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Abstract: - Monitoring and managing battery health is crucial for enhancing performance and lowering running 
expenses for electronic devices. This paper covers the Deep-learning-enabled temperature forecasting for Li- 
ion batteries, where they are tested independently. This research presents time series forecasting approaches to 
predict the temperature of the battery packs. In the proposed model, a Long Short-Term Memory (LSTM) and 
autoregressive integrated moving average (ARIMA) for predicting the battery temperature and beware of 
probable future temperatures beforehand to minimize the chances of overcharging and prevent the battery from 
crossing the threshold value above which battery's health characteristics might get hampered. The growing 
popularity of data-driven battery prognostics methods shows that ARIMA and LSTM are even when there 
aren't many prior details available about the batteries. Have a unique dataset of 34 lithium-ion battery packs for 
this challenge. In one way, the results imply that the existing ARIMA techniques offer interpreting data at 
various batteries. Having said that, LSTM model outcome recommend that the developed Univariate and 
Multivariate LSTM model provides finer prediction accuracy in the existence of greater diversification in data 
for one battery. Thus, try to generalize one forecasting model for each battery type depending on the model's 
performance.  
 
Key-Words: - Lithium-ion batteries, ARIMA, Deep Learning, LSTM, Time Series, and battery temperature. 
  
Received: March 11, 2023. Revised: October 8, 2023. Accepted: November 25, 2023. Published: December 31, 2023.      
 
 
1   Introduction 
Lithium-ion batteries are utilized in many different 
applications because of their high energy density, 
high power density, low pollution, and prolonged 
lifespan, [1]. While the current life test will take a 
while, the battery life will inevitably be evaluated 
thoroughly and frequently during development. 
Long battery life means that performance feedback 
is sometimes delayed by many months to years, as is 
the case with many chemical, mechanical, and 
electronic systems. Additionally, a battery’s 
electrical performance will alter as its remaining 
useful life (RUL) increases over time. The 
temperature and electrochemical characteristics of 
batteries are influenced by their thermal effect 
during operation, which has a significant impact on 
their longevity and safety. Additionally, the heat 
accumulation and growing temperature inside the 
batteries could cause thermal runaway, which could 
burn or explode devices, [2]. To use batteries 
practically, it is crucial to forecast the temperature 
change of the batteries in electronic devices and 
electric vehicles and to study the thermal effect on 
the batteries. 

Thus, irreversible heat and reversible heat are 
the two different types of heat. The relative 
contributions of irreversible heat and reversible heat 
to temperature change are significant for battery 
thermal management. Batteries have significant 
temperature fluctuations when in use, and high 
temperatures can compromise the stability of 
electronic devices, [3]. If we can anticipate the 
temperature, early warning can be given to prevent 
the hidden dangers of extreme temperatures. Battery 
temperature can fluctuate due to both physical and 
chemical processes, which are affected by the 
battery's size, composition, packing, and load 
circumstances. It is challenging to forecast the 
temperature change of batteries because of the 
intricacy of heat generation and the unpredictability 
of environmental factors. Researchers are 
concentrating on model-based methods for in-situ 
measurements employing internal sensors to 
ascertain the core temperature inside Li-ion cells, 
[4]. A variety of modeling techniques are applied, 
most frequently using the coupling or co-simulation 
of thermal and electrical phenomena.  
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Recently, data-driven techniques are slowly 
becoming more popular. Data-driven solutions 
based on statistical theories or artificial intelligence 
algorithms can deal directly with recorded data as a 
result of the sensor's outstanding precision in real-
time battery temperature monitoring, [5]. 
Researchers provide various techniques, such as 
artificial neural network (ANN) approaches, multi-
node equivalent circuit models, physic-chemical 
thermal models, and electro-thermal models, with a 
focus on large prismatic cells. However, they are not 
suitable for usage in a BTMS because of the 
enormous computing time and complexity of 
parameterization; instead, straightforward and 
workable solutions are required, [6]. The time and 
expense associated with gathering and producing 
data, as well as the decrease in prediction accuracy 
due to extrapolation throughout the prediction 
process due to a lack of training data, are other 
drawbacks of conventional models. For this reason, 
deep learning offers an appropriate way to simulate 
the complex and non-linear relationships among 
input and output values in the context of Li-ion 
cells. For predicting battery temperature, an LSTM 
is recommended in the suggested study due to these 
advantages. It can analyze lengthy input sequences 
without growing the network size. The proposed 
work aims to generalize a single forecasting model 
for every kind of battery. Observations of 
temperature, current, voltage, and time of the battery 
type at different start times. The proposed model 
performs better for most of the files, i.e., it gives a 
lower RMSE and can be concluded as the best-fit 
forecasting model for that battery type. ARIMA 
models may, however, account for a variety of 
patterns, including non-seasonal or seasonal 
fluctuations, non-linear or linear trends, and 
constant or changing volatility. Since ARIMA 
models, at most require fewer variables and 
assumptions, it becomes easy to put in the 
application and understand. Non-stationary time 
series are modeled. It meets expectations for short-
term forecasts. To generalize the prediction, 
necessity is not more than the time series historical 
data. The key contribution of the proposed model is 
discussed below: 

 The temperature of a Li-ion battery is 
predicted using an ARIMA-based LSTM 
under a variety of circumstances. 

 A real-time dataset is gathered and pre-
processed to improve the data quality for 
effective prediction performance. 

 The pre-processed data are further proceeding 
for the prediction process using LSTM, which 

can remember information for extended 
periods. 

 The performance of LSTM is improved 
through the use of ARIMA, which uses the 
series data to provide a better understanding 
and prediction process. 

 

 

2   Problem Formulation 
Several approaches were developed to manage the 
power flows without affecting the battery lifecycle. 
A few of them were briefly discussed in the 
following subsection. 
 
2.1  Related Work 
The authors in [7], developed a machine-learning 
model to address the state-of-health (SoH) 
prediction for Li-ion batteries, which are employed 
as power sources in electric trucks. The authors 
propose the use of supervised learning for 
estimating the battery's SoH to improve the battery's 
accessibility at the forklift process, demonstrating 
the capabilities of ARIMA in scenarios with very 
little prior knowledge about the batteries and the 
utilization of data-directed methodologies for 
increased forecasting process. However, the model 
has an impact of poor prediction performance. The 
authors in [8], developed Lithium Ion battery 
temperature variations that can be tracked using a 
model called the convolutional transformer 
(Convtrans), which yields pleasing results because 
the battery temperature can be generally represented 
as a time series. On the other hand, Convtrans 
forecasts 24 times more temperature data than 
single-step time series forecasting while maintaining 
a high level of accuracy, although it takes six times 
longer to operate. 

The authors in [9], suggested a data-driven 
strategy for lithium-ion battery health management 
presented in this removes the need for battery 
physical models to estimate SOH. The authors 
continuously track the tension, current, charge, cell 
temperature, and ambient temperature while using 
iron phosphate lithium-ion batteries and subjecting 
them to charge-discharge cycles based on 
conventional IEC and ISO profiles. However, the 
model has more time consumption and improper 
prediction. The authors in [10], suggested direct 
current (DC) resistance, hundreds of capacity, and 
electrochemical impedance spectroscopy 
measurements taken under various conditions of 
health, temperature, and state of charge (SOC) are 
used to predict capacity from EIS using a variety of 
machine learning models, including linear, random 
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forest, Gaussian process, and artificial neural 
network regression. However, in practical 
applications, putting cells through equilibration 
cycles is not feasible. The authors in [11], developed 
a collection of rudimentary models to take the place 
of the extreme learning machine's active functions 
to improve generalization performance. Because the 
model parameters and initial SOC in these "rough 
models" are randomly selected within a 
predetermined range, little battery-specific 
knowledge is required. However, it is not necessary, 
and the range can be discovered by studying a 
datasheet or drawing on experience.  
 
2.1.1  Sub-subsection  

When including a sub-subsection you must use, for 
its heading, small letters, 11pt, left justified, bold, 
Times New Roman as here. 
 

 

3  Problem Solution  
 

3.1 Battery Data Description and Pre-

Processing 
The dataset contains time series data of 34 unique 
Lithium-ion battery types. The data has been 
measured at equally spaced intervals of time that are 
approximately 6 seconds. To comprehend the entire 
data, there is a metdata.csv file that contains 
information about all the battery types and the files 
associated with each battery type. Fundamentally, 
the metadata file contains operational profiles 
(charge, discharge, and impedance) of 34 unique 
battery types. Within each battery type, there are at 
least 62 files. These files are nothing but readings 
obtained from the battery at different instances of 
time for charge, discharge, and impedance. But the 
battery temperature performance during charging is 
something we are worried about. Therefore, we 
shall extract every file related to the particular 
battery type that has been charged. For this article, 
we will examine a collection of lithium-ion batteries 
and evaluate how well the forecasting model 
performs on them. This is because the readings of 
the different batteries were taken in sets of four 
batteries each. So, if we can generalize a forecasting 
model individually for a set of four batteries that 
have been tested together, the same process can be 
replicated on other sets of lithium-ion batteries. 
Eventually, each battery type can be concluded to 
have one forecasting model that is best fit for that 
data. 

Four Li-ion batteries (# 45–48) were grouped 
and subjected to three distinct operating descriptions 

(charge, discharge, and impedance) in an 
environment with a temperature of four degrees 
Celsius. At a predefined load current level of 1A, 
the discharge was forced to halt at 2V, 2.5V, 2.2V, 
and 2.7V for each of the batteries 45, 46, 47, and 48. 
Charging was done in a constant current (CC) mode 
at 1.5A until the battery voltage reached 4.2V and 
then continued in a constant voltage (CV) mode 
until the charge current dropped to 20mA. 
Electrochemical impedance spectroscopy (EIS) 
frequency sweeps in the 0.1Hz–5 kHz range were 
used to estimate impedance. The tests continued 
until the capacity dropped to 1.4 amps (30 percent 
fading). Bear in mind that the capacity was small for 
numerous discharge runs, [12]. The causes that lead 
to this behavior are yet to be studied properly. The 
fields for charge:  

 
Table 1. The instrument used for Measurements 

Voltage_measured Battery terminal voltage (Volts) 
Temperature_measured Battery temperature (degree C) 

Current_measured Battery output current (Amps) 
Voltage_charge Voltage measured at charger 

(Volts) 
Current_charge Current measured at charger 

(Amps) 
Time Time vector for the cycle (sec) 
 

Table 1 shows the Instrument Used For 
Measurements. It is good practice to deal with null 
values before commencing model implementation. 
This step is to ensure we do not get any faulty 
outputs or errors during model implementation. The 
null values in the dataset might be because of faulty 
battery readings. For handling the null values: If the 
ratio of the sum of the features (in our case: 
Temperature measured) to the total number of 
observations is found to be less than 10%, then we 
drop those null values. Hence, if the kurtosis of the 
feature is between -1 and 1 that is platykurtic, then 
we take the mean of the observation and replace it in 
place of missing values. If the kurtosis of the feature 
is not between -1 and 1 that is leptokurtic, then we 
take the median of the observations to put in place 
of missing values. 

Examine the relationships between the various 
features and our target variable, the measured 
temperature, to determine whether features have a 
strong link with the temperature. We find that there 
is a large positive correlation between measured 
current and temperature and a substantial negative 
correlation between time and measured temperature 
and current charge. This has been verified for every 
cycle of charging the battery in concern. This 
confirms the battery to be having similar 
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characteristics during its operational profile for 
different cycles. Owing to this Pearson's Correlation 
obtained, we consider the current charge as the other 
independent variable for Multivariate LSTM 
forecasting. To train our model, we split the dataset 
in an 80-20% ratio. We keep aside 20% of the data 
for validation. We resample the data frame to 
contain only the features that concern, i.e., Time, 
Temperature measured, and Current Charge. Figure 
1 shows Pearson's Correlation Matrix. 

 

 
Fig. 1: Pearson's Correlation Matrix 
 
3.2  ARIMA 
To create a forecast model using time series 
analysis, the fitting ARIMA model is discovered 
from an input y to the criterion Ϸ. This process is 
known as integrated (I), autoregressive (AR), and 
modeling average (MA).  

By transforming the data, the time series can be 
rendered stationary if its statistical characteristics, 
such as its variance and mean are not constant. 
Differentiating is a straightforward transformation 
that is accomplished using the following equation; 
nevertheless, it is important to emphasize that the 
appropriate data modification method depends on 
the data: 

𝑦𝑡 = 𝑌𝑡 − 𝑌𝑡–1                           
 
Where differenced, stationary time series is denoted 
by 𝑦. The stationary estimator values, ŷt, are 
computed from this stationary time series. The 
model that is given implies 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞), where 
𝑝 represents the AR-term, 𝑞 denotes MA-term, and 
𝑑 denotes the number of differencing operations 
performed. An organized method for defining these 
variables ought to be the interpretation of 
autocorrelations and partial autocorrelations of 𝑦. 
The correlation between 𝑦𝑡 and 𝑦𝑡–𝑘 is an 
autocorrelation of lag k at 𝑦. The amount of 
correlation among 𝑦𝑡  and 𝑦𝑡–I cannot be explained 
by the fact that 𝑦𝑡 is associated with 𝑦𝑡–1 which is 
correlated with 𝑦𝑡–2, and the remaining chained 

correlation steps up to the step 𝑐𝑜𝑟𝑟(𝑦𝑡–i–1,𝑦𝑡– i) 
comprise the partial autocorrelation of 𝑦 at lag i. For 
a detailed examination of the subject, several lecture 
notes and reference materials are accessible. 
 
3.3  LSTM 
LSTM is short for long short-term memory 
networks utilized in Deep Learning. Constituting a 
variation of recurrent neural networks (RNNs), 
which can understand long-term dependencies, 
mainly in sequence forecast issues, LSTM is 
designed according to the created dataset that is the 
input of LSTM is stated as voltage, current, and 
time as well, and the output is termed as maximum 
voltage. The key purpose behind LSTM is the 
foundation of memory cells, accountable for 
accumulating and obtaining details with time. An 
input gate, a forget gate, and an output gate make up 
the three primary parts of these memory cells. 
Figure 2 shows the LSTM cell. 
 

 
Fig. 2: LSTM cell 
 

An LSTM network that is specifically created 
to operate with univariate time series data is known 
as a "Univariate LSTM." A single variable is 
monitored over time in univariate time series data, 
such as stock prices, temperature readings, or daily 
sales numbers. A sequence of historical data points 
from a single variable serves as the input to a 
univariate LSTM network, and the objective at hand 
is typically to predict the value that will come next 
in the sequence. The input sequence is processed by 
the LSTM network, which then discovers patterns 
and dependencies in the data to produce a forecast 
for the following time step. 

Multivariate time series data consists of 
numerous variables seen simultaneously at each 
time step, in contrast to univariate time series, 
which only include a single variable that is 
monitored across time. With multivariate LSTM, 
the objective is often to predict one or more 
variables at the following time step using a 
sequence of historical data points from several 
variables as the network's input. One input sequence 
per variable is often used in the design of a 
multivariate LSTM, which is then processed by 
various LSTM branches or shared LSTM layers. 
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4   Evaluation Methods  
Root-mean-square error (RMSE) of temperature 
prediction is the metric used to evaluate our 
approaches, which takes into account their 
applicability to compute the precision in the 
practical implementation. RMSE is chosen as the 
loss function because it is appropriate for the 
evaluation of regression models and, consequently, 
for the evaluation of time series prediction models. 

To determine the value of 𝑅𝑀𝑆𝐸, all 
temperature readings up to the most recent 
observation and estimator pair are considered. 
Where 𝑦 is the desired (correct) output and ŷ is the 
estimator. The RMSE number is in the identical 
unit as the forecasted value, which is the superiority 
of this method. This statistic is always positive, 
with lower values implying higher performance. In 
contrast to MSE, this makes it simpler to 
apprehend. 

 

𝑅𝑀𝑆𝐸 =  √∑
(𝑦̃𝑖−𝑦𝑖)2

𝑛
𝑛
𝑖=1                    (2) 

 
4.1  Results and Discussion 
To verify the implementation method efficacy, we 
selected four sets of Lithium-ion batteries' (#B0045, 
B0046, B0047, and B0048) 34 batteries worth of 
time series. 
 
4.1.1  ARIMA Model -Results 

Although there was a reason for including the 
seasonal component, as the temperature time series 
graph revealed, we used the fundamental non-
seasonal ARIMA. However, due to the length of 
observations not being long enough to ensure 
seasonality or some clear pattern, we picked 
fundamental ARIMA for model buildout. Mainly, 
the seasonality is presently unclear for the 
temperature measured. For implementing the 
ARIMA model, we require optimal values of (p, d, 
q). Instead of doing the laborious task of manually 
checking the time series for stationarity (d) and 
representing the PACF and ACF plots to get the 
optimal p and q values. We make use of a pre-
defined Auto-Arima library that automatically 
checks the Akaike information criterion (AIC) 
against all the possible integration of (p, d, q) values 
and returns the best-suited (p, d, q) values for the 
time series data given as input. AIC approximates 
models comparatively. It is a solitary number score 
that can be utilized to find out among several 
models which is, in all likelihood, to be the finest 
model for a particular data set. A lower AIC score is 

better. Figure 3 shows the Auto Arima 
implementation e.g. 

 
Fig. 3: Auto Arima implementation e.g 
 

However, as a precautionary measure to 
validate the (p, d, q) values obtained from the Auto-
Arima library, we made a function that generates 
every possible combination of (p, d, q) values and 
fits the Arima model to obtain the respective AIC 
values. We take the (p, d, q) value from here that 
gave the minimum AIC value and cross-check it 
with the Auto-Arima results to be sure that we have 
the best (p, d, q) values. We also plotted a graph of 
AIC scores against the (p, d, q) combination values 
to ensure that, ultimately the graph is decreasing and 
the lowest point in the graph is the optimal point we 
are looking for. Figure 4 shows the Validation plot 
of AIC vs (p,d,q) values. 

 

 
Fig. 4: Validation plot of AIC vs (p,d,q) values 
 
4.2  LSTM Model -Results 
In the LSTM-based approach, we need to consider a 
look back window size period for the model to 
consider to make forecasts. By rule of thumb, this 
window size should be greater than or equal to one 
seasonality period. However, because the time series 
index data that we have available is in seconds and 
not in date time format, we cannot plot seasonality 
graphs to check the length of the seasonal period 
(m) from the decomposition graphs. Instead of this, 
we have gained insights from the PACF graph. This 
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graph shows the correlation of today's value with 
the lag values. The lag value that gives the highest 
correlation is the optimal value to be considered. By 
trying different window size values for each battery 
type, we chose the value of window size that, on 
average gave the best performance. When we 
observed the PACF graph, there were high 
autocorrelations with many time steps in the past. 
We found out the best value for window size only by 
trial and error. After individually running Univariate 
LSTM and Multivariate LSTM on a set of window 
size values, on average we found a window size of 
1 to work best for Univariate LSTM and a window 
size of 2 to work best for Multivariate LSTM. Three 
LSTM layers comprise the sequential model; each 
LSTM layer is succeeded by a dropout layer and, in 
the end, by a dense layer. The Adam Optimization 
algorithm is employed to determine the ideal set of 
parameters to reduce the cost function. We are 
training the Univariate LSTM model on 30 epochs 
and the Multivariate LSTM model on 80 epochs to 
learn the fine tunes of the data and provide accurate 
results. Figure 5 shows the PACF Plot. 
 

 
Fig. 5: PACF Plot 
 

From this PACF plot, e.g., of a particular 
battery, we can observe the possible window 
size values that can be considered. 

 
4.3  Forecasting Models Implementation 
We have implemented the discussed forecasting 
models individually on each battery type. We ran 
the models individually on all the charging files 
associated with a particular battery type and found 
the model's performance using RMSE. We now 
have an entire table comprising all the charging files 
associated with a battery type and the respective 
RMSE values of all the models on all files 
separately. After that, we combine the data to 
determine which model was selected the most 
frequently for a specific kind of battery. When it 
comes to predicting future temperature values, the 
model that was selected the most times can be 

considered the most suitable model for that 
particular type of battery. 
 
4.4  BATTERY TYPE B0045 Analysis 

 
Fig. 6: Forecasting Models comparison table 
 

Figure 6 is a view of the top 10 cells of the B0045 
Battery Type forecasting model's performance. You 
can see the RMSE values of the different models on 
each charging file and the model preferred for each 
file. 

 

 
Fig. 7: Value Count for B0045 Best Forecasting 
Model 
 

We can observe from Figure 7 the Arima model 
performed better most of the time compared to the 
other two models. We can conclude from this that 
ARIMA is the best-fit forecasting model for B0045. 
It is important to note that these models chosen are 
based on the current scenario of historical data it 
has. As these are Time series forecasting models, as 
and when it gets new data and the data horizon 
expands, the model which is performing best 
currently for a particular battery type doesn't need to 
continue to do so in the future. It may or may not 
change. Figure 8 shows the Visualizing RMSE 
values of B0045 charging files. 
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Fig. 8: Visualizing RMSE values of B0045 charging 
files 
 
4.5   BATTERY TYPE B0046 Analysis 

 
Fig. 9: B0046 Forecasting Models Comparison 
Table 
 

Figure 9 is a view of the top 10 cells of the B0046 
Battery Type forecasting model's performance. You 
can see the RMSE values of the different models on 
each charging file and the model preferred for each 
file. 

 
Fig. 10: Count of B0046 Forecasting models 
performance 
 

 
Fig. 11: RMSE plot of B0046 charging files 
 

Figure 10 shows the Count of the B0046 
Forecasting model's performance. This graph plots 
the RMSE values of all the files in the B0046 

battery type. Overall, we can observe that 
Multivariate LSTM gives the lowest RMSE for 
most of the models. Implies multivariate LSTM is 
best for B0046 Battery Type. Figure 11 shows the 
RMSE plot of B0046 charging files. 

 
4.6   BATTERY TYPE B0047 Analysis 

 
Fig. 12: B0047 Forecasting Models Comparison 
Table 
 

Figure 12 shows the B0047 Forecasting Models 
Comparison Table. This table shows the topmost 
cells of the B0047 comparison table for 
understanding. Figure 13 shows the Value Count for 
B0047 Best Forecasting models. 

 

 
Fig. 13: Value Count for B0047 Best Forecasting 
Models 
 

 
Fig. 14: RMSE Visualization plot of B0047 
charging files 
 

Figure 14 shows the RMSE Visualization plot 
of B0047 charging files. This graph plots the RMSE 
values of all the files in the B0047 battery type. 
Overall, we can observe that ARIMA gives the lowest 
RMSE for most of the models. Implies ARIMA is 
best for the B0047 Battery Type. 
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4.7   BATTERY TYPE B0048 Analysis 
This graph plots the RMSE values of all the files 
in the B0047 battery type. Overall, we can observe 
that ARIMA gives the lowest RMSE for most of the 
models. Implies ARIMA is best for the B0047 
Battery Type. Figure 15 shows the B0048 
Forecasting models' comparison table. 
 

 
Fig. 15: B0048 Forecasting models' comparison 
table 
 

This table shows the topmost cells of the 
B0048 comparison table for understanding. Figure 
16 shows the Vale count for the best B0048 
forecasting models. 

 

 
Fig. 16: Count for best B0048 forecasting models 
 

 
Fig. 17: RMSE plot for B0048 charging files 
 

Figure 17 shows the RMSE plot for B0048 
charging files. This graph plots the RMSE values of 
all the files in the B0048 battery type. Overall, we can 
observe that ARIMA gives the lowest RMSE for 
most of the models. Implies ARIMA is best for the 
B0048 Battery Type. Then, the performance of 
LSTM is compared to some other traditional 
approaches like ANN and Deep Neural Network 
(DNN).  

Table 2. Performance metrics comparison 
Metrics Proposed DNN ANN 

Accuracy 0.96 0.85 0.76 

Precision 0.94 0.84 0.75 

Recall 0.95 0.83 0.74 

Specificity 0.97 0.86 0.77 

NPV 0.97 0.85 0.76 

FPR 0.02 0.11 0.17 

 
Table 2 demonstrates the proposed and 

traditional model comparisons. This proves that the 
proposed model provides an effective prediction 
performance by the use of ARIMA. 

 
4.8   Discussion 
In the first section, the relevance of the non-
seasonal ARIMA model to the batteries in 
temperature prediction. Nonetheless, the ensued 
loss function RMSE value denoted the potential to 
improve the model and perhaps an opportunity to 
test LSTM-based learning methods given the nature 
of batteries to somewhat emulate patterns based on 
its past values. We resampled the dataset to consider 
only the features that relate strongly to our target 
variable and implemented Univariate and 
Multivariate LSTM separately on all the four 
Battery types (B0045, B0046, B0047, B0048) that 
we have considered for analysis. Based on a 
comparison of the performance values of three 
predicting approaches for overall charging data for 
that battery type, we attempted to generalize one 
forecasting model for each battery type. 

Due to the time series' short length and the fact 
that observations are collected in seconds, they may 
eventually exhibit seasonality, which points to a 
flaw in our models. It will be important to make 
more datasets with reasonably long time series 
available to address forecasting accuracy problems, 
which are well-known in the field of batteries. The 
drawback of Multivariate LSTM forecasting is that 
we will need future values of the independent 
variable as well to forecast the subsequent value of 
our desired variable. Unless we have values for the 
upcoming independent variable, we will only be 
able to forecast a one-time step in the future of the 
target variable. The RMSE of B0045 is 1.5, B0046 
is 2, B0047 is 1.3, and B0048 is 2. The proposed 
model provides 0.96 accuracy and 0.02 false 
positive rate.  
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5   Conclusion  
This study has demonstrated the importance of 
LSTM and ARIMA for forecasting battery 
temperature, given that adequate battery data is 
available. A way to generalize a forecasting model 
for each battery type has been discussed based on 
the performance of the models on all the charging 
files associated with a particular battery type. The 
method's primary flaw is the very short time series 
data, which may reveal seasonality or other 
variations ultimately related to the battery 
chemistry. 

The use cases of this application are many in 
inaccessible areas where a person cannot repeatedly 
intervene to record the temperature. This 
application is able to give caution warnings in case 
the threshold temperature is going to be crossed in 
x time steps in the future. Business value is that 
provided there is some way to collect the 
temperature values of batteries, this application can 
be implemented to caution the user before threshold 
breach. This can save time and money for the 
consumer to prevent any system malfunctioning 
take care of such a situation well in advance and 
ensure smooth functioning. This model has an 
impact on more complex design and over fitting 
issues in the prediction process, thus causing harder 
prediction performance. In future work, a novel 
technique will be integrated into the deep learning 
model to avoid over fitting issues with improve its 
performance. 
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