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Abstract: - This paper presents a new method for generating encryption keys for Internet of Things (IoT) 
devices. This method combines chaos theory with neural networks to create secure and efficient keys. We use 
the Lorenz chaotic system to generate complex patterns and a Convolutional Neural Network (CNN) to learn 
and predict these patterns. This approach is designed to address the unique security challenges of IoT devices, 
which often have limited computing power. We tested our method with different key sizes and evaluated its 
performance using accuracy, loss, entropy, and correlation metrics. The results show that key sizes between 
256 and 512 bits offer the best balance between model performance and security for IoT devices. We also 
conducted Diehard statistical tests, which our key generation method passed successfully, demonstrating its 
ability to produce high-quality random keys. 
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1 Introduction 
The Internet of Things (IoT) has emerged as a 
transformative paradigm, interconnecting billions of 
devices and revolutionizing various sectors 
including healthcare, agriculture, and smart cities 
[1]. However, the proliferation of IoT devices has 
introduced significant security challenges, 
particularly in cryptographic key generation and 
management [2]. The resource-constrained nature of 
many IoT devices, combined with their vulnerability 
to physical and remote attacks, necessitates novel 
approaches to ensure robust security measures [3]. 

Secure key generation is a cornerstone of IoT 
security, providing the foundation for encryption, 
authentication, and data integrity [4]. Traditional 
key generation methods often prove inadequate for 
IoT environments due to their computational 
intensity or lack of sufficient randomness [5]. This 
paper presents a novel approach to address these 
challenges: a Chaotic Neural Key Generation 
Algorithm specifically designed for IoT devices. 

Chaos theory, with its inherent properties of 
sensitivity to initial conditions and unpredictability, 
offers a promising avenue for cryptographic 
applications [6]. Chaotic systems can generate 
highly complex and seemingly random behavior 
from simple deterministic equations, making them 
ideal candidates for key generation [7]. When 
combined with the adaptive learning capabilities of 
neural networks, chaos theory presents an 

opportunity to create a robust, efficient, and secure 
key generation mechanism. 

Neural networks, inspired by biological neural 
systems, have demonstrated remarkable capabilities 
in pattern recognition, adaptation, and complex non-
linear mapping [8]. By leveraging these properties, 
neural networks can potentially enhance the quality 
and efficiency of key generation processes [9]. The 
integration of neural networks with chaotic systems 
creates a synergistic approach that addresses the 
unique security requirements of IoT devices. 

This paper proposes a new method for generating 
encryption keys for IoT devices. Our method 
combines the unpredictability of chaotic systems 
with the learning capabilities of neural networks. 
Specifically, we use a type of chaotic system called 
the Lorenz system to create complex patterns [6]. 
We then use a Convolutional Neural Network 
(CNN) to learn and predict these patterns, which 
helps us generate encryption keys [7]. 

The remainder of this paper is organized as 
follows: Section 2 describes the background of 
Chaotic Systems in Cryptography and the CNN 
architectures. Section 3 outlines the proposed 
algorithm for chaotic neural network-based key 
generation. In Section 4, we present the 
experimental results from implementing the 
algorithm, including the training process evaluation 
and the security analysis. Finally, Section 5 
concludes the paper. 
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2 Background 

2.1 Chaotic Systems in Cryptography 
Chaotic systems are complex mathematical models 
that are very sensitive to their starting conditions 
[12]. This means that even a tiny change in the 
beginning can lead to very different results over 
time. This property makes chaotic systems useful 
for cryptography, where we need to create 
unpredictable patterns [7]. 

One popular chaotic system is the Lorenz 
system, first described by Edward Lorenz in 1963 
[13]. It's a set of three equations that model weather 
patterns, which are given by: 

  dx/dt = 𝜎 * (y - x)                                  (1) 
dy/dt = x * (𝜌 - z) – y                            (2) 
dz/dt = x * y - 𝛽 * z                               (3) 

where x, y, and z represent the system's state 
variables, and sigma, rho, and beta are parameters.  
The chaotic sequence is generated by iterating the 
equations using a given seed value.  

Figure 1 shows a 3D representation of the Lorenz 
attractor, generated using the Lorenz equations with 
parameters 𝜎 = 10, 𝜌 = 28, and 𝛽 = 2.667. The 
figure displays a butterfly-shaped pattern, a well-
known characteristic of the Lorenz system. The 
trajectory is plotted over 10,000 time steps, with a 
step size of 0.01, starting at the point (0, 1, 1.05). As 
the system evolves, the path never repeats, though it 
remains confined within a specific region of the 
phase space.  

 

Figure 1. Lorentz Attractor 

The two lobes of the attractor, resembling 
butterfly wings, reflect the system's oscillation 
between two semi-stable states. This pattern 
illustrates the deterministic but unpredictable nature 
of chaotic systems, where small variations in initial 
conditions can lead to drastically different 
outcomes. The continuous, non-overlapping path 
emphasizes the system's sensitivity to starting points 
and its complex, non-linear behavior. This 
visualization effectively demonstrates the dynamics 

of chaotic systems and their potential applications in 
fields like cryptography and secure communication. 

2.2 Convolutional Neural Networks (CNNs)  
CNNs are a powerful type of machine learning tool 
that are great at finding patterns in data. They're 
well-known for their use in image recognition, but 
CNNs have also proven to be valuable in various 
fields, including cryptography. 

The structure of a CNN is like a series of 
building blocks, each with its specific role. The first 
blocks are convolutional layers. These layers use 
filters that move across the input data, searching for 
specific features. It's similar to how our eyes might 
scan a picture, noticing things like edges or shapes. 

After the convolutional layers, we have pooling 
layers. These layers reduce the data, retaining only 
the most crucial information. This not only speeds 
up the network but also helps it focus on the bigger 
picture instead of getting caught up in minor details. 
The final part of a CNN consists of fully connected 
layers. These function as the brain of the network, 
taking all the information gathered by the earlier 
layers and using it to make decisions, such as 
classifying an image, making a prediction, or 
solving a complex problem. 

What sets CNNs apart is how they learn. As they 
process more data, they improve at recognizing 
patterns, even in new information they haven't 
encountered before. This ability to learn and adapt 
makes CNNs a valuable tool in many areas of 
research and technology. The image in Figure 2 
illustrates how a CNN is constructed, emphasizing 
the role of each component in pattern recognition. 

 
Figure 2. Convolutional Neural Networks Architecture 

Our study utilizes a specialized CNN to handle 
chaotic data for generating encryption keys. The 
network begins with two layers that identify 
patterns. The first layer has 32 small pattern-finders, 
while the second has 64. These layers employ ReLU 
to enhance the network's understanding of complex 
patterns. After detecting patterns, the network 
organizes the information into a simple list. This list 
then undergoes two additional processing steps. The 
first step, with 256 units, further refines the patterns. 
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The final step, also with 256 units, determines the 
likelihood of each potential outcome. 

In the following section, we introduce an 
innovative approach to creating encryption keys. 
Our method combines two powerful concepts: 
chaotic systems and neural networks. By bringing 
these two concepts, we've developed a way to 
generate secure keys from random data. The chaotic 
system provides unpredictability, while the neural 
network learns to work with this randomness 
efficiently. What makes our method special is that 
it's designed to work well on devices with limited 
processing power. This is particularly useful for 
Internet of Things (IoT) devices, which often have 
constraints on their computing capabilities. 

3 Chaotic Neural Key Generation 

Algorithm 

Our key generation method combines chaos theory 
and machine learning to create secure encryption 
keys. The main steps in the key generation process 
outlined by this method are as follows: 
 Chaotic Sequence Creation: We use the Lorenz 
system, a type of chaotic math model, to make a 
long sequence of unpredictable numbers. We start 
with a seed value and use special equations to 
generate this sequence. 
 Data Preparation: We divide the chaotic 
sequence into smaller chunks, each containing 8 
numbers. These chunks become our input data. The 
next number after each chunk is our target output. 
We adjust these numbers to make them easier for 
our neural network to process. 
 Neural Network Setup: We use a CNN for our 
task. This type of network is good at finding 
patterns in data. Our CNN has layers that look for 
patterns and layers that make decisions based on 
those patterns. 
 Training the Network: We teach our CNN using 
the prepared data. The network learns to predict the 
next number in the sequence based on the previous 
8 numbers. We use a method called categorical 
cross-entropy to measure how well the network is 
learning. 
 Checking the Network: After training, we test the 
CNN with new data to make sure it can accurately 
predict numbers in the chaotic sequence. This step 
ensures our network works well and isn't just 
memorizing the training data. 
 Making the Encryption Key: Once we're sure our 
network works well, we use it to predict new 
numbers based on our chaotic sequence. We convert 
these predictions to binary (1s and 0s) and mix them 

with some additional random bits. This creates our 
final encryption key. 

This proposed method is particularly useful for 
devices with limited processing power, like many 
Internet of Things (IoT) devices. It creates strong, 
secure keys without requiring a lot of computational 
resources. The combination of chaos theory and 
neural networks makes the keys hard to predict, 
enhancing security. 

4 Evaluation of the proposed method 
In this section, we present the experimental 
evaluation of the key generation method. 

4.1 Evaluation Metrics 
We evaluated and compared the neural network 
architectures based on four key performance 
metrics: 
 Accuracy: Accuracy measures the percentage of 
predictions matching true labels. It is calculated as 
the number of correct predictions divided by the 
total number of samples. We tracked accuracy on 
both the training and validation sets to gauge model 
fitting and generalization respectively. 
 Loss: Loss quantifies the model's error during 
training. We utilized categorical cross-entropy loss 
which calculates the divergence between predicted 
and true probability distributions. Lower loss values 
indicate better fitting on the training data. 
 Validation Accuracy: To assess generalization, 
we computed accuracy on a held-out validation set 
not involved in training. This reflects the model's 
ability to correctly generate cryptographic keys for 
previously unseen input data, an important metric 
for our application. 
 Validation Loss: Analogous to validation 
accuracy, we measured loss on the validation set. 
This allowed monitoring changes in out-of-sample 
error to detect potential overfitting as training 
progressed. A stable or decreasing validation loss 
indicates the model is still learning useful patterns 
rather than memorizing the training data. 
We recorded accuracy and loss values at the end of 
each training epoch and plotted them to visualize the 
learning dynamics.  

4.2 Training evaluation 
To assess the sensitivity of the proposed algorithm 
concerning key size, we conducted a series of 
experiments using various key sizes. Figure 2 shows 
the accuracy of our chaotic neural key generation 
method for different key sizes 
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Figure 3. Precision Variation with Varying Key Sizes 

For all key sizes, we see a significant 
improvement in accuracy as the model trains. The 
256-bit key size performs best, reaching a final 
training accuracy of 92.56% and a validation 
accuracy of 91%. The 512-bit key size follows 
closely, with 92.48% training accuracy and 91.10% 
validation accuracy. The 128-bit and 1024-bit keys 
also show good performance, with final training 
accuracies above 91% and validation accuracies 
above 88%. Interestingly, while larger key sizes 
generally lead to better security, they don't always 
result in higher accuracy in our model. This 
suggests that a balance between key size and model 
performance is crucial for optimal security in 
resource-constrained IoT devices. Figure 4 
illustrates the loss values for our chaotic neural key 
generation method across different key sizes. 
 

 

 

 

 

 

 

 

Figure 4. Loss Variation with Varying Key Sizes  

According to Figure4, all key sizes show a 
significant decrease in loss during training, 
indicating that our model is learning effectively. The 
256-bit key size demonstrates the best performance, 
with the lowest final training loss of 0.2476 and 
validation loss of 0.7513. The 512-bit key size 
follows closely, achieving a final training loss of 
0.2856 and the lowest validation loss of 0.4445. 

Interestingly, while the 1024-bit key has the highest 
initial loss, it still achieves a competitive final 
training loss of 0.3102. However, its validation loss 
remains higher at 1.3198, suggesting some 
overfitting. The 128-bit key, despite its smaller size, 
performs reasonably well with a final training loss 
of 0.2532. These results suggest that medium-sized 
keys (256 and 512 bits) offer the best balance 
between model performance and potential security 
for our IoT-focused key generation method. 

Based on the results shown in Figures 3 and 4, we 
can conclude that for IoT devices using our chaotic 
neural key generation method, key sizes between 
256 and 512 bits work best. These key sizes offer a 
good balance between how well the model performs 
and how secure the keys are. This balance is 
important for IoT devices, which need strong 
security. 

4.3 Security Evaluation  

In this subsection, we assess the security of the 
key generation method. To evaluate the randomness 
of the generated keys, we examine key aspects 
including entropy variation, correlation variation, 
and statistical tests using Diehard.  

4.3.1 Entropy Variation 
Entropy testing is a key metric for evaluating the 
randomness and unpredictability of generated keys 
[16]. Higher entropy values reflect a stronger degree 
of randomness, which in turn enhances security. By 
examining entropy variation, we can assess the 
quality and strength of the chaotic neural key 
generation process. 

In our analysis, a chaotic system with a specific 
seed was used to generate a series of chaotic values. 
These values were fed into a neural network to 
produce random keys. Entropy testing was then 
performed on the keys generated for various key 
lengths: 128, 256, 512, and 1024 bits. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Entropy Variation  
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Figure 5 shows how entropy varies across these 
different key sizes. The results provide important 
insights into the security of our chaos-based neural 
key generation method. We found a clear link 
between key length and entropy: as the key length 
increased, so did the entropy values, indicating 
higher randomness and stronger security. 

According to Figure 5, the minimum entropy 
values recorded were 0.75, 0.72, 0.90, and 0.99 for 
key lengths of 128, 256, 512, and 1024 bits, 
respectively. The maximum entropy values rose 
from 0.99 for the 128-bit key to 1.0 for the 1024-bit 
key. Similarly, the average entropy values followed 
the same pattern, with 0.94, 0.86, 0.96, and 0.99 for 
the respective key lengths. 

These results emphasize the importance of using 
longer key lengths in chaos-based neural key 
generation to boost entropy and enhance security. 
Longer keys provide a larger key space, making it 
harder for attackers to guess the key through brute-
force or statistical methods. The higher entropy 
associated with longer keys improves randomness 
and increases resistance to cryptographic attacks. 

4.3.2 Correlation Variation 
The correlation values observed during 
cryptographic key generation are important 
indicators of the quality and security of the process 
[17]. In our study, we generated 1000 keys and 
analyzed their correlation values. The results, 
presented in Figure 6, provide valuable insights into 
the performance of the key generation process. 

 
Figure 6. Correlation Variation  

The minimum correlation value of -0.25 and the 
maximum of 0.24 highlight the effectiveness of the 
key generation process in achieving bit 
decorrelation. These values, close to ±0.25, show 
that the bits making up the keys are well-separated 
from one another, which is essential for preventing 
the prediction or partial reconstruction of one key 
based on another. Additionally, the average 
correlation value of -0.005 indicates an almost 

perfect statistical independence between the bits. 
This level of independence ensures high entropy and 
confusion in the generated keys, further 
strengthening their security. 

4.3.3 Diehard Test 

The Diehard Test includes a series of statistical tests 
designed to identify weaknesses or vulnerabilities in 
random number generators [18]. By analyzing the 
results of these tests, we can assess the strength of 
the key generation process and its ability to 
withstand statistical attacks. 

Table 1 presents the outcomes of 15 Diehard 
tests conducted on the generated keys. The results 
show that the key generation process successfully 
passed all 15 tests. The p-values from each test are 
higher than the significance threshold, indicating 
that the keys demonstrate high-quality randomness 
and meet the required standards. This consistent 
performance across all tests reinforces the reliability 
and effectiveness of the key generation method. 

 
TABLE 1 

Results of Diehard Tests for Key Generation Using FFNN 
Test Name P-Value Result 

Birthday spacing     
Binary rank 31*31                                              
Binary rank 32*32                                              
Binary rank 6*8 
Count the1                                                  
Parking lot                                                          
Minimum distance                                            
3D sphere       
the Squezze 
Overlapping sum                                                 
Run up 1                                                              
Run up 2                                                              
Run down 1                                                         
Run down 2                                                         
Craps of throws                                      
Craps of wins        

0.241 
0.633 
0.400 
0.625 
0.312 
0.097 
0.345 
0.879 
0.588 
0.196 
0.584 
0.701 
0.931 
0.106 
0.783 
0.727 

Passed 
Passed 
Passed 
Passed 
Passed 
Passed 
Passed 
Passed 
Passed 
Passed 
Passed 
Passed 
Passed 
Passed 
Passed 
Passed 

These findings are important for the security of 
IoT devices, where randomness plays a critical role 
in ensuring the confidentiality and integrity of 
sensitive data. The results demonstrate that the 
proposed algorithm generates random keys with 
sufficient randomness, contributing to enhanced 
security for IoT devices. 

The positive Diehard test results boost 
confidence in the proposed method, showing its 
suitability for cryptographic applications in IoT 
devices. Secure key generation enables IoT devices 
to establish safe communication, authenticate users, 
and protect sensitive data from unauthorized access 
and cyberattacks. Therefore, these findings 
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positively impact the overall security and privacy of 
IoT ecosystems. 

5 Conclusion 
This paper introduced a new approach to 
cryptographic key generation for IoT devices by 
integrating chaotic systems with neural networks. 
Our method addresses the specific security needs of 
resource-limited IoT devices while ensuring strong 
and efficient key generation. The evaluation of our 
chaotic neural key generation algorithm produced 
promising outcomes. For example, with a 256-bit 
key, we achieved a training accuracy of 92.56% and 
a validation accuracy of 91%. Entropy analysis 
showed high levels of randomness, with mean 
entropy values ranging from 0.86 for 256-bit keys to 
0.99 for 1024-bit keys. Correlation testing revealed 
an average correlation of -0.005, demonstrating 
strong statistical independence between key bits. 
Additionally, our method passed all 15 Diehard 
statistical tests, proving its ability to generate high-
quality random keys. These findings indicate that 
our approach offers an effective solution for secure 
key generation in IoT environments. Its balance 
between security and efficiency makes it well-suited 
for devices with limited computational resources. 
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