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Abstract: The paper deals with the capacitance of cylindrical capacitor which consists of non­homogeneous di­
electric materials. The infinite long cylindrical surfaces of capacitor have uniform distributed electric charges
in axial direction, so that electrostatic boundary value problem which determines the electric field in the non­
homogeneous dielectric material is a two­dimensional boundary­value problem. The derivation of the bounding
formulae is based on the Cauchy­Schwarz inequality. Examples illustrate the applications of the derived upper
and lower bound formulae.
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1 Introduction
The paper deals with the capacitance of a cylindrical
capacitor whose generators are infinitely long. The
cylindrical capacitor consists of non­homogeneous
dielectric materials and it has uniformly distributed
electric charges in axial direction on its cylindrical
boundary surfaces so that the electrostatic boundary­
value problem what needs to be solved in order to get
the capacitance is a two­dimensional boundary­value
problem. The presented bounding formulae give the
bounds for capacitance of unit length of cylindrical
capacitor. To obtain upper and lower bounds for
the unit length of cylindrical capacitance the Cauchy­
Schwarz inequality relation and the equations of static
electric field are used.

The capacitance is the ability of a capacitor to store
electric charge per unit voltage across its inner and
outer conductor surfaces. The capacitance is a func­
tion depending only on the geometry of capacitor and
the permittivity of the dielectric materials between the
conductor surfaces of the capacitor. The exact (strict)
value of the capacitance is known only for capacitors
with very simple shapes, therefore, the principles and
the methods that can be used for creating lower and
upper bounds to the numerical value of capacitance
are important. The derivation of the upper and lower
bounds for the capacitance of cylindrical capacitor
with non­homogeneous dielectric materials is based
on the Cauchy­Schwarz inequality.

Bai and Lonngren [6] solved the spherical capaci­
tor at first analytically and then the obtained solution
was compared with an easily determined numerical
solution. The presented numerical solution is based
on the division of the spherical surface of capacitor
into a very large number of subareas. In paper by

Bartlett and Corle the potential distribution for paral­
lel plate capacitor was calculated using both the Love
integral equation method and the relaxation method
[7]. These two methods give the same result. A
system of integral equations for capacitor composed
of two discs of different radii is used to get the ca­
pacitance in [8]. The complete asymptotic form of
the capacitance matrix for large and small distances
was derived by Paffuti et al. [8]. Parr [9] dealt with
the determination of capacitance of the regular solids.
The author provided upper and lower bounds for the
Dirichlet integral in order to get the numerical bounds
for the capacitance of the five regular solids [9]. In
[10] Kammler gave error bounds for the elements of
capacitance matrix for a system of conductors. The
approximate solution which is used to derive error
bound satisfies the field equations of electricity and
only almost satisfies the corresponding boundary con­
ditions [10]. Wintle calculated improved upper and
lower bounds for the capacitance of a cube [11]. The
Kelvin inversion was combined with a random walk
method in [11]. A solution of Love’s integral equa­
tion which forms the base for the analysis of electro­
static field due to equal circular coaxial parallel plates
is considered in paper [12]. An explicit analytical so­
lution is obtained for the capacitance when the ratio of
distance of plates to radius of plates is greater than two
[12]. Sloggett et al. developed a highly accurate nu­
merical model to get the electric field between paral­
lel disc electrodes [13]. Simple analytical expression
for the fringing capacitance of parallel plate electrode
system of arbitrary shape is given in [13].

Paper by Nithin and Kittur [14] present a design
of spiral inductor for millimeter wave oscillator. A
set area limits for the optimum dimensions of spiral
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Figure 1: Hollow cylindrical body.

inductor is given in [14]. Arada [15] used a computer
simulation method to estimate how varying the dipol
electrical length affect to the performance of direc­
tion of arrival estimation under the mutual coupling
in uniform linear array of the dipol element.

2 Governing equations of
two­dimensional electrostatic field

Fig. 1 shows a two­dimensional domain A whose in­
ner boundary curve is ∂A1 and outer boundary curve
is ∂A2. The boundary curves ∂A1 and ∂A2 are con­
ductors with surface electric charges σ1 = σ1(s1),
σ2 = σ2(s2) where s1 and s2 are arc­lengths defined
on the boundary curves ∂A1 and ∂A2, respectively.
Since static electric problems are considered we have∮

∂A1

σ1(s1)ds1 +
∮

∂A2

σ2(s2)ds2 = 0. (1)

The permittivity of the dielectric material between the
closed curves ∂A1 and ∂A2 depends on the position
vector r = xex+yey. Here, x, y are Cartesian coordi­
nates of theOxyz Cartesian coordinate system where
z is the axial coordinate and ex, ey, ez are the unit vec­
tors in x, y and z directions (Fig. 1). To give the con­
cept of capacitor we define the following boundary­
value problem for the two­dimensional doubly con­
nected plane domain A = A ∪ ∂A1 ∪ ∂A2

∇ · (ε(r)∇U) = 0, r ∈ A, (2)

U = 0, r ∈ ∂A2,

U = U1 ̸= 0, r ∈ ∂A1.
(3)

In Eqs. (2), (3) U = U(r) is the electric potential,
∇ is the two­dimensional del operator [1, 2, 3, 5]. In
Cartesian coordinates

∇ =
∂

∂x
ex +

∂

∂y
ey, (4)

and in cylindrical coordinates

r =
√
x2 + y2, φ = arctan

y

x
,

∇ =
∂

∂r
er +

1

r

∂

∂φ
eφ,

(5)
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Figure 2: Cylindrical coordinates.

where er(φ) and eφ(φ) are the unit vectors of the
cylindrical coordinate system Orφ (Fig. 2). The dot
between two vectors denotes their scalar (inner) prod­
uct and ε is the dielectric constant. Eq. (2) in detailed
form is as follows

ε(r)△U +∇ε · ∇U = 0, r ∈ A. (6)

Here

△ = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
=

=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

(7)

is the Laplace’s operator. We introduce a new func­
tion which is defined as

U(r) = U1u(r), r ∈ A ∪ ∂A. (8)

It is evident that u = u(r) is the solution of the fol­
lowing boundary­value problem [1, 2, 3, 4, 5]

∇ · (ε(r)∇u) = 0, r ∈ A, (9)

u(r) = 1, r ∈ ∂A1,

u(r) = 0, r ∈ ∂A2.
(10)

Here we note that u = u(r) is unit free. The govern­
ing equations of static electric fields which are used
[1, 2, 3, 4, 5]

E = −∇U = −U1∇u,

D = ε(r)E = −U1ε(r)∇u,
(11)

σ1 = D ·m = −U1ε(r)m · ∇u, r ∈ ∂A1, (12)
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σ2 = D ·m = −U1ε(r)m · ∇u, r ∈ ∂A2, (13)

wherem is the inner normal vector of boundary curve
∂A = ∂A1 ∪ ∂A2 (Fig. 2). The whole charge on the
conductor boundary curves ∂A1 and ∂A2 are (Fig. 2)

Q1 = −U1

∮
∂A1

ε(r)m · ∇uds1 =

= U1

∮
∂A1

ε(r)n · ∇uds1 =

= U1

∮
∂A1

ε(r)
∂u

∂n
ds, n = −m,

(14)

Q2 = −U1

∮
∂A2

ε(r)m · ∇uds2 =

= U1

∮
∂A2

ε(r)n · ∇uds2 =

= U1

∮
∂A2

ε(r)
∂u

∂n
ds, n = −m.

(15)

It is very easy to show that

Q1 +Q2 = 0, (16)

since∫
A

∇ · (ε(r)∇u) dA =

∮
∂A

ε(r)
∂u

∂n
ds =

=

∮
∂A1

ε(r)
∂u

∂n
ds1 +

∮
∂A2

ε(r)
∂u

∂n
ds2 = 0.

(17)

From Eq. (9) it follows that∫
A

u∇ · (ε(r) · ∇u) dA =

=

∮
∂A1

ε(r)
∂u

∂n
ds1 −

∫
A

ε(r)|∇u|2dA = 0
(18)

that is ∫
A

ε(r)|∇u|2dA =

∮
∂A1

ε(r)
∂u

∂n
ds1. (19)

The capacity of the two­dimensional capacitor with
non­homogeneous dielectric material is defined as

C =
Q1

U1
=

∮
∂A1

ε(r)
∂u

∂n
ds1. (20)

From Eq. (19) and Eq. (20) we obtain

C =

∫
A

ε(r)|∇u|2dA. (21)

3 Bounds for the capacity
3.1 Upper bound
Theorem 1. If any function F = F (r) which is
continuously differentiable in the plane domain A =
A ∪ ∂A satisfies the boundary conditions

F (r) = 1, r ∈ ∂A1, F (r) = 0, r ∈ ∂A2,
(22)

then the inequality relatoin

C ≤
∫
A

ε(r)|∇F |2dA (23)

is true.
Proof. The proof of upper bound formula for C is
based on the following Cauchy­Schwarz inequality
relation ∫

A

ε(r)∇F · ∇udA

2

≤

≤
∫
A

ε(r)|∇F |2dA
∫
A

ε(r)|∇u|2dA.

(24)

A simple computation gives∫
A

ε(r)∇F · ∇udA =

=

∫
A

∇ · (Fε(r)∇u)dA−
∫
A

F∇ · (ε(r)∇u)dA =

=

∮
∂A1

ε(r)
∂u

∂n
ds =

∫
A

ε(r)|∇u|2dA

(25)
according to Eqs. (20) and (21). The combination of
the inequality relation (24) with Eq. (25) gives the up­
per bound formula (23). A brief investigation based
on Cauchy­Schwarz inequality (24) shows that equal­
ity in relation (23) is valid only if F (r) ≡ u(r).

3.2 Lower bound
Theorem 2. Let q = q(r) be a two­dimensional vec­
tor field defined in the plane domain A = A ∪ ∂A.
The identically non­zero vector field q = q(r) satis­
fies the following equation

∇ · (ε(r)q) = 0, r ∈ A. (26)
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In this case we have

C ≥

( ∮
∂A1

ε(r)q · nds1

)2

∫
A

ε(r)q2dA
. (27)

Proof. The validity of the lower bound formula (27)
follows from the following Cauchy­Schwarz inequal­
ity ∫

A

ε(r)q · ∇udA

2

≤

≤
∫
A

ε(r)q2dA
∫
A

ε(r)|∇u|2dA.

(28)

A simple computation yields the result∫
A

ε(r)q · ∇udA =

∫
A

∇ · (uε(r)q) dA−

−
∫
A

u∇ · (ε(r)q) dA =

∮
∂A1

ε(r)q · nds1.
(29)

Substitution Eq. (29) into the inequality relation (28)
provides

C =

∫
A

ε(r)|∇u|2dA ≥

( ∮
∂A1

ε(r)q · nds1

)2

∫
A

ε(r)q2dA
,

(30)
which is the lower bound formula (27). Equality in
(27) is reached only if

q = λ∇u, r ∈ A ∪ ∂A, (31)

where λ is a real number which is different from zero,
otherwise, it is an arbitrary real number. The validity
of this statement follows from Eq. (19).
Theorem 3. Let f = f(r) be non­identically constant
function in A = A ∪ ∂A which satisfies the Laplace
equation in A

△f = 0, r ∈ A. (32)

The following lower bound for the capacitance C is
valid

C ≥

( ∮
∂A1

∂f
∂nds1

)2

∫
A

|∇f |2
ε(r) dA

. (33)

Proof. The proof of the lower bound (33) can be ob­
tained from inequality relation (30) by the following
substitution

q =
∇f

ε(r)
, r ∈ A ∪ ∂A. (34)

4 Numerical examples
4.1 Example
Let

r = Ri(φ), 0 ≤ φ ≤ 2π, (i = 1, 2) (35)

be the equation of the boundary curve ∂Ai (i = 1, 2)
which is shown in Fig. 2. To obtain the upper bound
for the capacitance we can use the following functions
which satisfy the boundary condition (22)

F (r, φ) =
ln R2(φ)

r

ln R2(φ)
R1(φ)

, (36)

F (r, φ) =
r −R2(φ)

R1(φ)−R2(φ)
. (37)

In order we can use the lower bound formula (33) we
consider the next harmonic function

f(r, φ) = ln r. (38)

For this function we have

|∇f |2 = 1

r2
, (39)

∂f

∂n
= ∇f · n =

1

r
er · n. (40)

On the boundary curve ∂A1

n =
R1(φ)er − dR1

dφ eφ√
R2

1(φ) +
(
dR1

dφ

)2 , (41)

ds =

√
R2

1(φ) +

(
dR1

dφ

)2

dφ, (42)∮
∂A1

∂f

∂n
ds = 2π, (43)

∫
A

|∇f |2

ε(r)
dA =

2π∫
0

R2(φ)∫
R1(φ)

dr
rε(r)

dφ. (44)

The lower bound formula for the function (38) has the
following form

C ≥ 4π2

2π∫
0

R2(φ)∫
R1(φ)

dr
rε(r)dφ

(45)
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Figure 3: A plane domain bounded by eccentrically
located circles.

4.2 Example
The formulae of Example 4.1 will be used to estimate
capacitance of the two­dimensional capacitor shown
in Fig. 3. The boundary curves are circles whose cen­
tres do not coincide (Fig. 3). The following data are
used in the numerical computation: a = 0.018 m,
b = 0.03 m c = 0.0025 m, ε0 = 8.856 × 10−12

C/mV, k = 3.5, ε(r) = kε0r. In this example

R1(φ) = a,

R2(φ) = c cosφ+
√

c2 cos2 φ+ b2 − c2.
(46)

Application of bounding formula (23) for the function
(36) gives

C ≤ 9.108854951× 10−12 F. (47)

In the present case from the lower bound formula (45)
we obtain

C ≥ 8.83375633× 10−12 F. (48)

For homogeneous capacitor when ε(r) = ε0 the
above used bounding formulae provide the follow­
ing results assuming that a = 0.018 m, b = 0.03 m,
c = 0.0025 m

1.1001154× 10−10 F < C < 1.1484411× 10−10 F.
(49)

The exact value of the capacitance in this case [5]

C = 1.131134773× 10−10 F. (50)

4.3 Example
In this example we consider a plane capacitor whose
boundary curves are confocal ellipses. To develop the
estimation formulae it is necessary to introduce an or­
thogonal curvilinear coordinate system. The defini­
tion of the curvilinear coordinates ρ, α is given by the

F1

∂A2

∂A1

F2

ρ = ρ2

ρ = ρ1
x

y

A

Figure 4: Capacitor bounded by two confocal ellipses.

following equations

x =

(
ρ+

c2

4ρ

)
cosφ, y =

(
ρ− c2

4ρ

)
sinφ,

ρ1 ≤ ρ ≤ ρ2, 0 ≤ φ ≤ 2π.
(51)

The capacitor with confocal elliptical boundary
curves is shown in Fig. 4. From Eq. (51) it follows
that the semi axes of the boundary ellipses are

a1 =

√
ρ21 +

c2

2
+

c4

16ρ21
,

b1 =

√
ρ21 −

c2

2
+

c4

ρ21
,

(52)

a2 =

√
ρ22 +

c2

2
+

c4

16ρ22
,

b2 =

√
ρ22 −

c2

2
+

c4

ρ22
,

(53)

It is evident (Fig. 4)

a21 − b21 = a22 − b22 = c2. (54)

To obtain a lower bound for the capacitance we use
next function

F = F (ρ), ρ1 ≤ ρ ≤ ρ2, 0 ≤ φ ≤ 2π. (55)

The test function F = F (ρ) satisfies the boundary
conditions

F (ρ1) = 1, F (ρ2) = 0. (56)

Substitution of Eq. (55) into the upper bound formula
(23) yields

C ≤
∫
A

ε(ρ)|∇F |2dA, (57)
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assuming that ε depends only on the curvilinear coor­
dinates ρ. The area element in the (ρ, α) curvilinear
coordinate system is as follows

dA = HρHαdρdα, (58)

where Hρ and Hα are the Lamé coefficients

H2
ρ =

(
∂x

∂ρ

)2

+

(
∂y

∂ρ

)2

,

H2
α =

(
∂x

∂α

)2

+

(
∂y

∂α

)2

= ρ2H2
ρ .

(59)

In the curvilinear coordinates

∇F =
1

Hρ

∂F

∂ρ
eρ +

1

Hα

∂F

∂α
eα, (60)

where eρ and eα are the unit vectors of the curvilinear
coordinate system (ρ, α) that is

eρ =
1∣∣∣ ∂r∂ρ ∣∣∣

∂r
∂ρ

=
1

Hρ

∂r
∂ρ

, (61)

eα =
1∣∣ ∂r
∂α

∣∣ ∂r∂α =
1

Hα

∂r
∂α

. (62)

In present problem we have

|∇F |2 = 1

H2
ρ

(
∂F

∂ρ

)2

. (63)

Substitution of Eqs. (58), (63) into the upper bound
inequality (57) gives

C ≤
2π∫

α=0

ρ2∫
ρ=ρ1

ρε(ρ)

(
∂F

∂ρ

)2

dρdα =

= 2π

ρ2∫
ρ1

ρε(ρ)

(
∂F

∂ρ

)2

dρ.

(64)

By the application of the known results of variational
calculus [16, 17] it can be pointed out that the upper
bound (64) is the sharpest in the case

F (ρ) = 1−

ρ∫
ρ1

dλ
λε(λ)

ρ2∫
ρ1

dρ
ρε(ρ)

, (65)

The substitution of the expression F = F (ρ) given
by Eq. (65) into the upper bound formula (64) gives

C ≤ 2π
ρ2∫
ρ1

dρ
ρε(ρ)

. (66)

It is known the Laplace operator has the form in or­
thogonal curvilinear coordinate system (α, ρ)

△P =
1

ρH2
ρ

[
∂

∂ρ

(
ρ
∂P

∂ρ

)
+

∂

∂α

(
1

ρ

∂P

∂α

)]
, (67)

where P = P (α, ρ) is a given function of the curvi­
linear coordinates α and ρ. Using Eq. (67) it can be
shown that

f(ρ) = ln ρ, 0 < ρ1 ≤ ρ ≤ ρ2 (68)

is a regular harmonic function in the doubly con­
nected plane domain A. Our aim is to give a lower
bound for the capacitance by the use of lower bound
formula (33). A simple computation gives

|∇f |2 =
(

1

ρHρ

)2

, (69)

∫
A

|∇f |2

ε(ρ)
dA =

2π∫
α=0

ρ2∫
ρ=ρ1

1

ρ2H2
ρε(ρ)

ρH2
ρdρdα =

= 2π

ρ2∫
ρ1

dρ
ρε(ρ)

,

(70)(
∂f

∂n

)
ρ1

=

(
1

Hρ

1

ρ

)
ρ=ρ1

, (71)

ds1 = Hαdα = (ρHρ)ρ=ρ1
dα. (72)

From Eqs. (71) and (72) we obtain∮
∂A1

∂f

∂n
ds1 = 2π. (73)

Substitution of equation (70), (73) into the lower
bound formula (33) yields the result

C ≥ 2π
ρ2∫
ρ1

dρ
ρε(ρ)

. (74)

It follows from the equality of the upper bound (66)
and lower bound (74) that the exact value of the
capacitance of the two­dimensional capacitor in the
present problem is

C =
2π

ρ2∫
ρ1

dρ
ρε(ρ)

. (75)
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Figure 5: The graph of the capacitance as a function 
of power index n for −4 ≤ n ≤ 4.

We illustrate the application of formula (75) for func­
tionally graded material when the permittivity of the 
non­homogeneous dielectric material is power law 
graded as function of ρ
ε(ρ, α) = k1ε0 + ε0 (k2 − k1)

(
ρ− ρ1
ρ2 − ρ1

)n

. (76)

In Eq. (76), k1 and k2 are the relative permittivity of
the components material of the composite dielectric
material, n is the power index. The following data
will be used in the numerical example: ρ1 = 0.5 m,
ρ2 = 0.8 m, c = 0.25 m, ε0 = 8.856 × 10−12 F/m,
k1 = 2, k2 = 4. Fig. 5 illustrates the capacitance as a
function of the power index n for −4 ≤ n ≤ 4.

5 Conclusions
Upper and lower bounds for the capacitance of two­
dimensional capacitor are proven by the application
of Cauchy­Schwarz inequality. The considered cylin­
drical capacitor consists of non­homogeneous dielec­
tric materials. The derived upper and lower bound
formulae of capacitance can be used to check the re­
sults of numerical computations obtained by finite
element method, boundary element method and by
other numerical methods.
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