
Distillation and Attention Mechanism,” IEEE
Access, vol. 12, pp. 65154–65165, Jan. 2024,
doi: 10.1109/ACCESS.2024.3397329.
[3] G. Balram and K. K. Kumar, “Crop Field
Monitoring and Disease Detection of Plants in
Smart Agriculture using Internet of Things,”
Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 7,
pp. 819–826, 2022, doi:
10.14569/IJACSA.2022.0130795.
[4] K. K. Sarma, K. K. Das, V. Mishra, S.
Bhuiya, and D. Kaplun, “Learning Aided
System for Agriculture Monitoring Designed
Using Image Processing and IoT-CNN,” IEEE
Access, vol. 10, no. 1, pp. 41525–41536,
2022, doi: 10.1109/ACCESS.2022.3167061.
[5] S. V. S. Ramakrishnam Raju, B. Dappuri, P.
Ravi Kiran Varma, M. Yachamaneni, D. M.
G. Verghese, and M. K. Mishra, “Design and
Implementation of Smart Hydroponics
Farming Using IoT-Based AI Controller with
Mobile Application System,” J. Nanomater.,
vol. 2022, no. 1, p. 4435591, 2022, doi:
10.1155/2022/4435591.
[6] N. Fatima, S. A. Siddiqui, and A. Ahmad,
“IoT-based Smart Greenhouse with Disease
Prediction using Deep Learning,” Int. J. Adv.
Comput. Sci. Appl., vol. 12, no. 7, pp. 113–
121, Sep. 2021, doi:
10.14569/IJACSA.2021.0120713.
[7] R. Rashid, W. Aslam, R. Aziz, and G.
Aldehim, “An Early and Smart Detection of
Corn Plant Leaf Diseases Using IoT and Deep
Learning Multi-Models,” IEEE Access, vol.
12, no. 1, pp. 23149–23162, 2024, doi:
10.1109/ACCESS.2024.3357099.
[8] W. zhen Liang, J. Oboamah, X. Qiao, Y. Ge,
and B. Harveson, “CanopyCAM – an edge-
computing sensing unit for continuous
measurement of canopy cover percentage of
dry edible beans,” Comput. Electron. Agric.,
vol. 204, no. 1, p. 107498, Jan. 2023, doi:
10.1016/J.COMPAG.2022.107498.
[9] J. Feng, W. E. Ong, W. C. Teh, and R. Zhang,
“Enhanced Crop Disease Detection with
EfficientNet Convolutional Group-Wise
Transformer,” IEEE Access, vol. 12, no. 1, pp.
44147–44162, 2024, doi:
10.1109/ACCESS.2024.3379303.
[10] N. G. Rezk, A. F. Attia, M. A. El-Rashidy, A.
El-Sayed, and E. E. D. Hemdan, “An Efficient
Plant Disease Recognition System Using
Hybrid Convolutional Neural Networks
(CNNs) and Conditional Random Fields
(CRFs) for Smart IoT Applications in
Agriculture,” Int. J. Comput. Intell. Syst., vol.
15, no. 1, pp. 1–21, Dec. 2022, doi:
10.1007/s44196-022-00129-x.
[11] R. Rathinam, P. Kasinathan, U. Govindarajan,
V. K. Ramachandaramurthy, U.
Subramaniam, and S. Garrido, “Cybernetics
approaches in intelligent systems for crops
disease detection with the aid of IoT,” Int. J.
Intell. Syst., vol. 36, no. 11, pp. 6550–6580,
Nov. 2021, doi: 10.1002/INT.22560.
[12] Y. Zhang, “IoT Agricultural Pest
Identification Based on Multiple
Convolutional Models,” J. Internet Technol.,
vol. 24, no. 4, pp. 905–913, Jul. 2023, doi:
10.53106/160792642023072404008.
[13] H. Design, J. García Morillo, E. Camacho
Poyato, J. Manuel Díaz-Cabrera, and C.-L.
Chang, “Design and Implementation of
Artificial Intelligence of Things for Tea
(Camellia sinensis L.) Grown in a Plant
Factory,” Agronomy, vol. 12, no. 10, p. 2384,
Oct. 2022, doi:
10.3390/AGRONOMY12102384.
[14] T. J. Maginga, P. Bakunzibake, E. Masabo, D.
P. Massawe, P. R. Agbedanu, and J. Nsenga,
“Design and implementation of IoT sensors
for nonvisual symptoms detection on maize
inoculated with Exserohilum turcicum,”
Smart Agric. Technol., vol. 5, no. 1, p.
100260, Oct. 2023, doi:
10.1016/J.ATECH.2023.100260.
[15] A. Barriga, J. A. Barriga, M. J. Moñino, and
P. J. Clemente, “IoT-based expert system for
fault detection in Japanese Plum leaf-turgor
pressure WSN,” Internet of Things
(Netherlands), vol. 23, no. 1, p. 100829, Oct.
2023, doi: 10.1016/J.IOT.2023.100829.
[16] A. Etienne, A. Ahmad, V. Aggarwal, and D.
Saraswat, “Deep learning-based object
detection system for identifying weeds using
uas imagery,” Remote Sens., vol. 13, no. 24, p.
5182, Dec. 2021, doi: 10.3390/rs13245182.
[17] R. Yauri, B. Guzman, A. Hinostroza, and V.
Gamero, “Weed Identification Technique in
Basil Crops using Computer Vision,” WSEAS
Trans. Syst., vol. 22, no. 1, pp. 636–644,
2023,
https://doi.org/10.37394/23202.2023.22.64.
[18] L. Yang, L. S. Nasrat, M. E. Badawy, and D.
E. M. Wapet, “A new automatic sugarcane
seed cutting machine based on internet of
things technology and RGB color sensor,”
PLoS One, vol. 19, no. 3, pp. 1–24, Mar.
2024, doi:
10.1371/JOURNAL.PONE.0301294.
[19] R. Yauri, M. Rios, and R. Acosta, “Network
WSEAS TRANSACTIONS on ELECTRONICS
DOI: 10.37394/232017.2024.15.17
Ricardo Yauri, Antero Castro, Rafael Espino