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Abstract: - The paper proposes the first harmonic linearization concept leading to a novel graphical technique 

developed to predict limit cycles (LC) in 3×3 systems with memory-type nonlinearities. This approach leverages 

computer graphics for ease of visualization and analysis, making the method more accessible and lucid. Under 
the exhibition of LC, it has been attempted to quench such oscillations by adopting the signal stabilization method 

with deterministic/random signals. In the process of signal stabilization, tracking of synchronization (alignment 

of oscillations) and desynchronization (loss of alignment) with deterministic and random signals has been 
explored. The propositions of the work have been illustrated through an example with backlash type nonlinearities 

that are commonly present in physical systems on several occasions and in particular in the power system and 

control system. The proposed graphical method has been validated by digital simulation by means of MATLAB 
code and with the usage of SIMULINK ToolBox of MATLAB. The developed graphical method in the prediction 

of LC in 3x3 systems with backlash-type nonlinearities is a novel and significant innovation, making the complex 

analysis more accessible and interpretable. The work extends to practical applications by proposing ways to 

stabilize limit cycles using both deterministic and random signals, and tracking synchronization / 
desynchronization. 
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1 Introduction 
The significance of prediction of Limit cycles (LC) 
in Multivariable Nonlinear system are widely felt for 

six or seven decades [1 - 38]. Quenching of such limit 

cycling oscillation using the method of signal 
stabilization has gained attention in the beginning of 

1960s, [39, 40] and further discussed in [26, 41, 42, 

43, 44, 45]. The signal stabilization by high 

frequency signals either deterministic or random for 
multivariable systems having memory type 

nonlinearities is a years old problem. In [46], it has 

been narrated the process of signal stabilization with 
determination of stability boundary, synchronization 

and desynchronization with high frequency signal for 

2×2 memory type nonlinear systems. Backlash (a 
common memory-type nonlinearity) often degrades 

speed and position control in various applications, 

including robotics, automation, and load frequency 

control by Governors in multi area power systems 
due to exhibition of LC. This has been vividly 

discussed for multivariable systems [31, 35, 43, 46, 
47, 48, 49, 50, 51, 52, 53].  

In the recent literature multidisciplinary 

applications have been discussed where LC has been 
addressed. In [55], three possible scenarios such as, 

stable LC, chaotic behavior arising in the system's 

flow and thermal dynamics of the system have been 
discussed. In [56], a cell model has been formulated 

for the limit cycles. In [57], the nonlinear system's 

dynamic behavior, switching between a stable 

equilibrium and a LC, has been demonstrated. In 
[58], LC has been addressed in an auto catalytic 

system using Hop bifurcation. In [59] the LC has 

been predicted and observed in Bio-Oscillators with 
positive and negative feedback. In [60] an empirical 

dynamic modelling has been developed in natural 

systems to present/predict a stable limit cycle. 

However, a little literature addresses the analysis 
of Limit cycling oscillations in 3×3 nonlinear 

multivariable systems in the past two decades, only 

[1, 34, 36, 37, 38]. It was felt an important concern 
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among the researchers to quench the LC in the case 

of 3×3 nonlinear systems having memory type 

nonlinearities. In the possible existence of a limit 
cycle, quenching of oscillations is done by high 

frequency dither signals. Signal stabilizations using 

deterministic signals with tracking of 
Synchronization and Desynchronization has been 

thoroughly investigated in 2×2 memory type 

nonlinear systems [46]. An attempt has been made in 
the present work in tracking the amplitude of 

stabilizing signal for complete extinction of the limit 

cycling oscillations during the process of 

Synchronization and Desynchronization in 3×3 
nonlinear systems having Backlash type nonlinearity 

(memory type). The method uses the describing 

function (Harmonic Balance) and presents the results 
from digital simulations. Where, both deterministic 

and random signals are used as stabilizing signals. 

The proposed work is presented in the following 
sequence, section 2 considers a graphical technique 

for the investigation of LC in 3×3 systems with 

memory type nonlinearity following the procedure as 

depicted in [1]. Section 3 describes the method of 
digital simulation for the validation of the graphical 

method of proposition. Section 4 deals with the 

Signal Stabilization with the special attention for 
tracking (i) the amplitude of deterministic high 

frequency sinusoidal signal is varied at a fixed 

frequency and (ii) the mean value of random 

(Gaussian) signal is varied at a fixed value of 
variance. This concept has been demonstrated 

through a digital simulation of a system with 

backlash nonlinearity, utilizing the 
MATLAB/Simulink toolbox. 

 

 

2 Investigation of LC in 3×3 system 

through a memory type Nonlinearity 
 

 

2.1 Graphical Method 
Considering the complexity and much involved 
mathematical analysis a graphical technique [1] is 

developed for investigation of LC in 3×3 nonlinear 

systems. Consider a system having three inter 
connected systems as given in Figure 1. In the system 

N1, N2 & N3 are 3 nonlinear elements with Backlash 

characteristics as shown in Figure 2 (a), (b), (c) 
respectively. G1(s), G2(s) and G3(s) are transfer 

functions of three linear elements.  

The Laplace operator s is replaced by jω in 

frequency response analysis because this analysis 
focuses on steady-state outputs resulting from 

sinusoidal inputs. 

 
Figure. 1: A class of 3×3 multivariable nonlinear 
systems 

 

The graphical method based on a normalized 
phasor diagram [46] has been developed for 

investigation of LC in a system that is illustrated 

through an Example. With the intention of reducing 

complexity of the method the system is presumed to 
show LC primarily at a single frequency. In Example 

with memory type nonlinearity (Backlash) 

contributes additional phase angle to the loop angle 
of G1 (jω), G2 (jω) and G3 (jω) of the subsystems S1, 

S2 and S3. By substituting the nonlinear elements with 

their own Describing Functions (DFs) on basis of 
harmonic linearization, the exhibition of LC, is 

possible if the following three conditions are satisfied 

[1]. For memory type nonlinearities: 

(i) The Phase of the Loop should be  
𝜃 = 180𝑜 = ∠𝐺1 + ∠𝐺2 + ∠𝐺3 + ∠𝑁1 + ∠𝑁2 + ∠𝑁3 
where phase angle of G results from jω and phase 

angle of N results from phase shift of respective DFs. 

(ii)  The Gain condition: 
𝐶1

𝑅1
×

𝐶2

𝑅2
×

𝐶3

𝑅3
= 1: where 

𝐶1

𝑅1
=

𝐺1(𝑗𝜔)𝑁1(𝑋𝑚1, 𝜔)

1 + 𝐺1(𝑗𝜔)𝑁1(𝑋𝑚1, 𝜔)
 

𝐶2

𝑅2
=

𝐺2(𝑗𝜔)𝑁2(𝑋𝑚2, 𝜔)

1 + 𝐺2(𝑗𝜔)𝑁2(𝑋𝑚2, 𝜔)
 

𝐶3

𝑅3
=

𝐺3(𝑗𝜔)𝑁3(𝑋𝑚3, 𝜔)

1 + 𝐺3(𝑗𝜔)𝑁3(𝑋𝑚3, 𝜔)
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Figure 2: Input and output characteristics of 
nonlinear elements, N1, N2 and N3 

(iii) The Amplitude Ratio condition: 
𝑋1

𝑋2
=

𝑉1

𝑉2
;

𝑋2

𝑋3
=

𝑉2

𝑉3
; 

𝑋3

𝑋1
=

𝑉3

𝑉1
 where 

𝑋1 = 𝑋𝑚1; 𝑋2 = 𝑋𝑚2; 𝑋3 = 𝑋𝑚3 
and 

𝑉1: Eigen Vector corresponds to Eigen Value 𝜆1 of A 

(system matrix) 

𝑉2: Eigen Vector corresponds to Eigen Value 𝜆2 of A 

(system matrix) 

𝑉3: Eigen Vector corresponds to Eigen Value 𝜆3 of A 

(system matrix) 

2.2 An Example for Illustration of the 

Graphical Method in the prediction of LC 

Consider the system of Figure. 1 with G1(s) =  
2

𝑠(𝑠+1)2; 

G2(s)=
1

𝑠(𝑠+4)
; G3(s)=

1

𝑠(𝑠+2)
 and the three nonlinear 

elements with backlash characteristics using 
b1=b2=b3=1.0, and slopes K1=1.2, K2=K3=1.4 are 

stated in Figure.2.(a), 2(b) and 2(c). 

DFs as mentioned above Backlash Nonlinearities are 

expressed as:  

N(Xm,)=  |
𝑌

𝑋𝑚
< |    ………………  (1), [1] 

or 

N(Xm,)=

𝐾𝑋𝑚

𝜋
 √(

𝜋

2
 + 𝛽+

1

2
 𝑠𝑖𝑛2𝛽)2+cos4 𝛽

𝑋𝑚
∗ 

∠- tan−1 (
cos2 𝛽

𝜋

2
+𝛽1+

1

2
𝑠𝑖𝑛2 𝛽

)          

or  

N(𝑋𝑚,) =  {
𝐾

𝜋
√(

𝜋

2
+ 𝛽 +

1

2
𝑠𝑖𝑛2 𝛽)2 + cos4 𝛽} 

∠ − tan−1 (
cos2 𝛽

𝜋

2
+𝛽+

1

2
𝑠𝑖𝑛2 𝛽

)    for   X m >  
𝑏

2
 ⋯   ⋯ (2) 

                     = 0    𝑓𝑜𝑟 𝑋𝑚 <
𝑏

2
 

 and 𝑁1(Xm,)=
𝐾1

𝜋
√(

𝜋

2
+ 𝛽1 +

1

2
𝑠𝑖𝑛2 𝛽1)2 + cos4 𝛽1  

… (3)  and 

N2 (Xm2,)=
𝐾2

𝜋
√(

𝜋

2
+ 𝛽2 +

1

2
𝑠𝑖𝑛2 𝛽2)2 + cos4 𝛽2  

… (4)  and 

N3(Xm3,) = 
𝐾3

𝜋
 √(

𝜋

2
+ 𝛽3 +

1

2
𝑠𝑖𝑛2 𝛽3)2 + cos4 𝛽3   

… (5) 

The derivative of the DF comes out to be: 

𝑁1΄(𝑋𝑚1 , 𝜔) =
𝐾1

𝜋
×

1

√(
𝜋

2
+𝛽1+1

2⁄ sin 2 𝛽1)2+𝑐𝑜𝑠4𝛽1

× (2 × (
𝜋

2
+

𝛽1 +
1

2
sin 2 𝛽1) + (1 + cos 2𝛽1) + 2 × ( cos 2𝛽1 + 1) ×

(−2𝑠𝑖𝑛2 𝛽1)) ……     (6) 

𝑓1(𝑋𝑚1) =  
𝐾1

𝜋
√(

𝜋

2
+ 𝛽1 + 1

2⁄ sin 2 𝛽1)2 + 𝑐𝑜𝑠4𝛽1 − 𝑁1(𝑋𝑚1)                            

      (7) 
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𝑓1΄(𝑋𝑚1) =
𝐾1

𝜋
×

1

√(
𝜋

2
+𝛽1+1

2⁄ sin 2 𝛽1)2+𝑐𝑜𝑠4𝛽1

× (2 × (
𝜋

2
+ 𝛽1 +

1

2
sin 2 𝛽1) + (1 + cos 2𝛽1) + 2 × ( cos 2𝛽1 + 1) ×

(−2𝑠𝑖𝑛2 𝛽1)) 𝑁1΄(𝑋𝑚1)            (8) 

Again,    𝑁2(𝑋𝑚2 , 𝜔) =
𝐾2

𝜋
√(

𝜋

2
+ 𝛽2 + 1

2⁄ sin 2 𝛽2)2 + 𝑐𝑜𝑠4𝛽2                                  

      (9) 

The derivative of the DF comes out to be: 

𝑁2΄(𝑋𝑚2 , 𝜔) =
𝐾2

𝜋
×

1

√(
𝜋

2
+𝛽2+1

2⁄ sin 2 𝛽2)2+𝑐𝑜𝑠4𝛽2

× (2 × (
𝜋

2
+

𝛽2 +
1

2
sin 2 𝛽2) + (1 + cos 2𝛽2) + 2 × ( cos 2𝛽2 + 1) ×

(−2𝑠𝑖𝑛2 𝛽2))      (10) 

𝑓2(𝑋𝑚2) =  
𝐾2

𝜋
√(

𝜋

2
+ 𝛽2 + 1

2⁄ sin 2 𝛽2)2 + 𝑐𝑜𝑠4𝛽2 − 𝑁2(𝑋𝑚2)                         

 (11) 

𝑓2΄(𝑋𝑚2) =
𝐾1

𝜋
×

1

√(
𝜋

2
+𝛽2+1

2⁄ sin 2 𝛽2)2+𝑐𝑜𝑠4𝛽2

× (2 (
𝜋

2
+ 𝛽2 +

1

2
sin 2 𝛽2) + (1 + cos 2𝛽2) +  2( cos 2𝛽2 + 1) ×

(−2𝑠𝑖𝑛2 𝛽2)) − 𝑁1΄(𝑋𝑚1)           (12) 

Because the relationships between N1 and X1, N2 and 

X2, and N3 and X3 are implicit (or transcendental, or 
based on memory), the third of the three alternative 

procedures, [1], has to be adopted for obtaining the 

solution. Eqn. (7); Eqn. (9) and Eqn. (11) contain 

absolute values of 𝑁1; 𝑁2 and 𝑁3 respectively. At a 

fixed value of  𝜔 , 𝑁1, 𝑁2 and 𝑁3 are constants. The 
𝑋2

𝑋1
 and 

𝑋3

𝑋1
 ratios are determined from and Newton 

Raphson (N R) method which are  compared with 

that of  
𝑋2

𝑋1
 and 

𝑋3

𝑋1
 ratio obtained from graphical plot 

and at 𝜔 = 0.57 (c f Table. 1 a) they match and 

confirm the existence of a limit cycle. 

The Newton-Raphson (NR) method, when applied to 

solve Equations (3), (4), and (5), disregards phase 

angles during iteration. However, these angles are 
subsequently incorporated into the loop angles, as 

shown in Equations (13), (14), and (15). However, 

for every iteration step, the phase angle condition (cf 

Eqn. (i): phase 𝜃 = 180𝑜 = ∠𝐺1 + ∠𝐺2 + ∠𝐺3 +
∠𝑁1 + ∠𝑁2 + ∠𝑁3: Three combinations are used to 

create the normalized phase diagrams, for example: 

Combination 1: Subsystems S1, S2 & S3; C1 positive, 
C2 negative, C3 positive, shown in Figure 3(a).  

Combination 2: Subsystems S2, S3 & S1: C1 positive, 

C2 positive, C3 negative, shown in Figure 3(b). 
Combination 3: Subsystems S1, S3 & S2: C1 negative, 

C2 positive, C3 positive, shown in Figure 3(c). 

Figure 3(a) represents normalised phase diagram 

with C1, C2 and C3 for combination 1, C1 positive, C2 
negative, C3 positive. 

Table 1: shows the r (radius), θ𝐿1 , θ𝐿2 , θ𝐿3 , , and 

the crossing point of the state lines and the circle for 

combinations 1, 2 and 3 (see Example). It may be 

noted that Table 1(a): contain the values of  
Xm2

Xm1
 = 

Xm3

Xm1
 for different values of  using NR method as 

well as from the graphical plots of Normalised Phase 

Diagrams. When 
Xm2

Xm1
 both are matched equal, 

confirms the LC with the corresponding 

frequency 𝜃𝐿1=𝜃𝑁1(𝑋𝑚1,) + 𝜃𝐺1, 

𝜃𝐿2=𝜃𝑁2(𝑋𝑚2,) + 𝜃𝐺2, 𝜃𝐿3=𝜃𝑁3(𝑋𝑚3,) +

𝜃𝐺3, 𝑟1 = 
1

2 𝑠𝑖𝑛 𝜃𝐿1
  and Centre C(

1

2
) −

1

2 𝑡𝑎𝑛 𝜃𝐿1
 for 

combination 1: 

𝜃𝐿1
= [−𝑡𝑎𝑛−1 (

𝑐𝑜𝑠2𝛽1
𝜋

2
+𝛽1+

1

2
𝑠𝑖𝑛2𝛽1

) −
𝜋

2
− 2𝑡𝑎𝑛−1𝜔],  

𝛽1 =  𝑠𝑖𝑛−1(1 −
𝑏1

𝑋𝑚1
);  (13) 

; 𝜃𝐿2
= [−𝑡𝑎𝑛−1 (

𝑐𝑜𝑠2𝛽2
𝜋

2
+𝛽2+

1

2
𝑠𝑖𝑛2𝛽2

) −
𝜋

2
− 𝑡𝑎𝑛−1 𝜔

4
],     

𝛽2 =  𝑠𝑖𝑛−1(1 −
𝑏2

𝑋𝑚2
)     (14) 

𝜃𝐿3
= [−𝑡𝑎𝑛−1 (

𝑐𝑜𝑠2𝛽3
𝜋

2
+𝛽3+

1

2
𝑠𝑖𝑛2𝛽3

) −
𝜋

2
− 𝑡𝑎𝑛−1 𝜔

2
],       

𝛽3 =  𝑠𝑖𝑛−1(1 −
𝑏3

𝑋𝑚3
)     (15) 

For subsystem (𝑠1): 𝜃𝐿1
 = 𝜃𝑁1(𝑋𝑚1,𝜔)+ 𝜃𝐺1(𝑗𝜔) 

Similarly, for subsystem (𝑠2):  𝜃𝐿2
=𝜃𝑁2(𝑋𝑚2,𝜔)+ 

𝜃𝐺2(𝑗𝜔) 

for subsystem (𝑠3): 𝜃𝐿3
 = 𝜃𝑁3(𝑋𝑚3,𝜔)+ 𝜃𝐺3(𝑗𝜔) 

In the light of the normalized phase diagrams, [46], 

for 3×3 systems, the limit cycling condition are 
drawn with 3 combinations shown in Figure 3(a), (b), 

(c): 

 

Figure 3 (a): Normalized phase diagram 

(combination 1: C1 positive, C2 negative, C3 

positive). 
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Figure 3 (b): Normalized phase diagram for 

combination 2 (C1 positive, C2 positive, C3 negative). 

 

 

Figure 3 (c): Normalized phase diagram for 

combination 2 (C1 negative, C2 positive, C3 positive). 

Table 1 (a): Shows , N1 , N2 , N3, Xm1, Xm2, Xm3,  

𝜃𝐿1, 𝜃𝐿2, 𝜃𝐿3 , r (radius), and centre of the circle for 

combination 1 for the example  (Backlash).  

𝑋2

𝑋1
 = 

𝐴𝐷′

𝐵𝐷′
 from graphical plot ……………… (16) 

𝑋𝑚2

𝑋𝑚1
= 

𝑋2

𝑋1
 from N.R. method i.e. from Table 6 (a) (17) 

𝑋3

𝑋1
=

𝐵′𝐷′

𝐵𝐷′
 from graphical plot ………………… (18) 

𝑋𝑚3

𝑋𝑚1
=

𝑋3

𝑋1
 from N.R. method i.e. from Table1(a) …(19) 

Table 1b: Shows r (radius), and centre of the circle 

for combination 1 for example (Backlash), Xm2/Xm1 
= AD́/BD́ (from plot), Xm2/Xm1 (from Table), X3 / X1 

= B́ D́ / BD́ 

 

3 Digital Simulation 

 
3.1. Numerical problems  

 
The Example is revisited: A 3×3 system presented in 

Figure 1 has 3 nonlinear elements as given in Figure 
2 correspondingly and 3 linear transfer functions are. 

𝐺1(𝑠) =
2

𝑠(𝑠 + 1)2
 ; 𝐺2(𝑠) =

2

𝑠(𝑠 + 4)
 𝑎𝑛𝑑 𝐺3(𝑠) =

1

𝑠(𝑠 + 2)
 

Partial Fraction Expansion of G1(s), G2(s) and G3(s):  

𝐺1(𝑠) =
𝐴

𝑠
+

𝐵

𝑠 + 1
+

𝐶

(𝑠 + 1)2
=

𝐴 (𝑠 + 1)2 + 𝐵𝑠(𝑠 + 1) + 𝐶𝑠

𝑠(𝑠 + 1)2
 

𝑂𝑟
   s2(A + B) + s (2A + B + C) + A

s (s + 1)2
=

2

s(s + 1)2
 

Or A+B=0, A=2,: 2A+B+C=0, B=-A =-2,: C=-2A-B=-4+2=-2 

Hence G1(s) =
2

s
−

2

s + 1
−

2

(s + 1)2
∶

2

s
,

−2

s + 1
,

−2

s + 1
(

1

s + 1
) 

𝐺2(𝑠) =
1

𝑠(𝑠 + 4)
=

𝐴

𝑠
+

𝐵

(𝑠 + 4)
=

𝐴(𝑠 + 4) + 𝐵𝑠

𝑠(𝑠 + 4)

=
4𝐴 + 𝑠(𝐴 + 𝐵)

𝑠(𝑠 + 4)
 

𝑂𝑟 4𝐴 = 1: 𝐴 =
1

4
, 𝐴 + 𝐵 = 0: 𝐵 = −𝐴 = −

1

4
 

Hence G2(s) =
0.25

s
−

0.25

s + 4
 

𝐺3(𝑠) =
1

𝑠(𝑠 + 2)
=

𝐴

𝑠
+

𝐵

𝑠 + 2
=

𝐴(𝑠 + 2) + 𝐵𝑠

𝑠(𝑠 + 2)

=
2𝐴 + (𝐵 + 𝐴)𝑠

𝑠(𝑠 + 2)
 

Or 2A = 1: A =
1

2
, A + B = 0: B = −A = −

1

2
.  

Hence G3(s) =
0.5

s
—

0.5

s + 2
 

 

For a small sampling duration T, TG(z) approximates 

G(s). Figure 4 & 5 show canonical and digital 

equivalents of Figure 1 for the Example.   
Z-transfer functions from Laplace functions: 

𝐺1(𝑠): 
2

𝑠


2𝑧

𝑧 − 1
;

−2

𝑠 + 1


−2𝑧

𝑧 − 𝑒−𝑇 
;  

−2

(𝑠 + 1)2


−2𝑇𝑧 𝑒−𝑇

(𝑧 − 𝑒−𝑇)2
 

𝐺2(𝑠):
0.25

𝑠


0.25𝑧

(𝑧 − 1)
;
−0.25

𝑠 + 4


−0.25𝑧

𝑧 − 𝑒−4𝑇
; 

𝐺3(𝑠): 0.5/𝑠 0.5𝑧/(𝑧 − 1); −0.5/(𝑠 + 2) − 0.5𝑧/(𝑧 − 𝑒−2𝑇) 
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Table 1a: Values of different quantities for the Example (Backlash) 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 N1 N2 N3 Xm1 Xm2 Xm3 θL1 θL2 θL3 
Radius 

r 

𝑋𝑚2

𝑋𝑚1

 

From 

Table 

𝑋𝑚3

𝑋𝑚1

 

From 

Table 

0.525 1.302 1.262 1.262 3.85 2.85 2.85 -154.45 -110.83 -117.81 -1.182   

0.550 1.114 1.251 1.251 3.57 2.55 2.55 -157.99 -112.51 -120.05 -1.324   

0.570 1.290 1.230 1.230 3.30 2.30 2.30 -160.62 -114.38 -122.18 -1.510 0.93 0.93 

0.575 1.286 1.225 1.225 3.27 2.25 2.25 -161.15 -114.80 -122.66 -1.550   

0.600 0.252 1.7160 1.7160 2.97 1.95 1.95 -164.44 -117.60 -128.36 -1.865 0.65 0.65 

0.625 0.284 1.790 1.790 2.63 1.67 1.67 -168.16 -120.1 -129.38  0.63 0.63 

0.650 0.319 1.862 1.862 2.34 1.47 1.47 -172.04 -123.9 -132.72  0.62 0.62 

0.675 0.311 2.576 2.576 2.34 1.43 1.43 -174.03 -124.9 -133.99  0.61 0.61 

0.6955 0.305 3.244 3.244 2.34 1.47 1.4 -175.63 -125.19 -134.51  0.628 0.628 

0.6961 0.305 3.263 3.263 2.34 1.43 1.4 -175.67 -125.2 -134.52  0.610 0.610 

0.7000 0.3055 3.3844 3.3844 2.340 1.43 1.43 -175.975 -125.26 -134.62  0.628  

Figure 4: Canonical form of the Example 

in Figure 1  

Figure 5: The Digital representation of 

Figure 1 for the Example  
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Table 1b Normalized Phase diagrams for different values of ω and its corresponding r for the 

Example (Backlash) using graphical methods. 

 

 
 
 

 
 
 
 
 

 
 

 
Radius 

r 

Centre 

(𝟎. 𝟓,
−𝟏

𝟐 𝐭𝐚𝐧 𝜽𝑳𝟏

) 

𝑿𝒎𝟐

𝑿𝒎𝟏

 

𝒇𝒓𝒐𝒎  
𝒑𝒍𝒐𝒕 

𝑿𝒎𝟐

𝑿𝒎𝟏

 

𝒇𝒓𝒐𝒎 

Table 

6a 

𝑿𝒎𝟑

𝑿𝒎𝟏

 

from 

plot 

𝑿𝒎𝟑

𝑿𝒎𝟏

 

From 

Table 

6a 

Phasor Diagram 

0.525 -1.182 0.5, -1.073  0.740   

 

0.550 -1.324 0.5, -1.237  0.714   

 

0.570 -1.506 0.5, -1.42 1.07 1.07 1.13 1.13 

 

0.600 -1.865 0.5, -1.797  0.657   

 

0.625 2.4387 0.5, -2.387  0.636   
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From the Figure 4 following algorithm has been derived:     

(1)  
OW1(z)

Y1(z)
=

2z

z − 1
⟹ 2Y1(z) =

z − 1

z
OW1(z)

= OW1(z) − z−1OW1(z) 

Finding 𝑧−1: OW1 (n T) = 2Y1 (n T) + OW1(n − 1̅̅ ̅̅ ̅̅ ̅T) 

(2)  
OW2(z)

Y1(z)
=

−2z

z − e−T
⟹ −2Y1(z)

=
z − e−T

z
OW2(z)

= OW2(z) − z−1e−TOW2(z) 

Finding 𝑧−1 transform: OW2 (nT) = -2Y1 (nT) +e−T 

OW2(n − 1̅̅ ̅̅ ̅̅ ̅T) 

(3)  
OW3(z)

Y1(z)
=

−2Tze−T

(z−e−T)2 ⟹ −2Tze−TY1(z) =

(z−e−T)2

z
OW3(z) = z∗OW3(z) − 2e−T OW3(z) +

e−2Tz−1OW3(z)  

Or -2Te−Tz−1Y1(z)=OW3 (z) -2e−Tz−1OW3 (z) 

+ e−2Tz−2 OW3 (z) 

Finding 𝑧−1 transform: OW3 (nT) = -

2Te−TY1(n − 1̅̅ ̅̅ ̅̅ ̅T)+2e−T OW3(n − 1̅̅ ̅̅ ̅̅ ̅T) - e−2TOW3 

(n − 2̅̅ ̅̅ ̅̅ ̅T) 

(4)
𝑇𝑈1(𝑧)

𝑌2(𝑧)
=

0.25𝑧

(𝑧 − 1)
⇒ 0.25 𝑌2(𝑧)

=
𝑧 − 1

𝑧
𝑇𝑈1(𝑧) − 𝑧−1𝑇𝑈1(𝑧) 

Finding 𝑧−1 transform: TU1 (nT) = 0.25Y2 (nT) 

+TU1(n − 1̅̅ ̅̅ ̅̅ ̅T) 

(5)
𝑇𝑈2(𝑧)

𝑌2(𝑧)
=

−0.25𝑧

(𝑧−e−4T)
⇒ −0.25 𝑌2(𝑧) =

𝑧−e−4T

𝑧
𝑇𝑈2(𝑧) =

𝑇𝑈2(𝑧) − 𝑧−1e−4T𝑇𝑈2(𝑧) 

Finding 𝑧−1 transform: TU2 (nT) = -0.25Y2 (nT) + 

e−4TTU2(n − 1̅̅ ̅̅ ̅̅ ̅T) 

(6)
𝑇𝑉1(𝑧)

𝑌3(𝑧)
=

0.5𝑧

(𝑧−1)
⇒ 0.5 𝑌3(𝑧) =

𝑧−1

𝑧
𝑇𝑉1(𝑧) =

𝑇𝑉1(𝑧) − 𝑧−1𝑇𝑉1(𝑧) 

Finding 𝑧−1 transform: TV1 (nT) =0.5Y3 (n T) 

+TV1(n − 1̅̅ ̅̅ ̅̅ ̅T) 

(7)
𝑇𝑉2(𝑧)

𝑌3(𝑧)
=

−0.5𝑧

(𝑧−e−2T)
⇒ −0.5 𝑌3(𝑧) =

𝑧−e−2T

𝑧
𝑇𝑉2(𝑧) =

𝑇𝑉2(𝑧) − 𝑧−1 ∗ 𝐴𝐾2 ∗ 𝑇𝑉2(𝑧) 

Finding 𝑧−1 transform: TV2 (nT) = -0.5Y3 (nT) + AK2* 

TV2(n − 1̅̅ ̅̅ ̅̅ ̅T) 

Let us take (n − 1̅̅ ̅̅ ̅̅ ̅T) is the 0th instant; nT is the 1st  instant, 

so we can write:  

OW1(n − 1̅̅ ̅̅ ̅̅ ̅T) = OW1NOW1N; OW1 (nT) = 

OW1N1; OW2(n − 1̅̅ ̅̅ ̅̅ ̅T) = OW2NOW2N; OW2 (nT) 

= OW2N1 

Now C1 (nT) = OWN1 = T∗ [OW1N1 + OW2N1 + 

OW3N1] = T∗ [OW1 (nT) +OW2 (nT) + Ow3 (nT)] 

=T∗[2Y1 (nT) + OW1N-2Y1 (nT)+ AK∗OW2N– 2∗T∗
AK1 ∗  OY1N + 2∗AK1∗OW3N - AK2∗OW3 NN] 

=OWN1=C1 

OW3(n − 2̅̅ ̅̅ ̅̅ ̅T) = OW3N (-1)OW3NN; OW3 (n − 1̅̅ ̅̅ ̅̅ ̅T) 

= OW3N OW3N ; OW3 (nT)=OW3N1 

Similarly,  

TU1(n − 1̅̅ ̅̅ ̅̅ ̅T) = TU1N  TU1N; TU1 (nT) = TU1N1, 

TU2(n − 1̅̅ ̅̅ ̅̅ ̅T) = TU2N= TU2N; TU2 (nT) = TU2N1 

Now C2 (nT) =TUN1= T*[TU1 (nT) + TU2 (nT)] = T* 

[0.25 Y2 (nT) + TU1N – 0.25Y2 (nT) + AK3∗TU2N] = 

TUN1 = C2 

Similarly, 

TV1(n − 1̅̅ ̅̅ ̅̅ ̅T) = TV1N  TV1N; TV1 (nT) = TV1N1 

TV2(n − 1̅̅ ̅̅ ̅̅ ̅T) = TV2N  TV2N; TV2 (nT) = TV2N1 

Now C3 (n T) = TVN1 = T*[TV1 (nT) + TV2 (nT)] 

= T*[0.5Y3 (nT) + AK2∗ TV2N+ TV1N-0.5Y3 (nT) ] = 

TVN1 = C3 

Next Run: 

 R1=ORN1=C3 – C2 =TVN1 – TUN1 

 R2 = TRN1 = C1 – C3 = OWN1 – TVN1 

 R3 = THRN1= C2 – C1 = TUN1 – OWN1 

X1 = OXN1 = ORN1 – OWN1,  
X2 = TXN1 = TRN1 – TUN1, 

X3 = THXN1 = THRN1 – TVN1 
 

3.2. Utilizing the SIMULINK Tool Box of 

MATLAB 
Using the SIMULINK Toolbox, X1, X2, X3, C1, C2, 

and C3 were calculated for the backlash example 

(Fig. 6). A comparison was then performed between 
these SIMULINK results and those obtained from 

graphical and digital simulations. 

A MATLAB program implementing the 
algorithm produced the results shown in Figure 7.  

Figures 7(a) and 7(b) present the digital simulation 

and SIMULINK Toolbox results, respectively, for 

the Example.  Table 2a provides the corresponding 
numerical values. 

Figure 6 shows the SIMULINK model for predicting 

LC in the backlash example. 
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Figure 7 (a): SIMULINK results and images for C1, X1, C2, X2, C3, and X3 of the Example (Backlash).

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

Figure 7 (b): Simulation results and images for C1, X1, C2, X2, C3, and X3 of the Example (Backlash) 
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Table.2.: Results for the backlash example 

using different methods 

 

4 Signal stabilization in 3×3 systems 

with Backlash nonlinearity 
 

4.1 Usage of Deterministic signal 
 

After establishing the presence of a limit cycle (LC) 
in the autonomous system of Figure 1 (backlash 

example), LC quenching was explored by inserting a 

high-frequency signal (greater than ten times the LC 
frequency) [39] at one or all three input points (U1, 

U2, U3). Gradually increasing the amplitude (B1) of 

one sinusoidal input (B1 sin ωft), while holding the 

amplitudes of other forcing signals (B2 sin ωft and B3 
sin ωft) fixed or at zero, led to complex oscillations 

[46].  The system's variables then comprised signals 

at the forcing frequency (ωf), the self-oscillation 
frequency (ωs), and combinations thereof (k1ωf ± 

k2ωs, where k1 and k2 are integers) [46].  

With all three inputs (U1, U2, U3) at B sin ωft 

(Figure 8, backlash example), gradually increasing B 
caused the limit cycle (LC) oscillation frequency (ωs) 

changing until synchronization with the forcing 

frequency (ωf) occurred. This quenched the LC, 
resulting in forced oscillations at ωf. The 

synchronization (LC quenching) occurred at B1.  The 

numerical values are shown in Table 3 and the images 
at the Synchronization point are shown in Fig. 8. If 

the amplitude B is then decreased, a value (B2) will 

be reached where the LC reappears 

(desynchronization occurs, and the system oscillates 
at ωs). It has been seen that generally the value B2 

(Desynchronization) is smaller than B1 

(Synchronization). During signal stabilization 
(forced oscillations), the system's low-pass 

characteristics cause the outputs C1, C2, and C3 to be 

negligibly small. The inputs to nonlinear elements 

N1, N2, and N3 can be closely approximated by B sign 

ωft plus a negligible signal. Step-by-step reduction of 

B results in the re-appearance of self-oscillations [46, 
48] as the forced oscillations lose stability.  This 

instability can be explored using the Incremental 

Input Describing Function (IDF) [9, 12]. The 
threshold value of B for the reappearance of self-

oscillations is found by replacing the nonlinear 

elements N1, N2, and N3 with corresponding IDFs. N1i 

= K1, N2i = K2, and N3i = K3, where K1, K2, and K3 
are the slopes of the nonlinear elements [26, 46, 48]. 

 

Figure 8: The equivalent system for signal 
stabilization of the backlash example using a 

deterministic input B sin ωft (rad/sec) as shown in 

Figure 1. 
 

The Simulation results and images for signal 

stabilization with deterministic signals in the 

Example shown in Figure 9.  

The steady state results are indicated as C1ss, C2ss, 

C3ss and X1ss, X2ss, X3ss with their 

frequencies,=f.  

 

 

 

 

 

 

Sl. 

No 
Techniques C1 C2 C3 X1 X2 X3  

1 Graphical 2.94 1.00 1.00 3.00 3.20 3.37 0.57 

2 
Digital 

Simulation 
2.80 0.31 1.10 2.80 2.70 2.60 0.62 

3 

Use of  
SIMULINK 

TOOL BOX 

OF MATLAB 

3.40 1.00 0.70 3.20 3.40 3.70 0.60 
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Table 3: Results of Simulink for the Example (Backlash) showing Synchronization (Deterministic 

Signals). 
 

U C1 C2 C3 X1 X2 X3 ω 

0 3.6 0.985 1.4 3.6 3.8 4.1 0.54 

0.5 3.2 0.9 1.3 3.5 3.1 4.05 0.58 

1.0 3.2 0.9 1.2 3.5 3.0 4.5 0.58 

1.5 2.54 1.0 1.02 4.2 4.2 4.2 0.65 

2.0 2.45 1.0 0.9 3.2 3.5 4.0 0.64 

2.5 0.001 0.001 0.001 2.5 2.5 3.9 10.0 

3.0 0 0 0 2.9 3.0 3.0 10.0 

3.5 0 0 0 3.4 3.4 3.4 10.1 

 

Table 4: Results of Simulink for the Example (Backlash) showing Tracking of Stabilizing signals 

for complete extinction of LC (Gaussian Signals) at Mean = 500 and Variance = 0.06 

 

Mean Variance C1 C2 C3 X1 X2 X3 ω 

0 0 3.68 0.995 1.42 3.6 3.8 4.1 0.559 

1 0 3.6 0.98 1.4 3.6 3.8 4.1 0.552 

2 0 3.58 0.70 1.4 3.1 2.7 4.0 0.534 

2.5 0.02 3.48 0.34 1.43 3.3 2.7 3.9 0.552 

3.0 0.02 3.4 0.36 1.4 3.3 3.8 4.1 0.559 

5.0 0.02 3.35 0.34 1.37 3.4 3.5 3.9 0.559 

10.0 0.02 3.48 0.24 1.35 2.9 3.4 3.9 0.527 

20.0 0.02 2.97 0.2 1.3 2.9 2.4 3.3 0.508 

30.0 0.02 2.97 0.34 1.58 3.0 3.4 3.7 0.584 

50.0 0.02 3.26 0 1.58 3.1 3.4 3.7 0.565 

100 0.02 0.11 0 0.75 3.2 3.6 3.8 0.565 

150 0.02 3.00 0 0.8 2.9 1.9 3.1 0.640 

200 0.02 2.8 0 0.8 3.3 1.4 3.6 0.584 

250 0.02 3.2 0 1.6 2.0 3.3 3.3 0.615 

300 0.02 3.3 0 1.6 1.9 3.0 3.5 0.609 

300 0.025 3.4 0 1.5 1.5 3.0 3.1 0.584 

300 0.03 3.0 0 0.75 1.5 2.75 3.3 0.584 

300 0.035 3.2 0 0.75 1.5 2.5 3.1 0.653 

300 0.04 2.1 0 0.65 1.4 2.5 3.4 0.603 

300 0.05 2.9 0 1.0 1.5 2.0 3.3 0.578 

500 0.06 0 0 0 0 0 0 0 

510 0.06 0 0 0 0 0 0 0 
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Figure 9: Signal stabilization with a deterministic forcing signal (U = 3.0 sin ωt, ωf = 10.0 rad/sec) 

induced forced oscillations in the backlash example 
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4.2 Using Random/Gaussian signal   
 
Signal stabilization using Gaussian signals in single 

input single output (SISO) nonlinear system has been 

discussed in [40, 44, 45].  While robust design and 
analysis considering uncertainty/randomness are 

important, signal stabilization with Gaussian signals 

for multivariable systems with memory-type 

nonlinearity (even 2×2) was lacking until [50]. This 
work attempts to quench the LC in 3×3 nonlinear 

systems using a random signal.  

 The backlash example is revisited. Under 

autonomous conditions, the system exhibits a limit 

cycle (LC). To stabilize the system/quench these self-

sustained oscillations, a Gaussian/random signal with 
varying mean (m) and fixed variance (φ) was injected 

at inputs U1, U2, and U3 (Figure 10).  At the specific 

values of m and φ where the system synchronized 
with the high-frequency forcing input, LCs were no 

longer present. Table 4 shows the steady-state values 

(mean/variance) at which LC quenching occurred, 
and Figure 11 presents simulation/Simulink images 

of the system at this point. 

 

Figure 10: A system with backlash, driven by a 
Gaussian signal with a normal distribution (mean 

300, variance 0.025), seeking output stabilization. 

 

 
 
Figure 11: A system with backlash subjected to 
forced oscillations from a Gaussian signal (mean 500, 

variance 0.06) with output stabilization. 

 

5 Conclusion 

Limit cycles (LCs) indicate instability, and these 

nonlinear self-sustained oscillations degrade speed 
and position control performance in robot 

technology, automation, and load frequency control 

in power systems. Limited research exists on 
quenching LCs in 2×2 systems with memory-type 

nonlinearities. Whereas the present paper explores 

the complete extinction of LC using the methods of 

signal stabilization in 3×3 systems with memory type 
nonlinearities. The proposed graphical method 

facilitates a better insight into the problem because of 

its simplicity in applications. The novelty and 
significant innovation of the present effort claims in: 

(i) complete extinction of LC by signal stabilization 

with (a) deterministic signals, (b) random signals – 

robust applications which addresses uncertainties, (ii) 
(a) In the process of signal stabilization, tracking of 

the amplitude of deterministic signals with high 

frequency ωf at least ten times the limit cycling 
frequency ωs (ωf≈10ωs) has been applied to 

determine the point of synchronization and 

desynchronization, (b) similar tracking has also been 
done with random signals.  

There is a bright scope of extending the work of 

tracking to determine synchronization and 

desynchronization including the determination of 
stability boundary for n × n multivariable nonlinear 

systems. Most importantly, the limiting value of 

stabilizing signal (deterministic) in the reverse 
process (desynchronization) can easily be accessed 
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using the IDFs which are real values even for 

memory type nonlinearities. 
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