
 

 

Abstract: This paper presents the application of Radial Basis Function neural network in antenna array systems and 
in the estimation of polarization rotation estimation in the ionosphere. Radial Basis Function neural network is used 
as it satisfies both universal and best approximation property. We present the architecture of the network, as part of 
the total system. Presented results show low mean error values and very good match between the referent values and 
gained one, which shows the successfulness of the particular neural network.    
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1. Introduction 

HE artificial neural networks theory and design advanced 
significantly in the last decades. Also, signal processing is 

the field where much progress has been achieved. Neural 
Networks (NN) are highly suited for solving difficult signal 
processing problems, mostly because of their non-linear 
nature, their universal approximation property and their ability 
to learn from environment in both supervised and unsupervised 
ways..  
     A network of many simple processors (units, nodes, or 
neurons) presents the NN, where all these units are 
interconnected with unidirectional communication channels 
(connections) labeled with numerical data, also having a small 
amount of local memory [1]. For the NN we can think as a 
black box that has certain input and produces certain outputs. 
The NN structure and neurons models determine the 
functionality of this black box. 
      It is interesting to note that NN resembles the brain in the 
following two aspects: 

- A learning process provides the NN to acquire a 
knowledge 

- Synaptic weights presented by interneuron connection 
are storing that knowledge 

     The one of most exciting properties of NNs is their 
functional approximation capability that makes them suitable 
for applications in signal processing, control, communication 
channel equalization, pattern recognition and system 
identification. The approximation capabilities of various types 
of multilayered feedforward architectures have been 
investigated since 1990’s with much interest. Actually a 
feedforward NN may be seen as a rule of computing the output 
values of the neurons in the ith layer from the values of the 

outputs of the (i-1)th layer, that actually present a mapping 
from the input space Rn to an output space Rn. 
     The Stone-Weierstrass theorem is effective analytical tool 
for function approximation analyses [2].  The relationship 
between the Kolmogorov’s theorem and approximation 
principle of the feedforward networks was found in 1980’s. 
This theorem states that a continuous multivariable function 
may be expressed, on a compact domain, in terms of sums of 
compositions on single variable functions. It was shown that 
NNs with at least one hidden layer are capable of 
approximating continuous function if the activation functions 
of the hidden neurons are differentiable.     
     A suitable candidates for NNs application are antenna 
systems because of their associated nonlinearities. A 
multilayer perceptron with single hidden layer is capable of 
approximating any smooth non-linear input-output mapping, 
provided that there are sufficient number of neurons in the 
hidden layer, to an arbitrary degree of accuracy. This is 
referred as universal approximation property. Radial Basis 
Function NNs (RBFNs) poses the universal approximation 
capability, which was proven by Park and Sandberg [3]-[4]. As 
an extension to this property, a property of best approximation 
is defined. The model that most closely approximates the 
generating function, by some defined distance measure, from 
given set of models, is said that poses the best approximating 
property. RBFNs poses this property [5], and that’s why they 
were applied to antenna array direction of arrival estimation 
and beamforming [6]-[8].  
     In this paper we present an examples of RBFNs application 
for intelligent antenna array synthesis and also for Faraday 
Polarization Rotation (FPR) estimation in the ionosphere. Next 
section describes the RBFNs architecture, and in Section 3 
some results are presented.  
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Fig.1 architecture of RBF NN 

 

2.  RBFN NN Architecture 

     Fig.1 [9] presents the architecture of RBF NN with two 
layers, one hidden and one output layer. The number of 
neurons in the hidden layer is S1 and the number of neurons in 
the output layer is S2. The weighted input of the neuron is the 
weighted distance between the input vector and weight vector, 
and each net input of the neuron is dot product between that 
distance and bias vector. After passing through the radbas 
function the output of the hidden layer is generated, and that is 
actually the input vector for the second layer. The transfer 
function of the output layer is linear.  

 

Fig. 2 RBF neuron architecture  

     Fig.2 [9] presents the structure of RBF neuron. Input vector 
has R elements, and output is presented with value a. The 
block ||dist|| presents some distance measure between the input 
vector and connection weights vector, and b presents the bias. 
At the end on the figure we can notice the block of the radial 
basis function as the activation function of the neuron. Radial 
basis transfer function block produce 1 whenever the input 
vector is matched with the weight vector which means it 
behaves as detector.  
     The input vector for antenna array synthesis is presented 
with limited number of values of array factor or radiation 
pattern, and the output presents the phase and amplitude step 
for the linear antenna array [10]-[11]. For faraday polarization 
rotation estimation, the input of RBF NN is latitude of the 

monitored place and day time value, and the output is the total 
electron content [12]. NN has been used for different types of 
antennas [13]-[15], and here we discuss antenna array 
synthesis and faraday polarization rotation estimation with 
RBF NN. 

3.  Results 

     Array of elements placed along one direction are presenting 
the irregular linear antenna array, with different mutual 
distance among the neighbouring elements and with different 
amplitudes and phases among the excitations. The array factor 
in this case has the form: 

                                     (1) 

                                    (2) 

     Where M+1 is the number of antenna elements, An are the 
amplitudes of excitations, β is the phase constant (β=2π/λ, λ is 
the wavelength), dn are the mutual distances,  is the space 
angle and αn are the phase differences of the excitations. Even 
for modest number of antenna elements the array factor 
determination requires complex calculations for what we need 
to use computer calculations. Different distributions of mutual 
distances or mutual excitations among the elements produce 
variety of radiation patterns (array factors). Antenna array 
synthesis presents the determination of the parameters of the 
antenna array for already required radiation pattern or array 
factor. 
     In our analyses first we assume unit and uniform amplitude 
distribution where the inter-element distances is constant, and 
where the synthesis will be consisted of the phase difference 
determination between the neighbouring antenna elements. For 
this antenna array synthesis we assume regular linear antenna 
array where the radiation pattern is determined by the number 
of antenna elements M, mutual distance of the elements d and 
the phase difference α between the two neighbouring elements.  
This simple structure will be a strong basis for further analyze 
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of irregular antenna arrays. The input of the NN is the 
radiation pattern vector and the output is the corresponding 
value of α for given number of antenna elements and mutual 
distance. 

The designing procedure for the RBE (Radial Basis with 
Exact solution) is outlined below. 

The matrix P could be organized in R element vectors F, 
which are presenting the radiation pattern in R points (Q 
vectors in total). 

We have two steps: 

 
1) Network designing 

   1) Form the input vectors {Fq, q=1,2, . . .,Q}. 

   2) Generate input/output pairs {Fq,αq}, where q=1,2, . . . ,Q. 

   3) Design the RBE. 

 2) Network testing (Generalization)  

  1) Form the vectors F’ for the testing input samples. 

  2) Present input vectors F’ to the RBE. 

  3) Get the output of the network.   

 

   In the next step we assume linear amplitude distribution 
with parameter A. Again the phase difference between two 
neighbouring antenna elements is α. It this case the array factor 
will be: 

                       (3) 

where 

                                  (4) 

This time the output NN layer will have two neurons, one 
giving the value of α and the other giving the value of A. 

The designing procedure for the RBE is outlined below. 

The matrix P could be organized in R element vectors F, 
which are presenting the radiation pattern in R points (Q 
vectors in total). 

We have two steps: 

1) Network designing 

   1) Form the input vectors {Fq, q=1,2, . . .,Q}. 

   2) Generate input/output pairs {Fq,tq}, where q=1,2, . . . ,Q, 
and t is two element vector containing  the α and A 
value. 

   3) Design the RBE. 

 2) Network testing (Generalization)  

  1) Form the vectors F’ for the testing input samples. 

  2) Present input vectors F’ to the RBE . 

  3) Get the output of the network, α and A. 

The main goal is to observe the influence of additional 
parameter in the NN and that is parameter A, to the 
performance of the network. That will give us information for 
further inclusion of other parameters or different amplitude 
distributions, which finally would lead us to irregular array 
synthesis. 
     First we may consider regular linear array with uniform 
amplitude distribution. Fig.3 presents the antenna array factor 
for 9 antenna elements and with excitation phase difference of 
-44 and 44. The mutual distance between the elements is half 
wavelength. The training samples were picked with angle step 
(Alfa Step) of α of 0.5, 1, 1.5, and 2, in the range (-
4545). The input samples for the array factor were for 
angle step of 0.25, 0.5, 1, and 2. The testing samples were 
picked with step of 0.05. The results for the mean error rate at 
the output of the NN are presented in Fig.4. 
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Fig.3 Array factor for M+1=9 and uniform amplitude distribution 

     Now we may consider linear amplitude distribution antenna 
array. Fig.5 presents the array factor for six antenna elements. 
For the experiment we fixed α=45 and we used training set 
for A=(01) with steps 0.005; 0.01; and 0.02. The array 
factor input samples were chosen for angle step of 1. The 
mutual element distance was one half wavelength. The mean 
error for A at the output of the RBE is presented on Fig. 6. 
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Fig.4 Mean error for M+1=9 and d=0.5λ  
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Fig.5 Array factor for M+1=6, unıform and linear amplitude distribution 
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Fig.6 Mean error for A=(01) and α=45 

     Some of the results using RBF NN for Faraday Polarization 
Rotation (FPR) are presented in Fig.7 and Fig.8. We my notice 
a low mean error values and good match between the referent 
values and RBF NN values. 

 

Fig. 7. Ionospheric FR angle of the P-SAR signal (f = 440 MHz) and L-SAR 
signal (f = 1250 MHz) obtained by FPR-RBF model  

 

Fig. 8. Ionospheric FR angle of the P-SAR signal (f = 440 MHz) and L-SAR 
signal (f = 1250 MHz) obtained by FPR-RBF model  

The FPR-RBF model was applied for FR angle estimation 
of the P-band SAR (f = 440 MHz) and L-band SAR (f = 1250 
MHz) signals which propagate through the ionosphere above 
the Mediterranean area. Ionosphere FR angle of the P-SAR 
and L-SAR signals in 24h winter period for latitude la (N) = 
35.5 and 39.5 obtained by FPR-RBF model are shown in 
Fig. 7 and Fig. 8 respectively. For each latitude with this 
model we generated the FR angle values for daytime period 
with resolution of 6 min which means 241 samples. The results 
gained with FPR-RBF model are compared to referent values 
on TEC (Total Electronic Content) values read from existing 
maps. We may observe a good match of the results gained with 
neural model with the referent values can be observed. The FR 
angle values of the P-SAR and L-SAR signals in 24 h summer 
period, obtained by FPR-RBF model, are shown in Fig. 9 and 
Fig. 10 for latitude la (N) = 35.5 and 39.5, respectively. The 
same resolution of 6 min which means 241 points is used. 
Again we compare the results gained with neural model with 
referent values gained from existing maps. We may observe a 
good match with the referent values for the summer as in the 
case of winter. All results are generated for B||avg = 26 T 
belonging to the field change range valid for the 
Mediterranean area. Bavg is the average Earth’s magnetic field 
intensity in T 
     The effect that influence the work on satellite 
communications systems especially for work of SAR systems 
in L and P band is Faraday Polarization Rotation of the EM 
wave in the ionosphere. That’s why of great importance is the 
estimation of the angle of Faraday rotation in ionosphere for 
prediction and error correction in work of these systems 
caused by FPR. That’s why the unavoidable task is to estimate 
the concentration of free electrons on a propagating path in 
ionosphere, or TEC value. Mainly we use empirical models of 
the vertical profile of the ionosphere to estimate TEC values 
today, that are gained based on large number of measured 
results gained with satellite systems or vertical sounding in 
longer time period. These models unavailable to ordinary users 
and are very complex. Alternative to these models based on 
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available measured data is to form neural network model for 
TEC values. It is proven that this model is easy to be realized 
and it can determine TEC values quickly based on space and 
time information of the signal propagation in the ionosphere. 
Previously shown results for used FPR_RBF neural model for 
FR angle estimation for winter and summer period in the 
Mediterrean region provide good evidence that the use of NNs 
to solve this problem is a good choice. The results also prove 
that neural network models are a good alternative for the 
expensive and hardware demanding numerical models but also 
for software for description of the ionosphere influence on EM 
propagating waves. This models are also good alternative for 
slow and rough estimation of manual reading of TEC values. 

 

 
 

Fig. 9. Ionospheric FR angle of the P-SAR signal (f = 440 MHz) and L-SAR 
signal (f = 1250 MHz) obtained by FPR-RBF model  

 

 

Fig. 10. Ionospheric FR angle of the P-SAR signal (f = 440 MHz) and L-SAR 
signal (f = 1250 MHz) obtained by FPR-RBF model  
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