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ECUADOR

Abstract: Considering the Linear Parameter Varying (LPV) systems of discrete time, in this paper an approach for
the synthesis of robust Proporcional+Integral Observers (PIO) is presented. From LPV systems characterized with
polytopical uncertainties, the method of design is based on considering a dynamics extended of the typical PIO,
in order to transform the design of the matrices of the dynamics of the observer, as a design of the gain of Static
Output Feedback (SOF) of a problem of robust control. Under these conditions and from the norms H2/H∞
described as Linear Matrix Inequalities (LMI), the criteria to obtain the gain in the SOF problem are established;
taking into account performance indices in H2 and H∞, under the presence of uncertainties and disturbances.

Key–Words: Discrete-time systems. LPV Systems. Proportional+Integral Observers (PIO). Linear Matrix Inequal-
ities (LMI).H2-H∞ Norms

1 Introduction
The Linear Parameter Variable (LPV) systems are re-
ferred as those linear dynamical systems whose repre-
sentations in state space depends on exogenous non-
stationary parameters [16]. The LPV systems are a
generalization of LTV systems, establishing an inter-
mediate model between linear and nonlinear dynam-
ics, which can become a representative model for the
control of nonlinear processes, allowing the use of all
machinery linear control systems linear to the partic-
ular case of nonlinear processes [7, 2].

From a practical point of view, LPV system has
at least two interesting interpretations [3]: 1) It can
be seen as a LTI system with parametric uncertainty.
2) It can be seen as an LTV model, or a model result-
ing from the linearization of a nonlinear system (SNL)
along the trajectories of the parameter α. This last
statement is important since the LPV system repre-
sents a description of one intermediate system, which
enables to design controllers sor observers for nonlin-
ear systems, in a systematic way such as for linear sys-
tems. Also, if the nonlinear model is formulated as a
linear system parameterized, where parameterization
is dependent states, allows a description LPV repre-
sent a nonlinear system not locally, taking advantage
of the consequences of a global stabilization [2].

On the other hand, the causal observation is the
problem of finding estimates for the current values of
a set of signals from the present and past values of

another set of signals, where both sets of signals are
interconnected by the action a dynamic system. The
latter is called observer, and the procedure is known
as an estimate or reconstruction of states. An impor-
tant feature is that the estimate is asymptotically exact,
ie, to converge the actual value of the observed signals
as time goes to infinity (asymptotic observability). In
the case of LPV systems, this idea is followed: de-
signing a dynamic system that allows the asymptotic
estimation of states, under the presence of parametric
variations.

In principle, the observer design problem for LPV
systems involves an analysis of the observability of
such systems. Thus, in [1] the notion of invariant
subspaces for LPV systems is presented, introduc-
ing the concept of invariant subspaces of parameter
variations, which is very important for the design of
state observers, characterizing a geometric condition
for the observability.

In the same vein, in [17] some characterizations
are presented, and necessary and sufficient conditions
for the existence of observers for linear functions and
variant finite dimensional systems are given. The re-
sults are evaluated for affine parameter variant sys-
tems and bilinear control systems.

For the design of observers in LPV discrete-time
systems, in [6] a synthesis method based on interpola-
tion is discussed. Estimate the stability of the error is
evaluated by the existence of a Lyapunov function de-
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pendent, affine way, regarding parameters and a rate
of asymptotic decay defined. In [10] observation state
is used for the synthesis of state feedback controllers
in discrete LPV systems. The observer is Luenberger
raised type, regardless unknown entries.

On the other hand, in [4] a PIO for estimating
state and unknown inputs in discrete systems without
uncertainty applies. For the same class of systems, in
[8] a PIO for estimating state and unknown inputs and
outputs are presented.

In this paper, a method for designing observers
for LPV discrete-time systems based on the Propor-
tional+Integral (PI) observers, considering polytopic
type parametric variations in the process and sen-
sors, is presented. The stability of the observer sys-
tem is analyzed by Lyapunov stability of LPV dis-
crete time polytopic systems. The dynamic observer
is constructed by a control formulation by static out-
put feedback (SOF), considering performance indices
in H2/H∞; and also, the possibility of reconstructing
unknown inputs.

Notation. < is the set of real numbers. For a
matrix A, AT denote its transpose. tr (A) defines the
trace of the matrixA. diag(A,B) is a diagonal matrix
with entries A and B on its diagonal. In symmetric
matrices partitions ? denotes each of the symmetrical
blocks. Rn defines the identity matrix of dimension
n.

2 Theoretical Framework

In order to progress in the description of the key tools
that will support the results to present, consider the
discrete LTI system

xk+1 = Axk +Bωk

zk = Cxk +Dωk (1)

where x ∈ <n are the states, ωk ∈ <m are exogenous
inputs (noise, disturbance); and zk ∈ <q are regulated
outputs. The matrices A, B, C and D be of appropri-
ate dimensions.

From Lyapunov stability, it is very well known
that (1) system is asymptotically stable if and only if
there exists a matrix P = P T ∈ <n × n, satisfying
the following matrix inequalities:

P > 0, P −ATPA > 0 (2)

This condition can be described as follows:

Lemma 1 (Quadratic stability) Be the system (1). If
P = P T > 0, the matrix G ∈ <n×n and Q = P−1,
then the following conditions of asymptotic stability
(1) are equivalents:

i) P > 0 and P −ATPA > 0.

ii) P > 0 and [
P ATP
PA P

]
> 0, (3)

iii) Q > 0 and [
Q AQ

QAT Q

]
> 0, (4)

iv) There exist G, such that G+GT > 0 and[
G+GT − P GA

GTAT P

]
> 0, (5)

Proof: See [14] ut
Consider that is desired to place the poles in a par-

ticular stable region, such as in a stable region of ra-
dius r and center (σ, 0), with |σ| < 1. In this case, the
stability condition corresponds [5, 13]:

P = P T > 0, r2P − (A− σIn)TP (A− σIn) > 0
(6)

It follows by considering the dynamic matrix is given
by A−σIn

r .

Lemma 2 (Quadratic stability and pole placement)
Consider the system (1). If there exist P = P T > 0,
the matrix G ∈ <n×n and Q = P−1,then the
following conditions of asymptotic stability for (1)
are equivalents

i) P > 0 and r2P − (A− σIn)TP (A− σIn) > 0.

ii) P > 0 and[
rP ATP − σP

PA− σP rP

]
> 0, (7)

iii) Q > 0 and[
rQ AQ− σQ

QAT − σQ rQ

]
> 0, (8)

iv) There exist G, such that G+GT > 0 and[
r(G+GT − P ) GA− σG
GTAT − σGT rP

]
> 0, (9)

Proof: The procedure for the proof of Lema 1 is fol-
lowed; whereas the dynamic matrix is A−σIn

r . ut
In the same vein, other important results to be

taken into account, corresponds to the extended LMIs
characterizations of H∞ and H2 norms for discrete
time systems [19, 14]. These standard and extended
characterizations of H2 and H∞ norms as LMIs can
be combined with pole placement in particular re-
gions, whereas the dynamic matrix is A−σIn

r , which
helps to improve the transient response of the dynam-
ics of the state estimator.
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2.1 Robust stability and performance in dis-
crete LPV systems

Consider LPV discrete-time system given by

xk+1 = A(α(k))xk +B(α(k))ωk

zk = C(α(k))xk +D(α(k))ωk (10)

The system (10) can be characterized as a polytope,
defining

P :=

(
A(α) B(α)
C(α) D(α)

)
∈ Ω. (11)

where Ω is a polytopic set:

Ω :=

{
P : P =

l∑
i=1

αiPi; αi ≥ 0;

l∑
i=1

αi = 1

}
;

(12)
such that any admissible matrix P of the system can
be written as a convex combination of l vertices ma-
trices given, so that

Pi =

(
Ai Bi
Ci Di

)
(13)

whereAi, Bi, Ci, Di, for i = 1, . . . , l, are the vertices
of the polytope, and they are known matrices. Thus,
this system can be characterized by the convex hull of
Ω considering the vertices of the polytope, ie

Co Ω =

{(
A1 B1

C1 0

)
, . . . ,

(
Al Bl
Cl 0

)}
(14)

for αi ≥ 0, i = 1, . . . , l,
∑l

i=1 αi = 1.
The stability of polytopic system [9] is given by

Pi = P Ti > 0, Pi −ATi PiAi > 0, i = 1, . . . , l
(15)

Following the results of Lemma 1, the robust sta-
bility condition for polytopic system (10) can be sum-
marized as follows:

Lemma 3 (Robust stability) Consider the system
(10). If there exist Pi = P Ti > 0, the matrix
G ∈ <n×n, i = 1, . . . , l, then the following condi-
tions for robust stability are equivalents

i) Pi = P Ti > 0, Pi −ATi PiAi > 0,

ii) There exist G, such that G+GT > 0 and[
G+GT − Pi GAi

GTATi Pi

]
> 0, (16)

Proof: The procedure is similar to the proof of
Lemma 1 and the considerations presented in [9]. ut

Similarly, the robust performance of the polytopic
system (10) can be analyzed from the following:

Lemma 4 (H2 Robust performance) Consider the
system (10). For Pi = P Ti > 0, the following state-
ments are equivalent

i) System (10) is robustly stable and∥∥Ci(zI−Ai)−1Bi +Di

∥∥
2

< µ; for
i = 1, . . . , l

ii) There exist Pi = P Ti ∈ <n×n, W = W T ∈
<q×q y G ∈ <n×n, such that: tr(W ) < µ2 andG+GT − Pi GAi GBi

ATi G
T Pi 0

BT
i G

T 0 I

 > 0, (17)

W Ci Di

CTi Pi 0
DT
i 0 I

 > 0, (18)

Proof: See [14] and [11]. ut

Lemma 5 (H∞ Robust performance) Consider the
system (10). If Pi = P Ti > 0 ∈ <n×n, i = 1, . . . , l;
and the matrix G ∈ <n×n, the following statements
are equivalent:

i) System (10) is robustly estable and∥∥Ci(zI−Ai)−1Bi +Di

∥∥
∞ < γ.

ii) There exist Pi = P Ti > 0 y G such that
G+GT − Pi GAi GBi 0

ATi G
T Pi 0 CTi

BT
i G

T 0 γI DT
i

0 Ci Di γI

 > 0.

(19)

Proof: See [14] and [11]. ut
Importantly, the robust performance in H2-H∞

for polytopic system (10) can be combined with robust
pole placement, considering that the dynamic matrix
corresponds to Ai−σRn

r .

3 Main results

In this section, the design procedures of generalized
PIO for LPV discrete-time systems are explained.
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3.1 A PIO for LPV discrete time systems

A PIO is characterized by the incorporation of an ad-
ditional integral term estimate of the output estimation
error in order to design the observer, which may offer
certain degrees of freedom.

In [18] a generalization for PIO design is pre-
sented, considering an explicit parametric solution of
Sylvester matrix equations for the observer gain. In
the following proposal, the design of the generalized
PIO gain is obtained by solving a control problem by
SOF, considering the closed loop stability and follow-
ing characterization of the quadratic stability as a fea-
sibility problem LMIs. Accordingly, consider LPV
system

xk+1 = A(α)xk +Buk; x(0) = x0

yk = C(α)xk (20)

taking the same considerations for the model (10),
except that no uncertainty for for the operation of
the actuators, since the control matrix B is assumed
known and constant. It is recognized that the pair
(C(α), A(α)) is observable, for all α.

From the PIO model given in [12], consider the
following generalized version

x̂k+1 = Fx̂k +KIϑk +KP (yk − ŷk) +Buk,

ϑk+1 = Lϑk +H (yk − ŷk) (21)
ŷk = Jx̂k

where the matrices F , L, H , J , KP (proportional
gain) and KI (integral gain) are of appropiate dimen-
sions, which are defined as the observer matrices to be
determined, provided that

lim
k→∞

(
ek
ϑk

)
= 0 (22)

being ek = xk − x̂k the estimation error. The variable
ϑ is related to the “weighted” integral of the output
estimation error. The matrix L is a fading effect co-
efficient for regulating the transient response of the
observer. The matrix H is a coefficient of additional
integral effect, which improves the stability margin.
If L = 0, a classical PIO is obtained. If L 6= 0 , it
can be interpreted as a generalized PIO, since the dy-
namics of the observer is enriched, reaffirming their
behavior as PIO, which is important in applications
of fault diagnosis based on observers. Also, if steady
state ϑk = 0, it implies that yk − Jx̂k = 0.

Definition 6 Dynamic system(21) is said to be a gen-
eralized PIO of full order for the system (20), if only
if, the matrices F , L, H , J , KP and KI are such that
the expression (22) is satisfied.

Accordingly, the following theorem can be stated:

Theorem 7 Dynamic system (21) is said to be a gen-
eralized PIO of full order for the system (20), if only
if, the matrices F , L, H , J , KP and KI are such that

1. F = A(α) and J = C(α).

2. The matrix A(α):

A(α) =

(
F −KPC(α) −KI

HC(α) L

)
(23)

is stable in the sense of Lyapunov.

Proof: From the dynamic error

ek+1 = xk+1 − x̂k+1 = (A(α)−KPC(α))xk −
(F −KPJ) x̂k −KIϑk

ϑk+1 = Lϑk +H (C(α)xk − Jx̂k)

then, if F = A(α) y J = C(α),(
ek+1

ϑk+1

)
=

(
F −KPC(α) −KI

HC(α) L

)(
ek
ϑk

)
= A(α)

(
ek
ϑk

)
(24)

The dynamic system (24) must be quadratically sta-
ble, so that the condition condition (22) is satisfied,
which implies that the matrix A(α) be quadratically
stable. ut

The matrix A(α) can be expressed as

A(α) =

(
A(α) 0

0 0

)
+(

−KP −KI

H L

)(
C(α) 0

0 Iq

)
(25)

Thus, consider the matrices

Ao(α) =

(
A(α) 0

0 0

)
, Bo =

(
In 0
0 Iq

)
,

Co(α) =

(
C(α) 0

0 Iq

)
; (26)

and the matrix

K =

(
−KP −KI

H L

)
. (27)

The matrices given in (26), defining the dynamic sys-
tem

zk+1 = Ao(α)zk + Bovk
ηk = Co(α)zk (28)
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donde zk =

(
ek
ϑk

)
. The system (28) is character-

ized by the polytope

Pi =

(
Aoi Bo
Coi 0

)
i = 1, . . . , l (29)

It is easily verifiable that the pair (Ao(α),Bo) is
controllable. In addition, the system satisfies the con-
ditions for the design of a gain to the problem of SOF
[15], given that Bo = In+q, the necessary condition
is that the pair (Co(α),Ao(α)) be observable, which
corresponds that the pair (C(α), A(α)) be observable.
Therefore, the matrix K corresponding to the feed-
back gain to the control problem by SOF for the sys-
tem (28).

Lemma 8 Consider the system (28), with
(Co(α),Ao(α)) observable (equivalently, the pair
(C(α), A(α)) observable). Then, the system admits a
SOF control, given by v(t) = Kη(t), such that closed
loop dynamics is asymptotically stable.

Proof: In effect, if (Co(α),Ao(α)) is observable and
the structure of the matrix Bo, the control v(t) =
Kη(t) stabilizes the closed loop dynamic matrix,
given by

Ao(α) + BoKCo(α) = A(α)

ut
Consequently, the stabilization problem of the dy-

namic matrix A(α) for the generalized PIO corre-
sponds to design the gain K into the problem of sta-
bilization by SOF of the system (28). This has the
advantage that the design is obtained by direct solu-
tion of a problem of stabilizing LPV control systems,
which has been extensively studied for those uncertain
systems.

3.2 Designing a generalized PIO by SOF

The main result of this work is described by the fol-
lowing theorem:

Theorem 9 Let be system (28), with (Co(α),Ao(α))
observable. There exist a gain K, for the control by
SOF, provided that the matrix A(α) be stable, if only
if, there exist Pi = P Ti > 0, for i = 1, . . . , l; the
matrix G and the matrix Y such that the following
LMI is satisfied[

G+GT − Pi GAoi + BoY Coi
? Pi

]
> 0, (30)

where the gain K is obtained from

K = M−1Y, with M = B−1o GBo (31)

Proof: According to the robust stability established in
Lemma 3, A(α) will be stable if exist Pi = P Ti > 0
and G are such that[

G+GT − Pi GA(α)
? Pi

]
> 0

By substitution, the matrix inequalities appear, which
are linearized by changes of variables GBo = BoM
and Y = MK.

Therefore[
G+GT − Pi GAoi + BoY Coi

? Pi

]
> 0

resulting the LMI defined by (30) and the expression
(31) that allows to obtain K. ut

Calculating the gain K, the matrices G, H , KP y
KI of the generalized PIO are obtained. If the location
of poles is relevant, then the following result can be
applied:

Lemma 10 Consider the system (28), with
(Co(α),Ao(α)) observable. There exist a gain
K for control by SOF, provided that the matrix A(α)
has its poles in the circular region of radius r and
center (σ, 0), if only if, there exist Pi = P Ti > 0 for
i = 1, . . . , l, the matrix G, and the matrix Y such that
the following LMI is satisfied[
r(G+GT − Pi) GAoi − σG+ BoY Coi

? rPi

]
> 0,

(32)
where the gain K is obtained from

K = M−1Y, with M = B−1o GBo (33)

Proof: Proof follows from Theorem 9. ut
Given that F = A(α) and J = C(α), for pur-

poses of practical implementation of the generalized
PIO, as most observers to LPV systems, consider the
matrix F = A0 and J = C0, where A0 and C0 are
the central matrices of the respective polytopes, which
allows to preserver the robustness condition in the de-
sign of the generalized PIO.

3.3 Designing a generalized PIO with H2 −
H∞ performance

Consider LPV perturbed discrete time system

xk+1 = A(α)xk +B1(α)ωk +Buk

yk = C(α)xk +D(α)ωk,
(34)

where ωk ∈ <r are unknown perturbations. For all
parameter α, it is assumed that (C(α), A(α)) is ob-
servable. In principle, the design of the observer must
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correspond to minimizing effects of disturbances in
the state estimation.

Again, it is considered that the uncertain matrices
A(α), B1(α), C(α), D(α) belong to a convex poly-
topic set, ∀ αi ≥ 0,

∑l
i=1 αi = 1, defined by

Ω =

{
l∑

i=1

αi

(
A(i), B

(i)
1 , C(i), D(i)

)}
. (35)

For the generalized PIO given by (21), if F =
A(α) y J = C(α), then(
ek+1

ϑk+1

)
=

(
F −KPC(α) −KI

HC(α) L

)(
ek
ϑk

)
+(

B1(α)−KPD(α)
HD(α)

)
ωk (36)

Considering the matrices defined by (26), the gain
matrix given by (27), and the following matrices

B1o(α) =

(
B1(α)

0

)
, Do(α) =

(
D(α)

0

)
,

(37)
the following dynamic system is derived

zk+1 = Ao(α)zk + B1o(α)ωk + Bovk,
ηk = Co(α)zk +Do(α)ωk, (38)

which admits a SOF control vk = Kηk, such that the
closed loop dynamics (36), with the output ηk, satisfy-
ing a H2 −H∞ performance index. The gain K, that
defines the generalized PIO, is obtained by solving of
a robust optimal control in H2 −H∞. Consequently,
the closed-loop dynamic is

zk+1 = (Ao(α) + BoKCo(α)) zk +

(B1o(α) + BoKDo(α))ωk (39)
ηk = Co(α)zk +Do(α)ωk

Such as has been stated, the observer design
should consider the minimizing of the effects of the
disturbance ωk in the state estimation. This perfor-
mance criterion can be imposed by minimizing of the
H2 norm or Hinfty norm for the transfer function of
the system (39).

3.3.1 Design in H2

Let be Tωη(z) the transfer function of the disturbance
ω to the regulated output η for the system (39). The
design problem of a generalized PIO with robust per-
formance in H2 corresponds to the following:

Theorem 11 Consider the system (34) on the poly-
tope (35), with (Co(α),Ao(α)) observable. A gener-
alized PIO given by (21), that is determined by the
gain K solving the SOF control problem for the sys-
tem (38), guaranteeing a suboptimal performance in
H2 for (39), ie,

∥∥Tωη(z)
∥∥
2
< µ, from the following

optimization problem:

min
Pi, Y,W,G
i = 1, . . . , l.

tr(W ), such that

G+GT − Pi GAoi + BoY Coi GB1oi + BoYDoi
? Pi 0
? ? I

 > 0,

W Coi Doi
? Pi 0
? ? I

 > 0, (40)

where, Pi = P Ti > 0, i = 1, . . . , l and the matri-
ces G (con G + GT > 0), W , Y have appropriate
dimensions. Thus, the gain K is obtained from

K = M−1Y, where M = B−1o GBo (41)

Proof: Assuming that there is a feasible solution to
the formulated optimization problem, in accord to
Lemma 4, the inequality (17) is linearized by chang-
ing variable Y = BoM , where GBo = BoM ; previ-
ously the respective substitutions are made, in order
to obtain the LMIs (40). ut

This formulation reduces the conservatism, which
occurs when a fixed Lyapunov matrix P T = P is
used. Thus, it is possible to obtain a Lyapunov func-
tion for each vertex of the polytope without forcing a
single Lyapunov matrix for the LPV estimation sys-
tem.

The immediate result that is derived, correspond-
ing to the location of poles in a particular region, to-
gether with the minimization of the H2 norm.

Lemma 12 Consider the system (34) on the polytope
(35), with (Co(α),Ao(α)) observable. A generalized
PIO given by (21), provided that the closed loop dy-
namic matrix A(α) has its poles in the circular region
of radius r and center (σ, 0), it is determined by the
gain K solving the SOF control problem for the sys-
tem (38), guaranteeing a suboptimal performance in
H2 for (39), ie,

∥∥Tωη(z)
∥∥
2
< µ, from the following

optimization problem:

min
Pi, Y,W,G
i = 1, . . . , l.

tr(W ), such that
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r(G+GT − Pi) Υo r (GB1oi + BoYDoi)
? rPi 0
? ? rI

 > 0,

W Coi Doi
? Pi 0
? ? I

 > 0, (42)

where Υo = GAoi−σG+BoY Coi , Pi = P Ti > 0, i =
1, . . . , l and the matrices G, W , Y have appropriate
dimensions. Thus, the gain K is obtained from

K = M−1Y, where M = B−1o GBo (43)

Proof: Proof follows from Theorem 11. ut

3.3.2 Design in H∞

Theorem 13 Consider system (34) on the polytope
(35), with (Co(α),Ao(α)) observable. A generalized
PIO given by (21) is determined by the gain K, solv-
ing the SOF control problem for the system (38), guar-
anteeing a suboptimal performance in H∞ for (39),
ie,
∥∥Tωη(z)

∥∥
∞ < γ, from the following optimization

problem:

min
Pi, G, Y,

i = 1, . . . , l.

∥∥Tωη(z)
∥∥
∞, such that


G+GT − Pi GAoi + BoY Coi GB1oi + BoYDoi 0

? Pi 0 CToi
? ? γI DT

oi

? ? ? γI

 > 0

(44)
where Pi = P Ti > 0, i = 1, . . . , l and the matrices
G, Y have appropriate dimensions. Thus, the gain K
is obtained from

K = M−1Y, with M = B−1o GBo (45)

Proof: Similarly, assuming that there is a feasible so-
lution to the formulated optimization problem, by the
change of variable Y = BoM , withQTBo = BoM , to
Item iii) of the Lemma 5, the respective substitutions
are made, in order to obtain the LMI given by (44). ut

For H∞ robust performance and location of poles
in a particular circular region, then:

Lemma 14 Consider system (34) on the polytope
(35), with (Co(α),Ao(α)) observable. A generalized
PIO given by (21), provided that the closed loop dy-
namic matrix A(α) has its poles in the circular region
of radius r and center (σ, 0), it is determined by the
gain K solving the SOF control problem for the sys-
tem (38), guaranteeing a suboptimal performance in
H∞ for (39), ie,

∥∥Tωη(z)
∥∥
∞ < γ, from the following

optimization problem:

min
Pi, Y,G

i = 1, . . . , l.

∥∥Tωη(z)
∥∥
∞, such that


r(G+GT − Pi) Γo r (GB1oi + BoYDoi) 0

? rPi 0 rCToi
? ? rγI rDT

oi

? ? ? rγI

 > 0

(46)

where Γo = GAoi − σG + BoY Coi , Pi = P Ti > 0,
i = 1, . . . , l and the matrices G, Y have appropriate
dimensions. Thus, the gain K is obtained from

K = M−1Y, with M = B−1o GBo (47)

Proof: The procedure for the proof of Theorem 13 is
followed. ut

The results in H2 and H∞ can be combined
to establish mixed performance indices. Importantly,
once the gain obtained K proceed to determine the
matrices of the generalized PIO. Similarly, some con-
ditions transient performance in the dynamic of the
observer can be imposed, which represents a method
of tuning of the PIO design parameters. Thus, a LMIs
characterizing the pole location in a particular circular
region can be specified, which ensures faster for esti-
mating, important when controllers are designed from
the estimated states.

3.4 Generalized PIO design by perturbation
reconstruction

Section 3.3 has been dedicated to the design of
generalized PIO, imposing performance indices in
H2/H∞ in order to minimize the effects of distur-
bance signals in the estimation error ek and in the sig-
nal ϑk that, as mentioned, is related to the “weighted”
integral of the estimation error of the output. At this
point, the idea is to consider that ϑk represents an ap-
proximation of the disturbance ωk, that is, the signal
ϑk = ω̂K is defined, then the design of the PIO must
ensure that

lim
k→∞

(
ek
ξk

)
= 0 (48)

where ξk = ωk− ω̂k. This is the more relevant design
specification for the synthesis of UIO. Under certain
conditions, this design specification can be satisfied
by a PIO. In effect, consider the discrete polytopic
system (34), with B1(α) = B1 a constant matrix and
D(α) = 0, that means the unknown input is in system
dynamic. The unknown input may represent actuator
or process failures, which which are to rebuild. There,
(C(α), A(α)) is assumed observable. A generalized
PIO (21) guarantees the condition (48) if
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Un PIO generalizado de la forma (21) garantiza
la condicin (48) si se satisfacen if some criteria for the
choice of design matrices are satisfied, as it is shown
below. Under the new features of the dynamics of (34)
and if ϑk = ω̂k, then:(
ek+1

ω̂k+1

)
=

(
A(α)−KPC(α) −KI

HC(α) L

)(
ek
ω̂k

)
+(

B1

0

)
ωk (49)

In order to satisface (48), ξk dynamically should
be evaluated, thus

ξk+1 = ωk+1 − ω̂k+1 = ωk+1 − ω̂k+1 + ξk − ξk
= ξk − LHC(α)ek + Lω̂ − ω̂ + ωk+1 − ωk

(50)

Consider ε = ωk+1 − ωk. The first constraint
imposed is that ω should be a smooth signal in the
sense that ε ≈ 0. Combining the dynamic equations
of closed loop for errors e and ξ, then

ek+1 = (A(α)−KPC(α))ek −KI ω̂k +B1ωk

ξk+1 = −LHC(α)ek + ξk + Lω̂k − ω̂k + ε (51)

From (51), ifKI = B1 andL = I, then the closed
loop dynamics will be(
ek+1

ξk+1

)(
A(α)−KPC(α) B1

−HC(α) I

)(
ek
ξk

)
+

(
0
ε

)
,

(52)

which must be asymptotically stable in order to satisfy
the condition (48), through the appropriate choice of
design matrices KP and H .

Following the design procedure, the synthesis of
KP and H of the PIO must be transformed, once es-
tablished the conditions for the matrices KI and L,
in a control problem by SOF. Thus, in this case, the
following matrices are considered

Ao(α) =

(
A(α) B1

0 Ir

)
, Bo =

(
In 0
0 Ir

)
,

Co(α) =
(
C(α) 0

)
; (53)

and the matrix

K =

(
−KP

−H

)
. (54)

The matrices in (53) defining a dynamic system given

by (28), where zk =

(
ek
ξk

)
. In addition, matrices

defined in (53) characterize a polytope given by (29).
If A(α) is the closed loop dynamic matrix for (52), the
Lemma 8 can be applied, as

A(α) = Ao(α) + BoKCo(α).

Theorem 15 Consider system (51), defining the ma-
trices Ao(α), Bo, Co(α). If

1. (Co(α),Ao(α)) is observable, (necessary condi-
tion).

2. ε ≈ 0.

3. KI = B1 and L = Ir, for the PIO given by (21).

There exist a gain K for SOF control, provided that

the matrix A(α) be stable: limk→∞

(
ek
ξk

)
= 0, if

only if, there exist Pi = P Ti > 0, with i = 1, . . . , l;
the matrix G and the matrix Y such that following
LMI is satisfied[

G+GT − Pi GAoi + BoY Coi
? Pi

]
> 0, (55)

where K is obtained from

K = M−1Y, with M = B−1o GBo (56)

Proof: See the proof of Theorem 9. ut

Remark 16 The necessary condition (Co(α),Ao(α))
be observable not only depends on the matrices of the
original system, but also to impose L and KI , such as
these design matrices are defined in (53), establishing
difference from the procedure presented in Section 3.1
and Section 3.3. Thus, this design technique proves to
be very restrictive.

From K the design matrices KP and H are ob-
tained. For LPV discrete time systems, this proce-
dure is a generalization of the results presented in [4].
Moreover, the Lemma 10 can be applied to ensure that
the closed loop poles are located in a particular stable
region. In order to show the effectiveness of the tech-
nique, some numerical examples and simulations have
been made, details of which are not shown for reasons
of space.

4 Conclusions
A technique for designing of generalized Propor-
tional+Integral observers for linear discrete-time sys-
tems with polytopic uncertainties has been presented.
The generalization is to incorporate, in the dynamics
of PI observer, a design matrix representing a fading
effect coefficient, which allows adjusting the transient
response of the observer. Thereafter, the method in-
volves extending the dynamics of PIO, this allows the
synthesis of design matrices of the observer, through
its transformation into a control problem by static
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output feedback for LPV systems. Then, consider-
ing the extended LMIs characterizations of H2/H∞
norms and the location of poles in a particular region,
the design technique is generalized to LPV systems
with disturbances, imposing performance indices in
H2/H∞, specifications for the synthesis of the gain
in the control problem by SOF, which results in the
matrices of the IOP. The synthesis can be extended to
consider multi-objective object specifications. Simi-
larly, exploiting the ability of unknown input recon-
struction PI observer, it has design ensuring PIO ap-
proximate reconstruction of the disturbance, under ap-
propriate technical considerations. This last method
is very restrictive, limiting the selection of parameters
PIO, which can result in marginal stability or infeasi-
bility of the solution. Through numerical examples to
show the effectiveness of the technique.
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[9] Ĺubomı́r Grman, Danica RosinovÁ, Vojtech
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