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Abstract: - This article introduces an innovative approach to oil field management using digital twin technology 
and machine learning. A detailed experimental setup was designed using oil displacement techniques, equipped 
with sensors, actuators, flow meters, and solenoid valves. The experiments focused on displacing oil using 
water, polymer, and oil, from which valuable data was gathered. This data was pivotal in crafting a digital twin 
model of the oil field. Utilizing the digital twin, ML algorithms were trained to predict oil production rates, 
detect potential equipment malfunctions, and prevent operational issues. Our findings highlight a notable 10-
15% improvement in oil production efficiency, underscoring the transformative potential of merging DT and 
ML in the petroleum industry. 
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1   Introduction 
The global petroleum industry finds itself at a 
crossroads, facing a variety of difficulties including 
depleting reserves, surging operational costs, and 
escalating environmental concerns. Innovative 
solutions must be developed to improve operational 
effectiveness and advance sustainable practices in 
light of these challenges. This paper introduces a 
groundbreaking Intelligent Oil Field Management 
System, harnessing the synergistic power of 
Machine Learning (ML) and Digital Twin (DT) 
technologies. 

The fusion of ML and DT technology, central to 
our methodology, implicitly relies on several 
assumptions. Firstly, the data from the oil field, 
crucial for ML model training, is assumed to be both 
reliable and accurate. This assumption is vital as 
ML, a subset of Artificial Intelligence, leverages 
extensive data to evolve. By creating a dynamic 
virtual representation of real-world objects and 
systems, DT technology, in concert with ML, opens 
up new possibilities for operational optimization, 
analysis, and monitoring in real-time, [1]. This 
integration, much like the one described in [2], 
significantly improves operational efficiency and 
predictive accuracy, enhancing oil recovery and 
simplifying drilling operations, [3], [4], [5], [6]. 

Similarly, our use of DT is justified as seen in [7], 
emphasizing the creation of dynamic virtual models 
for real-time operational optimization. Our approach 
assumes that the integration of these technologies 
will represent various oil field components 
comprehensively, from pipelines to reservoirs, 
facilitating informed decision-making and 
preventive maintenance, and that our findings are 
representative of broader, real-world scenarios. This 
underscores the scalability and applicability of our 
methodology in oil field management. 

The use of ML, namely Artificial Neural 
Networks (ANN) and Recurrent Neural Networks 
(RNN), was crucial to our effort to improve the 
efficiency of oil field management. The ANN's 
architecture, which was based on the nervous 
system of humans, was made up of interconnected 
neurons that were dispersed throughout the input, 
hidden, and output layers. This setup made it 
possible to precisely define intricate connections 
between inputs and outputs, which is essential in 
situations where system parameters are unclear. 
Furthermore, a specialized variant of RNN, the 
Long Short-Term Memory (LSTM) network, was 
employed to adeptly manage time-series data, 
thereby allowing for precise predictions of 

WSEAS TRANSACTIONS on ELECTRONICS 
DOI: 10.37394/232017.2023.14.12

Nurdaulet Tasmurzayev, Bibars Amangeldy, 
Yedil Nurakhov, Shona Shinassylov, Samson Dawit Bekele

E-ISSN: 2415-1513 104 Volume 14, 2023



operational parameters based on both historical and 
real-time data streams.  

Our ML models were deployed on a single-board 
Raspberry PI module, chosen for its cost-
effectiveness, compact size, and sufficient 
computational power for preliminary data 
processing and analysis. This configuration turned 
out to be the pivot for forecasting data and making 
decisions. An extensive data cleaning phase was 
paramount to ensuring the accuracy and reliability 
of our machine learning models. This process 
involved filtering out noise and inconsistencies from 
the training data, creating a more refined dataset for 
model training.  

The choice of Root Mean Square Error (RMSE) 
and Stochastic Gradient Descent (SGD) in our 
project was driven by specific needs. RMSE is 
valuable as it emphasizes larger errors in 
predictions, which is crucial for our objective of 
minimizing inaccuracies in forecasting oil field 
operational parameters, [8], [9]. On the other hand, 
SGD was chosen for its ability to handle large 
datasets efficiently and converge faster, making the 
learning process quicker and more effective, [10], 
[11]. This is particularly beneficial in our setup with 
extensive data, where timely insights are vital for 
optimizing oil production operations. 

There are numerous examples in the literature 
that demonstrate the use of ANN and RNN in the 
field of oil recovery and production optimization. 
An investigation highlighted ANN's ability to 
forecast CO2 storage capacity and oil recovery, 
shedding light on the technology's potential to 
manage the inherent uncertainty in oil recovery 
procedures, [12]. Another investigation showcased 
the deployment of RNN for modeling oil field 
production, highlighting the importance of adeptly 
handling substantial data for precise oil data 
prediction, [13]. These studies demonstrate the 
growing importance of ML in oil field management 
and, when combined with DT, open the door to a 
new era of operational excellence in the petroleum 
sector. 

Our project aimed to create a smarter way to 
manage oil fields using DT technology and ML, 
targeting enhanced operational efficiency. The 
primary objective of this study was to revolutionize 
oil field management by effectively integrating 
these advanced technologies, thereby addressing key 
industry challenges like resource depletion and 
environmental impact. We set up a special stand 
based on oil displacement technology for our 
experiments, which is instrumental in efficiently 
extracting more oil from the ground. This stand was 
equipped with various sensors, valves, and flow 

meters to analyze the efficacy of different fluid 
injections in oil displacement. The data collected 
was crucial in creating a virtual model (Digital 
Twin) of the oil field, subsequently used to train our 
ML algorithms. These algorithms are intricately 
designed to predict oil output, identify potential 
equipment failures, and preemptively address 
operational issues, [14], [15].  

Additionally, the incorporation of SCADA 
systems ensures ease and safety in operation, 
offering real-time monitoring and control. The 
unique contribution of our research lies in the real-
time modeling capabilities of our system, achieved 
through the innovative fusion of ML and DT 
technology. This approach, combining real-time 
data analysis with adaptive control strategies, 
significantly enhances operational efficiency, as 
evidenced by a noticeable 10-15% increase in oil 
production. It marks a significant innovation in oil 
field management, underlining our system's impact 
and distinctiveness in the field. Ultimately, our 
research strives to set a new benchmark in 
sustainable and efficient oil field management, 
contributing to the broader goal of creating more 
environmentally conscious and resource-efficient 
practices in the industry.  

 

 

2   Architecture of the System 
Building a bridge between theory and practice is 
crucial in developing our DT and ML-based Oil 
Field Management System. Our architecture is 
carefully designed to mimic real-world oil field 
conditions, while also providing a controlled setting 
for detailed testing and data gathering. The 
architecture of our system is depicted in Figure 1. 
 

 
Fig. 1: Architecture of the System 

 
The core constituents of our system are described 

in the following subsections.  
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2.1  Oil Reservoir Simulator 
At the core of our experimental setup is the Oil 
Reservoir Simulator, which has been carefully 
engineered to replicate the underground conditions 
of an oil reservoir. It comes equipped with an array 
of sensors for monitoring essential parameters like 
pressure, temperature, and oil flow, along with 
electromagnetic valves and flow meters. These 
sensors utilize the IEEE 754, 32-bit floating-point 
format to convert measured field values, ensuring 
high precision in data acquisition. 

Our experimental setup comprises terminal 
blocks for connecting sensors and actuators, fluid 
reservoirs, electromagnetic valves, connecting 
pipes, a logic block (which is an industrial 
controller), and a router for internet connectivity as 
seen in Figure 5 and Figure 6. This intricate setup 
not only enables the simulation of various oil field 
scenarios but also lays the foundation for data 
collection and analysis—crucial for the creation of a 
DT and training of our ML models. 
 
2.2  SCADA Integration  
The SCADA system is like the nervous system of 
our setup. It collects real-time data from the Oil 
Reservoir Simulator and other devices. SCADA is 
very important for keeping track of what’s 
happening in Digital Oil Fields as mentioned in 
[16]. The SCADA seamlessly connects with devices 
such as Siemens SIMATIC S7-1200 and Siemens 
SIMATIC IoT 2040.  

It facilitates real-time data acquisition from the 
Oil Reservoir Simulator and other connected 
apparatus, creating a dynamic representation of the 
experimental stand. This setup is pivotal for keeping 
a tab on the ongoing processes and conditions 
within our simulated oil field environment, thereby 
mirroring the potential real-world scenarios of oil 
fields.  

 
2.3  Cloud Server and Database Integration 
All the data from the SCADA system and sensors 
are sent to a cloud server. This server keeps the data 
safe and makes it easy to access whenever needed. 
Using a cloud server is a modern way to handle big 
amounts of data with high reliability as discussed in 
some studies, [17]. It manages all the computing, 
storage, and network resources, making sure 
everything is well-organized and optimized, [18]. Its 
SQL system ensures a structured data storage 
approach.  
 
 

2.4 SCADA Interface (Human Machine 
Interface) 

The SCADA interface is a window to our 
experimental setup, offering a real-time 
visualization that empowers operators and 
researchers to steer experiments and make judicious 
decisions based on visual feedback. This interface is 
instrumental for monitoring, controlling, and 
tweaking various processes in a simulated setting, 
thereby forming a crucial link between data 
acquisition and actionable insights. 

Figure 2 shows the SCADA HMI for our 
experimental stand. 

 

 
Fig. 2: SCADA Human Machine Interface 

  
2.5  Historical Data Analysis 
Preservation of all experimental data for historical 
analysis is an essential aspect of our system. It 
enables a thorough assessment of the impact of 
diverse operational strategies over time. By sifting 
through historical data, we can discern trends and 
patterns that are instrumental for informed future 
decision-making and for enhancing efficiency over 
prolonged operational timelines. Live data recording 
in MySQL database can be seen in Figure 3. 

 
Fig. 3: Live data registration in MySQL database 
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2.6  Machine Learning Methods 
Our ML models learn from the collected data from 
our experimental stand to predict how oil will move 
and to fine-tune operational settings. These models 
use different methods to understand oil field 
behavior. Employing a blend of regression and 
classification algorithms such as random forest and 
XGBoost, these models delve into the integrated 
data to forecast oil displacement behavior, thereby 
aiding in experiment optimization. This segment of 
our architecture is the heart for harnessing data-
driven insights to augment operational efficacy. 
 
2.7  LSTM Modelling  
To support data forecasting and decision-making, a 
single-board Raspberry PI computer is used. On this 
platform, we deploy our LSTM neural network and 
train it using data recorded in the database. The 
neural network accepts an input data of shape (12, 
8), where 12 is the number of time steps (12 time 
slots) and 8 is the number of features per time step 
(representing the data from 8 sensors at each time 
slot). Following the input layer, the network features 
an LSTM layer with 128 units, which is particularly 
suited for time-series data due to its ability to 
remember information over long periods and to 
capture temporal dependencies. It is followed by a 
dense layer of 256 neurons, and an output layer of 
one neuron. Figure 4 shows the architecture of the 
neural network used.  

 
Fig. 4: Architecture of the neural network 

 
2.8  Optimization and Intelligent Control 
The architecture also embraces optimization and 
intelligent control mechanisms to tweak operational 
parameters for enhanced performance and 
efficiency. Intelligent control is achieved through 
the SCADA system which has been utilized in 
various research for the scientific management of oil 
fields, [19]. The decision support system nested 
within the Digital Twin furnishes real-time 
recommendations for optimizing oil displacement 
methods. It's adept at alerting operators about 

potential issues such as equipment malfunctions, 
thus proactively averting costly downtime. 
 
2.9 Intelligent Remote Module for Real-Time 

Operation 
The foundation of our intelligent remote-control 
module is laid by the sensors, which are specifically 
designed to capture both discrete and analog signals, 
typically in the range of 4-20 milliamperes and 0-10 
volts.  

Once these signals are collected, they are 
forwarded to the Programmable Logic Controller 
(PLC). The PLC is adept at interpreting these 
signals, converting both discrete and analog 
readings into a digital format which can then be 
processed further. 

Upon processing, the PLC communicates with 
the OPC Server and Gateway. This server plays a 
dual role: firstly, it ensures the secure and efficient 
transmission of data to the cloud for storage. This 
cloud storage not only acts as a backup but also as a 
centralized data repository that can be accessed 
from various endpoints. Secondly, the OPC Server 
transmits this data to the SCADA HMI system. 
Here, the data is visualized, providing operators 
with a real-time overview of the system and 
allowing them to make informed decisions. 

Simultaneously, the processed data is also stored 
in a dedicated database. From this database, the 
Raspberry Pi, equipped with a Machine Learning 
(ML) model, fetches the data for training. By 
training on this data, the ML model can derive 
patterns and insights which it then uses to send 
intelligent, predictive outputs back to the SCADA 
system. This mechanism ensures that the SCADA 
system isn't just a passive display but an interactive 
control panel that benefits from the predictive 
capability of the ML model. 
 

 

3   Results 
We undertook a range of tests using our oil 
displacement technology set up to gauge the 
efficacy of our digital twin and machine 
learning-focused oil field management 
approach. These tests simulated situations 
typical of real-world oil fields, especially 
secondary and enhanced oil extraction 
techniques. Our experiments yielded several 
notable results: The marriage of digital twins 
and machine learning significantly boosted oil 
extraction in our simulation, surpassing 
traditional techniques. By perpetually refining 
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operational metrics, a greater volume of oil was 
mobilized from the reserve. 

Furthermore, the real-time monitoring 
capabilities and predictive maintenance aspects 
of the digital twin system enabled us to 
proactively identify potential equipment 
failures. This proactive approach was rigorously 
validated through deliberately introducing 
components with known defects, ensuring a 
robust test of the system's predictive acumen. 
The experimental stand built can be seen below.  

The crucial connection points and the 
meticulous detail in our experimental stand can 
be seen in Figure 6. Moreover, the logical and 
control block with PLC of the digital twin stand 
can be seen in Figure 7.   

Our SCADA system recorded live metrics 
like reservoir pressure, temperature, and oil 
migration. This data was fed into our digital 
twin system, generating a live model of the 
testing environment. The system's control and 
operational management are conducted via the 
SCADA interface, as illustrated in Figure 8. 

 

 
Fig. 5: Experimental digital oil field test bench 

 

 
Fig. 6: Terminal block of digital twin stand 

 
 

 
Fig. 7: Logical and control block with PLC of 
digital twin stand 
 

 
Fig. 8: Visualization in SCADA 
 

Employing the developed LSTM algorithm, 
we decoded the combined data to predict oil 
displacement tendencies.  

Upon comparing the actual temperature 
measurements with the predictions from our 
neural network, we found a strong 
correspondence between the two, indicating a 
high level of predictive accuracy by the 
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network. The difference between real and 
predicted data were minimal, showing the 
model's efficiency. This minimal difference was 
quantitatively assessed using RMSE, which 
showed low values, reflecting the model's 
ability to closely mirror actual conditions. The 
consistent decrease in prediction inaccuracies 
across successive epochs further substantiates 
the model's learning efficacy and its capacity to 
refine its predictions over time. 
The results of our analysis showed an r2 score 
range of 90–95%. Moreover, our findings 
highlight a notable 10-15% improvement in oil 
production efficiency, providing insight into the 
transformative potential of merging DT and ML 
in the petroleum industry. 

This study emphasizes the potential of a 
machine learning-based tool to enhance the 
management and operational efficiency of oil 
field test setups. Our roadmap envisions the 
integration of features such as oil transfer 
speed, tank pressure, and oil consistency. The 
advisory platform of the digital twin also played 
a crucial role in identifying and addressing 
equipment defects, including those induced 
intentionally as part of our system's resilience 
and fault-tolerance testing. This approach 
allowed us to simulate potential issues and 
assess the system's response to such anomalies, 
thereby enhancing the robustness and reliability 
of our oil displacement methods.  
 
 
4   Conclusion 
The integration of digital twins and machine 
learning in oil field management marks a 
monumental shift for the oil and gas sector. This 
union harnesses real-time analytics, predictive 
foresight, and data-fueled decision-making, leading 
to enhanced safety, efficiency, and optimal resource 
deployment. 

In our pilot setup mimicking oil displacement 
technology, we showcased the tangible advantages 
of this methodology. Merging Digital Twin tech, 
SCADA systems, and machine learning, we 
dynamically fine-tuned oil field operations, showing 
a significant enhancement in oil production 
efficiency by 10-15%. 

Key outcomes from our endeavor: 

Our intelligent framework routinely amplified oil 
extraction rates by dynamically refining operation 
metrics and offering on-the-spot recommendations. 

The ability to predict maintenance needs, 
coupled with preemptive alerts, curtailed operational 
downtime and bolstered safety—warding off 
equipment breakdowns and potential hazards. 

The newfound precision in resource distribution 
ensured optimal utilization, thus ramping up 
production outputs. 

The implementation of our system in real-world 
oil fields can revolutionize industry practices. By 
integrating our intelligent framework into existing 
infrastructure, oil companies can expect significant 
improvements in operational efficiency and safety. 
The system's predictive maintenance capabilities 
and dynamic operation adjustments can be 
particularly beneficial in large-scale operations, 
where they can lead to substantial cost savings and 
reduced environmental impact. This practical 
application highlights the system's potential for 
widespread adoption and its ability to address 
current industry challenges. 

Future work will explore enhancing the real-time 
capabilities of the system, particularly focusing on 
refining the accuracy of predictions and the 
efficiency of the digital twin model. We also plan to 
address current limitations such as scalability to 
larger fields and integration with various types of oil 
extraction technologies. 
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