diversity, future work will aim to broaden the
system's applicability and enhance its data
analytical capabilities. We also plan to explore
the integration of emerging technologies, such
as advanced IoT applications and newer AI
paradigms, to enrich our system. These future
efforts are not just about system enhancement
but are pivotal in contributing to the evolving
narrative of sustainable and efficient energy
management in diverse industrial landscapes.
References:
[1] K. Sayed and H. A. Gabbar, “Chapter 18 -
SCADA and smart energy grid control
automation,” in Smart Energy Grid
Engineering, H. A. Gabbar, Ed., Academic
Press, 2017, pp. 481–514. doi:
10.1016/B978-0-12-805343-0.00018-8.
[2] J. Figueiredo and J. Sá da Costa, “A SCADA
system for energy management in intelligent
buildings,” Energy Build., vol. 49, pp. 85–98,
Jun. 2012, doi:
10.1016/j.enbuild.2012.01.041.
[3] M. Kermani, B. Adelmanesh, E. Shirdare, C.
A. Sima, D. L. Carnì, and L. Martirano,
“Intelligent energy management based on
SCADA system in a real Microgrid for smart
building applications,” Renew. Energy, vol.
171, pp. 1115–1127, Jun. 2021, doi:
10.1016/j.renene.2021.03.008.
[4] A. V. Jha, B. Appasani, D. K. Gupta, S.
Ramavath, and M. S. Khan, “Machine
Learning and Deep Learning Approaches for
Energy Management in Smart Grid 3.0,” in
Smart Grid 3.0: Computational and
Communication Technologies, B. Appasani
and N. Bizon, Eds., in Power Systems, Cham:
Springer International Publishing, 2023, pp.
121–151. doi: 10.1007/978-3-031-38506-
3_6.
[5] M. Zekić-Sušac, S. Mitrović, and A. Has,
“Machine learning based system for
managing the energy efficiency of the public
sector as an approach towards smart cities,”
Int. J. Inf. Manag., vol. 58, p. 102074, Jun.
2021, doi: 10.1016/j.ijinfomgt.2020.102074.
[6] W. Ahmed et al., “Machine Learning Based
Energy Management Model for Smart Grid
and Renewable Energy Districts,” IEEE
Access, vol. 8, pp. 185059–185078, 2020,
doi: 10.1109/ACCESS.2020.3029943.
[7] W. Yu, P. Patros, B. Young, E. Klinac, and
T. G. Walmsley, “Energy digital twin
technology for industrial energy
management: Classification, challenges and
future,” Renew. Sustain. Energy Rev., vol.
161, p. 112407, Jun. 2022, doi:
10.1016/j.rser.2022.112407.
[8] C. Ghenai, L. A. Husein, M. Al Nahlawi, A.
K. Hamid, and M. Bettayeb, “Recent trends
of digital twin technologies in the energy
sector: A comprehensive review,” Sustain.
Energy Technol. Assess., vol. 54, p. 102837,
Dec. 2022, doi: 10.1016/j.seta.2022.102837.
[9] C. Brosinsky, R. Krebs, and D. Westermann,
“Embedded Digital Twins in future energy
management systems: paving the way for
automated grid control,” - Autom., vol. 68,
no. 9, pp. 750–764, Sep. 2020, doi:
10.1515/auto-2020-0086.
[10] W. Strielkowski, G. Rausser, and E. Kuzmin,
“Digital Revolution in the Energy Sector:
Effects of Using Digital Twin Technology,”
in Digital Transformation in Industry, V.
Kumar, J. Leng, V. Akberdina, and E.
Kuzmin, Eds., in Lecture Notes in
Information Systems and Organisation.
Cham: Springer International Publishing,
2022, pp. 43–55. doi: 10.1007/978-3-030-
94617-3_4.
[11] M. Lamagna, D. Groppi, M. Majidi Nezhad,
and G. Piras, “A comprehensive review on
digital twins for smart energy management
system,” Int. J. Energy Prod. Manag., vol. 6,
pp. 323–334, Nov. 2021, doi: 10.2495/EQ-
V6-N4-323-334.
[12] S. Agostinelli, F. Cumo, G. Guidi, and C.
Tomazzoli, “Cyber-Physical Systems
Improving Building Energy Management:
Digital Twin and Artificial Intelligence,”
Energies, vol. 14, p. 2338, Apr. 2021, doi:
10.3390/en14082338.
[13] A. Shahzad, H. Chae, M. Lee, H. Lee, and G.
Jeong, “A Way to Access SCADA System
via Satellite Channel and its Relevant
Security Trends,” Int. J. Comput. Appl.
Math. Comput. Sci., vol. 2, pp. 1–4, Jun.
2022, doi: 10.37394/232028.2022.2.1.
[14] L. Massel and A. Massel, “Smart Digital
Twins as a Trend of Energy Systems
Intellectualization in Russia,” in Proceedings
of the Seventh International Scientific
Conference “Intelligent Information
Technologies for Industry” (IITI’23), S.
Kovalev, I. Kotenko, and A. Sukhanov, Eds.,
in Lecture Notes in Networks and Systems.
Cham: Springer Nature, Switzerland, 2023,
WSEAS TRANSACTIONS on ELECTRONICS
DOI: 10.37394/232017.2023.14.16
Bibars Amangeldy, Nurdaulet Tasmurzayev,
Yedil Nurakhov, Shona Shinassylov, Samson Dawit Bekele