
Technol., vol. 151, p. 107008, Nov. 2022, doi:
10.1016/j.infsof.2022.107008.
[5] Z. Ren, J. Wan, and P. Deng, “Machine-
Learning-Driven Digital Twin for Lifecycle
Management of Complex Equipment,” IEEE
Trans. Emerg. Top. Comput., vol. 10, no. 1,
pp. 9–22, Jan. 2022, doi:
10.1109/TETC.2022.3143346.
[6] N. O. Nikitin, I. Revin, A. Hvatov, P.
Vychuzhanin, and A. V. Kalyuzhnaya,
“Hybrid and Automated Machine Learning
Approaches for Oil Fields Development: the
Case Study of Volve Field, North Sea,”
Comput. Geosci., vol. 161, p. 105061, Apr.
2022, doi: 10.1016/j.cageo.2022.105061.
[7] A. Lektauers, J. Pecerska, V. Bolsakovs, A.
Romanovs, J. Grabis, and A. Teilans, “A
Multi-Model Approach for Simulation-Based
Digital Twin in Resilient Services,” WSEAS
Transactions on Systems and Control, vol. 16,
pp. 133–145, 2021,
https://doi.org/10.37394/23203.2021.16.10.
[8] T. O. Hodson, “Root-mean-square error
(RMSE) or mean absolute error (MAE): when
to use them or not,” Geosci. Model Dev., vol.
15, no. 14, pp. 5481–5487, Jul. 2022, doi:
10.5194/gmd-15-5481-2022.
[9] T. Chai, “Root Mean Square,” in
Encyclopedia of Mathematical Geosciences,
B. S. Daya Sagar, Q. Cheng, J. McKinley, and
F. Agterberg, Eds., in Encyclopedia of Earth
Sciences Series, Cham: Springer
International Publishing, 2020, pp. 1–3. doi:
10.1007/978-3-030-26050-7_280-1.
[10] M. Tang, L. Qiao, Z. Huang, X. Liu, Y. Peng,
and X. Liu, “Accelerating SGD using flexible
variance reduction on large-scale datasets,”
Neural Comput. Appl., vol. 32, no. 12, pp.
8089–8100, Jun. 2020, doi: 10.1007/s00521-
019-04315-5.
[11] L. Bottou, “Large-Scale Machine Learning
with Stochastic Gradient Descent,” in
Proceedings of COMPSTAT’2010, Y.
Lechevallier and G. Saporta, Eds.,
Heidelberg: Physica-Verlag HD, 2010, pp.
177–186. doi: 10.1007/978-3-7908-2604-
3_16.
[12] H. Vo Thanh, Y. Sugai, and K. Sasaki,
“Application of artificial neural network for
predicting the performance of CO2 enhanced
oil recovery and storage in residual oil zones,”
Sci. Rep., vol. 10, no. 1, Art. no. 1, Oct. 2020,
doi: 10.1038/s41598-020-73931-2.
[13] R. Al-Shabandar, A. Jaddoa, P. Liatsis, and A.
J. Hussain, “A deep gated recurrent neural
network for petroleum production
forecasting,” Mach. Learn. Appl., vol. 3, p.
100013, Mar. 2021, doi:
10.1016/j.mlwa.2020.100013.
[14] N. Tasmurzayev, B. Amangeldy, Y.
Nurakhov, D. Akhmed-Zaki, and Zh.
Baigarayeva, “Intelligent Thermal
Accumulator Operation Control System based
on Renewable Energy Sources:” in
Proceedings of the 19th International
Conference on Informatics in Control,
Automation, and Robotics, Lisbon, Portugal:
SCITEPRESS - Science and Technology
Publications, 2022, pp. 737–742. doi:
10.5220/0011319300003271.
[15] K. E. Nolan, W. Guibene, and M. Y. Kelly,
“An evaluation of low power wide area
network technologies for the Internet of
Things,” 2016 Int. Wirel. Commun. Mob.
Comput. Conf. IWCMC, pp. 439–444, Sep.
2016, doi: 10.1109/IWCMC.2016.7577098.
[16] Z. Sun and X. Tian, “SCADA in oilfields,”
Meas. Control, vol. 43, pp. 176–178, Jul.
2010, doi: 10.1177/002029401004300603.
[17] X. Yang, O. Bello, L. Yang, D. Bale, and R.
Failla, “Intelligent Oilfield - Cloud Based Big
Data Service in Upstream Oil and Gas,” Mar.
2019. doi: 10.2523/IPTC-19418-MS.
[18] D. Du, X. Zhang, Q. Guo, B. Zhang, and G.
Zhang, “Smart Oilfield Technology,” in
Proceedings of the International Field
Exploration and Development Conference
2018, J. Lin, Ed., in Springer Series in
Geomechanics and Geoengineering.
Singapore: Springer, 2020, pp. 685–694. doi:
10.1007/978-981-13-7127-1_63.
[19] H. Wang, Y. Xu, B. Shi, C. Zhu, and Z.
Wang, “Optimization and intelligent control
for operation parameters of multiphase
mixture transportation pipeline in oilfield: A
case study,” J. Pipeline Sci. Eng., vol. 1, no.
4, pp. 367–378, Dec. 2021, doi:
10.1016/j.jpse.2021.07.002.
WSEAS TRANSACTIONS on ELECTRONICS
DOI: 10.37394/232017.2023.14.12
Nurdaulet Tasmurzayev, Bibars Amangeldy,
Yedil Nurakhov, Shona Shinassylov, Samson Dawit Bekele