, 2L − 2,

and for the rest values of hL at even nodes a system
of linear equations is solved:

803h0 + 5h4 − 5h6
314h0 +

475695383
4842090 h2 +

347
6 h4 − 5h8

35h0 +
110858263
1936836 h2 + 100h4 + 589h6 − 5h10

5h2 +
27
5 h4 + 1392h6 + 589h8 − 5h12

−21h4 + 589h6 + 1392h8 + 589h10 − 5h14
−13

6 h4 + 589h8 + 1392h10 + 589h12 − 5h16
i = 12, 14, . . . , 2L − 16 :

−5hi−6 + 589hi−2 + 1392hi + 589hi+2 − 5hi+6

i = 2L − 14 :
−5hi−6 + 589hi−2 + 1392hi + 589hi+2 − 13

6 hi+6

i = 2L − 12 :
−5hi−6 + 589hi−2 + 1392hi + 589hi+2 − 21hi+4

i = 2L − 10 :
−5hi−6 + 589hi−2 + 1392hi +

27
5 hi+2 + 5hi+4

i = 2L − 8 :
−5hi−6 + 589hi−2 + 100hi +

110858263
1936836 hi+2 + 35hi+4

i = 2L − 6 :
−5hi−6 +

347
6 hi−2 +

475695383
4842090 hi + 314hi+2

i = 2L − 4 :
−5hi−6 + 5hi−4 + 803hi



= ri, i = 0, 2, . . . , 2L − 4. (13)
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Here the right-hand sides of the equations (13) are
calculated from the formulas

r−2 = cL−2 +
56

3
h−1,

r0 = cL0 + 11h−2 +
49

4
h−1 + h1,

r2 = cL2 − 5h−2 + h1 + h3,

ri =



cLi + hi−1 + hi+1,
i = 4, 6, . . . , 2L − 8,
cLi + hi−1 + hi+1 − 5hi+4,
i = 2L − 6,
cLi + hi−1 +

49
4 hi+1 + 11hi+2,

i = 2L − 4,
cLi + 56

3 hi−1,
i = 2L − 2.

Theorem 1 The stability of the calculations is guar-
anteed.

Proof. Note that the matrix of the system (13)
has a strict diagonal dominance [21, p. 78] over the
columns of the system. So far, meanwhile the system
of equations has a unique solution because of linear
independence of basis functions, the stability of the
calculations by the sweep method is guaranteed.

Now, from the equality (10) it follows that to find

the matrix RL =
[
PL | QL

]−1
·GL, it is required to

apply to the rows of the matrix (12) an inverse per-
mutation, that is, a permutation in which the records
of the image and the inverse image are interchanged.
From this, we can obtain the required in (8) represen-
tation of the matrix RL.

To recheck the above analytical estimate, one can

simply multiply the matrices
[
PL | QL

]−1
andGL to

obtain that the matrix RL consists of two blocks: the
first one for 2L−1−3 basic spline functions VL−1, the
second one for 2L−1 basic waveletsWL−1



0 0 6 0 − 533981
1614030 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 −1
. . .

...
...

...
... 0 0 −13

30 0 12
. . .

...
...

...
... 0 0 0 0 −1

. . .
...

...
...

... 0 0 0 0 0
. . .

...
...

. . .
. . .

. . .

1 0 −418
25 0 2811263

3668250 0 0 0
0 1 147

25 0 − 6928323
26900500 0 0 0

0 0 4452
25 1 278031899

20175375 0 4 0 −4
. . .

0 0 28 0 62437363
2421045 1 394

15 0 20
. . .

0 0 0 0 4 0 238
15 1 304

. . .

0 0 0 0 0 0 −122
15 0 304

. . .

0 0 0 0 0 0 −25
15 0 20

. . .
...

...
...

... 0 0 0 0 −4
. . .

...
...

...
... 0 0 0 0 0

. . .
...

...
. . .

. . .
. . .



.

Here, the diagonal dots mean that the previous two
columns are repeated the corresponding number of
times, each timemoving two positions to the right and
moving one position down. The last eight columns
of both blocks of the matrix RL mirror the first eight

columns; the empty positions of matrices are equal to
zero.

As a result, the values of the spline coefficients on
a thinned grid and the wavelet coefficients are calcu-
lated by the explicit formulas (8).
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3.1 The algorithm of wavelet analysis

consists of performing the following

steps:

1. On a finite segment [a, b] the values of the ob-
servation results are reset to zero at the ends by
subtracting values of the ninth degree Hermitian
polynomial [16]

4∑
i=0

(b− a)i
[
(−1)if (i)(a)ηi(1− v)+ (14)

+f (i)(b)ηi(v)
]
, v =

x− a

b− a
,

where

ηi(t) = (1−t)5
4−i∑
β=0

(4 + β)!

4!i!β!
ti+β, i = 0, 1, . . . , 4,

from the entire time series.

2. The wavelet decomposition algorithm for a given
L is incorporated.

3. If L > 3, then the value of L decreases by 1, and
the algorithm goes to step 2.

4. Otherwise, at each level L of the decomposition,
the rejection of insignificant wavelet coefficients
is performed according to some criterion [2], and
the spline coefficients are sequentially restored
according to the moving average algorithm (4).

5. After wavelet analysis of the differences obtained
at the first stage of the algorithm and reconstruct-
ing (of course, with some approximation) the
spline coefficients for the densest mesh, the val-
ues of the polynomial (14) are added to values of
the approximating spline of the seventh degree.

4 Precision check for polynomials
Let x ∈ [0, 1]. By setting L = 4 at the top resolution
level, we get the grid step length 2−4 = 1/16. To per-
form the wavelet transform, need to take zero values
of the function and derivatives at the ends of the seg-
ment, while the values of the function at the nodes of
the∆L grid will be used as initial data, 13 numbers in
total.

Because the seventh-degree polynomial with
ten zero boundary conditions does not exist we
will bound considering the tenth-degree polynomial
f(x) = x5(1 − x)5 as a test function. We find
at the last stage of the recursive wavelet decom-
position algorithm, five values of the coefficients
of the spline s3(x), c3 = [1.293 · 10−6, 6.203 ·
10−6, 9.755 · 10−6, 6.203 · 10−6, 1.293 · 10−6]T . In
this case, the wavelet coefficients are equal to d3 =

[1.196 · 10−8, 1.281 · 10−8, 1.082 · 10−7,−1.284 ·
10−8,−1.284·10−8, 1.082·10−7, 1.281·10−8, 1.196·
10−8]T . To demonstrate the accuracy property of the
approximation scheme for this example of polynomi-
als, we will neglect all the wavelet coefficients, pro-
viding a compression factor of 13/5=2.6, and we will
show here the graph of the difference between the ap-
proximation spline and polynomial (Fig. 1), which
has the alternating character near the ends of the in-
terval.

Figure 1: Graph of difference between the 7th-degree
approximation spline and the tenth-degree polyno-
mial

The compression coefficient in the considered ex-
ample is small (only 8 wavelet coefficients are dis-
carded). But the more will be the length of smooth-
ness intervals, the higher will be the compression
quality.

5 Conclusion

The article considers the further development of the
author’s procedure [22] of even-odd partitioning of
the defining system of the Hermite wavelet expansion
for the practically important case of approximation
that does not require values of derivatives of func-
tions, based on B-splines of the seventh degree.

The advantage of the new algorithm is the ease of
implementation, since at each decomposition step a
seven-diagonal matrix with strict diagonal dominance
is solved.

The directions of our future research are to extend
the proposed approach to splines of a higher degree
and a greater number of zeromoments, which can pro-
vide new opportunities for developing algorithms for
performing wavelet decomposition and signal recom-
position.
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