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1 Introduction
In the new technology phase, the fractional derivative
has been strongly applied in applied science to
solve the fractional controlled price equations,
discretize the time-independent space-fractional
models, nonlinear mechanism by dynamical
complexity, and fractional controlled diffusion
processes. Some controlling problems have been
analyzed and performed in nonlinear differential
problems, especially the Markov process. The
fractional derivative has also been construed as the
state-of-the-art performance for the problems in
physics science, economics, or other aspects, [1], [2],
[3], [4], [5], [6]. Large-scale papers about fractional
derivative branches were published, which played a
significant role in research and applied to different
aspects of life. Besides that, the fractional derivative
also showed a broad and efficient use in investigating

the behavior of real groups, [7]. Moreover, fractional
calculus could become an effective tool to express
the real world by representing arguments and rate
diffusion changes. Fractional calculus is also applied
in the utilization of computer science, and probability
distribution, especially in financial risk management.
The solutions of fractional partial differential
equations focus on fat-tailed, and stable distribution.
The financial business is essentially worldwide for
the government to set up algorithms for adjusting
and controlling inflation related to market price,
total income, or debasement. Mathematicians have
supported sustained efforts to produce more and more
mathematical tools for establishing the fundamental
foundations. The purpose is to support managers,
official agents, businessmen, and the government
in solving the financial distribution models and
time-continuous systems, [8].
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Various methods are created to find the best solutions
for nonlinear problems, especially by combining
other algorithms to seek the solutions. For example,
the homotopy perturbation method combining
the expansion method is applied in solving many
aspects of economic problems, [9], [10]. The
method is based on the inductive algorithm to find
the approximate solutions. Another performance
showing a variation iteration method is to find the
approximate solutions relying on integrating the
equations approaching exact solutions, [11]. This
method also has the best performance when the errors
approach zero. Moreover, a combination of a Laplace
transform method has depicted effective results in
applied physics and biology science, [12]. Laplace
transforms have been demonstrated successfully
when solving the economic-financial equations, and
space-time fractional telegraph equations, [13], [14].
In addition, the Adomian decomposition method
is applied to find the zeroes of Volterra equations
and depict the approximate solutions on Mapple.
The results showed the important summary of
solving some complicated Lighthill singular integral
equations, [15].
Based on the effective methods mentioned above,
the reduce transform method was introduced and
performed with the effective application, [16], [17],
[18], [19], [20], [21], [22]. The technique is applied
to solve many kinds of partial equations composed
of heat and wave equations using linear or nonlinear
terms in normal or fractional derivative, [23], [24],
[25], [26], [27], [28], [29]. The technique has also
illustrated the approximate solution and approach to
the exact solution when nth terms come to infinity
where fractional integration problems are considered,
[30]. Many researchers are supporting the facilities
to find the best illustration of the solutions in many
kinds of fractional differential equations, [31]. Two
terms of space and time fractional derivative are
considered for applying the integration of fractional
derivative of the fractional term and the left one
keeping on for FRDTM, [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42]. This paper will
integrate FRDTM and propositions of fractional
derivatives to find solutions to the one-dimensional
fractional differential equations, [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52]. The new integration
will be expressed using the new modification for the
fractional reduced derivative transformation method
and the analytic solutions of the fractional telegraph
equations written (1.1) as the following, [31], [53],
[54], [55], [56], [57], [58], [59], [60], [61], [62]:

C
0 Dα

x f (x, t) =C
0 Dβ

t f (x, t)+N[ f (x, t)]+L[ f (x, t)],(1.1)

with the initial condition as the following f (0, t) =
g(t), ft(0, t) = h(t), where C

0 Dα
x = ∂ α

∂xα , and C
0 Dβ

t =
∂ β

∂ tβ
, 0 < α ≤ 1, 1 < β ≤ 2 are Caputo’s derivatives.

L,N denote the linear, and nonlinear operator existing
partial derivatives, f (x, t) is a given function, [14],
[30], [63], [64], [65], [66], [67].

2 Fundamental Functions
We will summarize some related propositions in
fractional derivative theory, [27], [28]. First of all,
we consider some definitions as follows

Definition 1 (Gamma function). Given values z ∈C,
and Re(z)> 0, the integration is defined

Γ(z) =
∫

∞

0
tz−1e−tdt.

We have some specific identities related to the
gamma function

Γ(z+1) = zΓ(z), Γ(n+1) = n!.

Definition 2. [45] Mittag-Leffler functions are
usefully deployed in the form of solutions given below

Eα,β (z) =
∞

∑
k=0

zk

Γ(kα +β )
, α > 0,β > 0.

Based on the definition, we have some useful
identities as follows

E1,1(z)=
∞

∑
k=0

zk

Γ(k+1)
= ez;E1,2(z)=

∞

∑
k=0

zk

Γ(k+2)
=

ez −1
z

;

E1,3(z) =
∞

∑
k=0

zk

Γ(k+3)
=

ez −1− z
z2 ;

E2,1(z) =
∞

∑
k=0

zk

Γ(2k+1)
= cosh(z);

E2,2(z2) =
∞

∑
k=0

z2k

Γ(2k+2)
=

sinh(z)
z

.

Definition 3. [28] Considering a continuous function
y = f (x) with an arbitrary constant n− 1 < α ≤ n,
the Caputo’s fractional derivative of the order α is
given by

C
0 Dα

x f (x) =
1

Γ(n−α)

∫ x

a
(x− s)n−α−1 f (n)(s)ds.(2.1)

Based on Definition 3, we have derivative of
function f (x) =C, (C is a constant)

C
0 Dα

x f (x) = 0.
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The inverse operator of C
0 Dα

x , called Jα
x is fractional

integral operator of order α is given as the following

Jα f (x) =
1

Γ(α)

∫ x

0
(x− s)α−1 f (s)ds. (2.2)

We have some of Caputo’s fractional derivative
properties

Jα
(C

0 Dα
x
)

f (x) = f (x)−
n−1

∑
k=0

f (k)(0)
xk

k!
,x > 0. (2.3)

For particular values, we have some useful
propositions

Definition 4. For m − 1 < α ≤ m, we have the
following propositions, [29], [59]:

Caputo’s fractional derivatives of f (x) = xβ :

C
0 Dα

x f (x) =
Γ(1+β )

Γ(1+β −α)
xβ−α ,β >−1,β ∈ R.

Caputo’s fractional derivatives of f (x) = eλx:

C
0 Dα

x f (x) = λ
mxm−αE1,m−α+1(λx). (2.4)

Caputo’s fractional derivatives of f (x) = sinλ t:

C
0 Dα

x f (x) =
1
2i
(iλ )mxm−α(E1,m−α+1(iλx)

− (−1)mxm−αE1,m−α+1(−iλx)). (2.5)

Caputo’s fractional derivatives of f (x) = cosλ t:

C
0 Dα

x f (x) =
1
2
(iλ )mxm−α(E1,m−α+1(iλx)

+(−1)mxm−αE1,m−α+1(−iλx)). (2.6)

Caputo’s fractional derivatives of the function given
by f (x) = (x−a)β−1E p,q

α,β (λ (x−a)α) is

C
0 Dµ

x,a+ f (x) = (x−a)β−µ−1E p,q
α,β−µ

(λ (x−a)α),(2.7)

where

E p,q
α,β (x) =

∞

∑
k=0

pqkxk

Γ(kα +β )k!
, pqk =

Γ(p+qk)
Γ(p)

,

µ,α,β , p,q ∈ C,Re(µ,β )> 0,Re(p)> 0,q ∈ N.

3 Methods
In this section, we will illustrate the results of the
FRDTM, [55]. Given Tf be the transformation of this
method, and g(x, t),h(x, t) are fundamentally analytic
functions corresponding to Gk = Tf (g),Hk = Tf (h)
the output of the transform. Using the FRDTM,

some basic functions are created shown in Table 1,
[42]. FRDTM is to find the approximate solution
for fractional differential equations, [34]. Regarding
two-variable functions expressed as f (x, t), we set up
the following steps, [32]
Step 1: Integrating the Eq. (1.1), and applying the
Caputo’s fractional derivatives properties Eq. (2.3) to
transform the space fractional differential terms.
Step 2: Express the terms in the form

Fk(x) = (
∞

∑
i=0

u(i)xi)(
∞

∑
j=0

v( j)t j) =
∞

∑
k=0

Hk(i, j)tk,

where Hk(i, j) = u(i)v( j) is the compression of
F(x, t).
The term of fractional reduced differential transform
method of F(x, t) is formed by

Hk(x) =
1

Γ(kα +1)
[
∂ kαFk(x, t)

∂ tkα
]t=t0 , (3.1)

where α denotes the order of time fractional
derivative.
Step 3: Then the inverse transformation of Hk is
defined by

Fk(x, t) =
∞

∑
k=0

Hk(t)(t − t0)kα . (3.2)

Combine Eq. (3.1) and Eq. (3.2), we have

Fk(x, t) =
∞

∑
k=0

1
Γ(kα +1)

[
∂ kαFk(x, t)

∂ txα
]x=x0(t − t0)kα .(3.3)

We can choose t0 = 0, from Eq. (3.3), we have

Fk(x, t) =
∞

∑
k=0

1
Γ(kα +1)

[
∂ kαFk(x, t)

∂ tkα
]tkα . (3.4)

Applying the inductive method for equation (3.4), we
have

f (x, t) = lim
k→∞

Fk(x, t).

In a special case, the fractional derivative is the
component of the integer and fractional derivative, we
suppose

f (x, t) =
∞

∑
k=0

Fk(x)(t − t0)
k
α ,

where α is the order of the fractional derivative and
Fk is the transformation of f (x).

With k = 0,1, ...,(αq − 1), we apply the
transformation formula

Fk(x, t) =

0 if k
α
/∈ Z+

1
( k

α
)!
( d

k
α

dt
k
α

f (x, t))t=t0 if k
α
∈ Z+.
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Table 1: Basic results using FRDTM method.
Original Functions FRDTM for some fundamental functions
f (x, t) = ag(x, t)±bh(x, t) Fk(x) = aGk(x)±bHk(x)
f (x, t) = g(x, t)h(x, t) Fk(x) = ∑

k
r=0 Gr(x)Hk−r(x)

f (x, t) = (x− x0)
p Fk(x) = δ (k−α p) =

{
1 if k = α p
0 if k 6= α p

f (x, t) =C
0 Dα

x g(x, t) Fk(x) =
Γ(α(k+1)+1)

Γ(1+kα) Gk+1(x)

f (x, t) = sin t Hk(x) =
sin( kπ

2 )
k!

f (x, t) = axmtn Hk(x) = axmδ (k−m)
f (x, t) = et Hk(x) = 1

k!

4 Applications
In this section, we illustrate the solutions of
one-dimensional fractional differential equations by
using the extension of FRDTM via the examples as
the following, [26], [46], [47], [48], [52]:

Example 1. Consider the equation, [49], in the form

C
0 Dα

t f (x, t)−C
0 Dβ

x f (x, t)− f (x, t) = 0, (4.1)

satisfy the terminal conditions

f (x,0) = 1+ sinx, f (0, t) = et , fx(0, t) = 1,

where 0 < α ≤ 1,1 < β ≤ 2.

Transform the Jβ
x on both sides Eq. (4.1) using

Eq. (2.3), we have

Jβ
x
(C

0 Dα
t
)

f (x, t) = f (x, t)− (x+ et)+ Jβ
x f (x, t).(4.2)

Using FRDTM on both sides for Eq. (4.2), we have

Jβ
x Hk+1(x) =

Γ(kα +1)
Γ(α(k+1)+1)

[Hk(x)− (δ (k)x+
1
k!
)

+ Jβ
x Hk(x)].

(Derivative of sinx and x by Caputo’s fractional
derivatives of the order β )
Transform the initial condition H0(x) = 1 + sinx,
using iterative method, Eq.(2), Eq. (2.5), we have

H1(x) =
1

Γ(α +1)
[C0 Dβ

x (sinx− x)+1− sinx];

H2(x) =
Γ(1+α)

Γ(2α +1)
[C0 Dβ

x (H1 −1)+H1];

H3(x) =
Γ(2α +1)
Γ(3α +1)

[C0 Dβ
x (H2 −

1
2
)+H2];

H4(x) =
Γ(3α +1)
Γ(4α +1)

[C0 Dβ
x (H3 −

1
3
)+H3]; · · · .

The solution gained is

f (x, t) =
∞

∑
k=0

Hk(t)xkα

= sinx+1+H1(x)tα +H2(x)tα +H3(x)tα + · · · .

This solution will be convergent to the exact solution
when β = 2

f (x, t) = sinx+
∞

∑
k=0

tkα

Γ(kα +1)
= sinx+E1,1(tα).

When α = 1,β = 2, the exact solution attained is
f (x, t) = sinx+ et . The solutions are performed in
Figure 1, Figure 2, and Table 2 in Appendix. Table
2 (Appendix) shows the solution by comparing the
values α1 = 0.5,α2 = 0.7,α = 1. error_1 shows
the difference between α1,α , and error_2 shows the
difference between α2,α .

Example 2. Consider the equation formed, [50],

C
0 D

3
2

x f (x, t) =C
0 D2

t f (x, t)+
∂

∂ t
f (x, t)+ f (x, t), (4.3)

satisfy the terminal condition f (0, t) = e−t , fx(0, t) =
e−t ,0 < α ≤ 1,1 < β ≤ 2.

Transform Eq. (4.3) : α = 3
2 ,β = 2(p = 3,q =

1
2), :
Apply Table 1, and using condition fx(0, t) = e−t ,
taking FRDTM, we have

Hk+p(t)=
Γ(kq+1)

Γ(kq+ pq+1)
[

∂ 2

∂ t2 Hk(t)+
∂

∂ t
Hk(t)+Hk(t)].

We establish the inductive method to calculate the
terms of the transform as follows

H0(t) = e−t ;H1(t) = 0;H2(t) = e−t ;

H3(t) =
e−t

Γ(5
2)

;H4(t) = 0;H5(t) =
e−t

Γ(7
2)

; · · · .
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The analytic solution will be gathered as the
following

f (x, t)=
∞

∑
k=0

Hk(t)xkq = e−t +e−tx+
e−t

Γ(5
2)

x1.5+
e−t

Γ(7
2)

x2.5+· · · .

Example 3. Consider the equation formed

C
0 Dα

x f (x, t) =C
0 Dβ

t f (x, t)+
∂

∂ t
f (x, t)+ f (x, t), (4.4)

satisfy the terminal condition f (0, t) = e−t ,0 < α ≤
1,1 < β ≤ 2.

Transform the Eq. (4.4) by taking the Jβ on both
sides, we have

Jβ

t
(C

0 Dα
x
)

f (x, t) = f (x, t)− f (x,0)− t ft(x,0)

+ Jβ

t [ ft(x, t)+ f (x, t)]. (4.5)

Apply the Jβ
x transform formula on Table 1 for the

Eq. (4.5), we have

Jβ

t Hk+1(t) =
Γ(kα +1)

Γ(α(k+1)+1)
[Hk(t)−

1
k!

+
t
k!

+ Jβ

t [
∂

∂ t
Hk(t)+Hk(t)]]. (4.6)

From the initial conditions, using the inductive
method and Eq. (2), Eq. (2.4), we have

H0(t) = e−t ;H1(t) =
1

Γ(α +1)

C

0
Dβ

t [e
−t −1+ t];

H2(t) =
Γ(α +1)

Γ(2α +1)
[C0 Dβ

t (H1 −1− t)+
∂

∂ t
H1(t)+H1(t)];

H3(t) =
Γ(2α +1)
Γ(3α +1)

[C0 Dβ

t (H1 −
1
2!

− t
2!
)+

∂

∂ t
H1(t)+H1(t)];

H4(t) =
Γ(2α +1)
Γ(3α +1)

[C0 Dβ

t (H3 −
1
3!

− t
3!
)+

∂

∂ t
H3(t)+H3(t)];

H5(t) =
Γ(2α +1)
Γ(3α +1)

[C0 Dβ

t (H4 −
1
4!

− t
4!
)+

∂

∂ t
H4(t)+H4(t)]; · · · .

The analytic solution is demonstrated as follows

f (x, t) = e−t +H1(t)xα +H2(t)x2α +H3(t)x3α

+H4(t)x4α +H5(t)x5α + · · · . (4.7)

When α = 1,β = 2, the exact solution is f (x, t) =
ex−t . The solutions are depicted in Figure 3, Figure 4,
and Table 3 in Appendix. Table 3 (Appendix) shows
the numerical solutions by comparing the values α1 =
0.2,α2 = 0.5,α = 1. error_1 shows the difference
between α1,α , and error_2 shows the difference
between α2,α .

Example 4. We consider the equation formed [51]:

C
0 Dα

x f (x, t) =C
0 Dβ

t f (x, t)+
∂

∂ t
f (x, t)

− x2 − t +1, (4.8)

satisfy the terminal condition

f (0, t) = t, fx(0, t) = 0, f (x,0) = x2,

ft(x,0) = 1,1 < α ≤ 2,1 < β ≤ 2.

Taking the Jβ
x transformation on both sides using

Eq. (2.3) for Eq. (4.8), we have:

Jβ

t f (x, t) = f (x, t)− f (x,0)− t
∂

∂ t
f (x,0)

+ Jβ [
∂

∂ t
f (x, t)− x2 − t +1].

Apply the properties in Table 1, we have

Jβ

t Hk+1(t) =
Γ(kα +1)

Γ(kα +α +1)
{Hk(t)−δ (k−2)+ tδ (k)

+ Jβ

t [Hk(t)−δ (k−2)]+(1− t)δ (k)}.

Using the inductive method, we calculate the
following terms

H0(t) = t;H1(t) =
1

Γ(α +1)
[C0 Dβ

x (t +1)+1];

H2(t) =
Γ(α +1)

Γ(2α +1)
[C0 Dβ

x (H1)+H1];

H3(t) =
Γ(2α +1)
Γ(3α +1)

[C0 Dβ
x (H2 −1)+H2 −1];

H4(t) =
Γ(3α +1)
Γ(4α +1)

[C0 Dβ
x (H3)+H3];

H5(t) =
Γ(4α +1)
Γ(5α +1)

[C0 Dβ
x (H4)+H4]; · · · .

The analytics solution of the equation is

f (x, t) = t +H1(t)xα +H2(t)x2α +H3(t)x3α

+H4(t)x4α +H5(t)x5α + · · · .

When α = 2,β = 2, the exact solution becomes

f (x, t) = t + x2.

The graphs of solutions are portrayed in Figure
5, Figure 6, and Table 4 in Appendix. Table 4
(Appendix) shows the solution by comparing the
values α1 = 1.2,α2 = 1.5,α = 2. error_1 shows
the difference between α1,α , and error_2 shows the
difference between α2,α .
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Example 5. We consider the equation formed, [50]:

C
0 Dβ

t f (x, t)+x
∂

∂x
f (x, t)+

∂ 2

∂x2 f (x, t)= 2tβ +2x2+2,

satisfy the terminal condition f (x,0) = x2, t > 0,0 <
β ≤ 1.

Taking the Jβ
x transformation on both sides, we

have the expression

f (x, t)− f (x,0)−Jβ

t [x
∂

∂x
f (x, t)+

∂ 2

∂x2 ] = Jβ

t [2tβ +2x2+2],

Applying the Table 1, we have the following equation

Hk(t)−δ (k−2)+ Jβ

t [
k

∑
r=0

δ (r−1)Hk+1−r(t)

+(k+1)(k+2)Hk+2(t)]

= 2
Γ(β +1)

Γ(2β +1)
t2β + Jβ

t [2δ (k−2)+2δ (k)].

Using the identity method and solving simultaneous
equations, we have the following terms

H0(t) = 2
Γ(β +1)
Γ(2β +1)

t2β ;H1(t) = 0;

H2(t) = 1;H3(t) = 0;H4(t) = 0;H5(t) = 0; · · · .
The solution is formed to the exact solution

f (x, t) = 2
Γ(β +1)

Γ(2β +1)
t2β + x2.

The analytic solutions are illustrated in Figure 7,
Figure 8, and Table 5 in Appendix. Table 5
(Appendix) shows the solutions by comparing the
values β1 = 0.4,β2 = 0.5,β = 1 where error_1 shows
the difference between β1,β , and error_2 shows the
difference between β2,β .

5 Discussion
This study introduces an enhanced version of the
FRDTM method to solve a class of multi-fractional
space-time telegraph equations. The results show
that by eliminating one of the fractional derivative
terms, the modified FRDTM can effectively simplify
the problem and lead to accurate analytical solutions.
Compared to existing methods, such as the Adomian
Decomposition Method and the Laplace Transform
Method, the modified FRDTM offers a more direct
and computationally efficient approach to solving
fractional differential equations . However, the
method also has some limitations. In cases where the
fractional derivatives involve transcendental terms

or anomalous series, the FRDTM’s performance
can be hindered by difficulties in approximating
the fractional series. This suggests that while the
FRDTM is effective for many types of fractional
telegraph equations, further refinement may be
needed when applied to more complex or highly
nonlinear equations. Future research could explore
hybrid methods or extensions of the FRDTM to
better address these challenges. The versatility
of the FRDTM in fractional calculus applications,
particularly in engineering and physics, highlights
its potential for broader applications. Specifically,
the methods ability to handle fractional time-space
equations suggests promising opportunities in fields
requiring long-term behavior predictions, such as
finance, electrical transmission systems, and fluid
dynamics.

6 Conclusions
In conclusion, this paper demonstrates the
effectiveness of a modified Fractional Reduced
Differential Transform Method (FRDTM) for
solving multi-fractional telegraph equations. The
method simplifies complex fractional differential
equations by isolating one variable and transforming
the remaining terms. The resulting analytical
solutions highlight the potential of FRDTM for
solving large-scale fractional partial differential
equations. Although this method provides a more
efficient route to exact solutions, its limitations
in handling anomalous series and transcendental
terms suggest that further work is needed. Future
research should focus on enhancing the FRDTM for
more complex fractional problems and exploring
its applications in diverse fields such as economics,
physics, and engineering. This study contributes
to the ongoing development of fractional calculus
and provides a strong foundation for future work in
solving space-time fractional equations in various
scientific and industrial applications.
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APPENDIX

Table 2: Numerical comparison of the example 1.
t α1 = 0.5 α2 = 0.7 α = 1
0.0 1.4794 1.4794 1.4794
0.1 1.9363 1.7347 1.5846
0.2 2.1846 1.9362 1.7008
0.3 2.4008 2.1387 1.8293
0.4 2.6053 2.3486 1.9713
0.5 2.8106 2.5681 2.1281
0.6 3.0290 2.7985 2.3015
0.7 3.2746 3.0406 2.4932
0.8 3.5643 3.2947 2.7050
0.9 3.9181 3.5611 2.9390
1.0 4.3601 3.8401 3.1977

Table 3: Numerical comparison of the example 3.
t α = 0.2 α = 0.5 α = 1
0.0 1.0000 1.0000 2.0138
0.1 1.4078 1.3567 1.8221
0.2 1.6494 1.5651 1.6487
0.3 1.8734 1.7585 1.4918
0.4 2.0884 1.9445 1.3499
0.5 2.2955 2.1241 1.2214
0.6 2.4937 2.2963 1.1052
0.7 2.6815 2.4598 1.0000
0.8 2.8573 2.6130 0.9048
0.9 3.0192 2.7541 0.8187
1.0 3.1655 2.8816 0.7408

Table 4: Numerical comparison of the example 4.
t α = 1.2 α = 1.5 α = 2
0.1 0.4260 1.2508 0.3500
0.2 0.4089 0.5918 0.4500
0.3 0.4722 0.5340 0.5500
0.4 0.5535 0.5715 0.6500
0.5 0.6419 0.6387 0.7500
0.6 0.7338 0.7186 0.8500
0.7 0.8277 0.8049 0.9500
0.8 0.9229 0.8949 1.0500
0.9 1.0190 0.9873 1.1500
1.0 1.1157 1.0812 1.2500
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Table 5: Numerical comparison of the example 5.
t β = 0.4 β = 0.5 β = 1
0.1 0.5520 0.4272 0.2600
0.2 0.7757 0.6045 0.2900
0.3 0.9772 0.7817 0.3400
0.4 1.1654 0.9590 0.4100
0.5 1.3443 1.1362 0.5000
0.6 1.5161 1.3135 0.6100
0.7 1.6823 1.4907 0.7400
0.8 1.8438 1.6680 0.8900
0.9 2.0012 1.8452 1.0600
1.0 2.1553 2.0225 1.2500
1.1 2.3062 2.1997 1.4600

Figure 1: Solution performance of example 1
for x = 0.5.

Figure 2: Exact solution of example 1 using FRDTM,
α = 1,β = 2.

Figure 3: Solution performance of example 3
for x = 0.5.

Figure 4: Exact solution of example 3 using FRDTM,
α = 1,β = 2.

Figure 5: Solution performance of example 4
for x = 0.5.

Figure 6: Approximate solution of example 4, α =
3
2 ,β = 2.
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Figure 7: Solution performance of example 5
for x = 0.5, β = 1.

Figure 8: Exact solution of example 5 using FRDTM,
β = 1.
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