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Abstract: The rise of Deep Neural Networks (DNNs) has significantly boosted salient object detection in 
computer vision tasks. However, downsampling methods like striding and pooling often introduce bluish artifacts 
near edges, hindering detection accuracy. To address this, the "Attenuative Unified U-Net with Conditional 
PatchMatch Algorithm" is proposed. The method employs Gaussian smoothing for noise reduction and depth 
refinement in preprocessing. In existing methods, the Edge-preserving salient object detection struggles with 
cluttered backgrounds and connected objects, like a bird on a rock, making it difficult to accurately distinguish 
edges and salient regions due to shared boundaries. Hence, an Attenuative Unified Backpropagated Entropy U-
Net is proposed, which integrates an Attention Mechanism that enhance feature map spatial weight assignment, 
emphasizing features or regions that are judged most relevant for edge and salient region detection. Then, the 
Cascaded Laplace pyramid is incorporated into the Unified U-Net's design for multi-scale information 
processing, capturing contextual details effectively. The Backpropagated Entropy Loss Function is then created 
to ensure accurate and confident fused image output. The depth map, edge map, and salient area map are 
combined in the U-Net's final output layer to create an overall fused image. Next, to addresses depth discontinuity 
problem a noteworthy novel idea the Conditional PatchMatch Random Field Algorithm (CPMRF), which 
combines PatchMatch efficiency and CRFs' contextual modeling. PatchMatch iteratively propagates matches 
from neighboring patches to find similar patches in the remaining portion of the image and Conditional Random 
Field (CRF) is the next step, which improves the PatchMatch results by taking into account the connections 
between the matched patches and their neighboring areas. Hence, the experimental outcomes of the proposed 
model effectively show the improved detection of edge in salient object detection with better accuracy, precision, 
recall, MaxF, and F1 score with minimized MAE. 
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1. Introduction 
The two main categories of saliency detection [1-2] 
are salient object recognition and eye fixation 
prediction. The former seeks to detect the most 
salient elements in an image, while the latter predicts 
the location of the human eye's next fixation. The 
rapid development of deep learning in recent years 
has led to considerable advancements in saliency 
detection. Finding visually interesting or salient 
objects in a scene is one of the main tasks in the 
science of computer vision. It can be used for many 
different visual tasks, such as segmentation [3], 
video compression [4], person re-identification [5], 
and recognition of human activities. To enhance the 
effectiveness of salient object recognition, a 
multitude of RGB saliency models, including 
traditional methods and methods based on 
convolutional neural networks (CNNs), have been 
created recently. Nevertheless, the current RGB 
saliency models doesn’t produce sufficient saliency 
maps in challenging situations like similar 

appearances of salient objects and background, 
cluttered backdrops, diverse salient objects, and so 
forth [6-7]. 

To take advantage of depth signals, the first 
difficulty is to effectively extract features from 
depth maps. The early standard RGBD models [8] 
were limited in their ability to represent high-level 
data, therefore they relied mostly on domain 
expertise to build hand-crafted features. As proof of 
CNNs' supremacy in the interim, numerous CNN-
based RGBD models are offered to automatically 
learn deep depth features from the depth maps by 
employing the widely utilized feature extraction 
networks. The majority of these RGBD saliency 
models use pre-trained models VGG-16 or ResNet 
to extract their deep depth features; these models are 
trained from a large-scale RGB image dataset called 
ImageNet [10–11]. However, some of these models 
[9] even use a Siamese architecture, sharing the 
parameters in the RGB and depth branches. There is 
undoubtedly a big difference between the intrinsic 
properties of RGB and depth information because 
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depth maps don't have as much color and texture 
information. As a result, the extraction of depth 
features may become unclear whether the Siamese 
architecture or the pre-trained models are fine-tuned. 

Next, it is crucial to focus more on the second 
issue with RGBD saliency detection [12–13], which 
is the effective fusion of RGB and depth features. 
Certainly, a great deal of work has been done to look 
into the two modalities' fusion mechanism. For 
example, early efforts attempted to use linear 
summing to merge RGB and depth data. For the 
CNN-based RGBD saliency models, they design 
symmetry architecture to establish relationships 
between RGB properties and depth features. A 
detailed analysis shows that the fusion method takes 
into account the depth RGB and deep RGB data in 
an equal manner. However, as previously said, there 
are significant differences in the underlying 
attribution of the two modes. Consequently, 
contemporary efforts distinguish between the two 
modalities [14–15], that is, concentrating more on 
RGB information or depth information, in an 
attempt to blend RGB characteristics with depth 
data. RGBD saliency detection performance is 
significantly enhanced by doing this. However, 
while handling some challenging scenes, the state-
of-the-art models' performance will also deteriorate. 
Therefore, new methods for edge-preserving salient 
object detection from RGBD images under depth 
detection are required. The following are the paper's 
main contribution:  

 To detect the edge map and depth map with 
salient region and to fuse them together a novel 
Attenuative Unified U-Net with Conditional 
PatchMatch Algorithm is used. 

 To address the depth discontinuity issue and 
improves the output with accurate salient object 
prediction a novel Conditional PatchMatch Random 
Field Algorithm is used. 

The proposed work is divided into five sections, 
the first of which is an introduction and the second 
is a review of the literature. Section 3 encapsulates 
the proposed method. It also discusses the various 
research methods that have been used. Performance 
and comparative analysis are covered in Section 4. 
Section 5 delves deeply into the work's conclusion. 
 

2. Literature Survey 
Zhou et al. [16] presented a simple yet effective 
technique called Hierarchical and Interactive 
Refinement Network (HIRN) for maintaining edge 
structures while identifying important objects. For 
high-level and low-level feature maps, a dual-path 
and multi-stage network structure was constructed 

to estimate the salient areas and edges. As a result, 
projected regions improved by strengthening weak 
responses at edges, while anticipated edges gained 
greater significance by decreasing false positives in 
the background. After the salient maps of edges and 
regions at the output layers were obtained, an edge-
guided inference technique was applied to further 
filter the generated regions along the expected 
edges. This network's complex architecture made it 
computationally expensive, which limited its real-
time applications. 
Tu et al. [17] proposed a unique Edge-guided Non-
local FCN (ENFNet) to achieve edge-guided feature 
learning for precise salient object recognition while 
preserving the distinct edge structure of salient 
objects. In particular, to integrate non-local 
characteristics for efficient feature representations in 
FCN, hierarchical global and local information was 
retrieved. To further maintain appropriate borders of 
salient objects, a guidance block was proposed to 
insert edge prior information into hierarchical 
feature maps. The guidance block performs both 
feature-wise and spatial-wise adjustment for 
successful edge embedding. To aid in improving the 
performance of salient item detection, future 
research will look into alternate preceding 
information or knowledge, such as semantic priors 
or thermal infrared data. It will also extend this 
approach to salient object detection in films. 
Wen et al. [18] implemented Dynamic Selective 
Network (DSNet), which was a RGB-D saliency 
model, to perform salient object detection. To locate 
significant things roughly, a cross-modal global 
context module (CGCM) was first deployed to 
gather high-level semantic information. Next, by 
using gated and pooling based selection, the multi-
level and multi-scale information was further 
optimized. In order to do this, a dynamic selective 
module (DSM) was created in order to dynamically 
mine the complimentary cross-modal information 
between depth maps and RGB images. It was 
employed to solve the problem of using RGB and 
depth information to detect salient objects in images. 
However, it was not effective when there were large 
fluctuations in the lighting or when there are 
occlusions in the scene. 
Sun et al. [19] introduced an Average and Max-Pool 
Network (AMPNet) that integrates the multilevel 
complimentary contextual features by using the 
average- and max-pool modules. To increase the 
precision of identifying salient items, two top-down 
feedback channels were added, and their top-level 
semantic guidance information was completely 
exploited. Ultimately, the network's performance 
was enhanced across various datasets through the 
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utilization of the Feature Fusion Module and Deep 
Supervision Mechanism. To increase the 
completeness of items spotted, the network 
generates complementary contextual characteristics. 
Nevertheless, the spatial information is not entirely 
preserved by the pooling algorithms, leading to a 
loss of specific details about the prominent objects. 
Li et al. [20] presented an edge information-guided 
hierarchical feature fusion network (HFFNet). This 
network effectively kept unambiguous edge 
information and correct semantic information while 
fusing features in a hierarchical fashion. A one-to-
one hierarchical supervision technique was modified 
to oversee the creation of high-level and low-level 
information to improve retention of information at 
various levels. Ultimately, the creation of the 
saliency map was guided by low-level edge 
information, and saliency regions were identified by 
the edge guidance fusion. It was applied to enhance 
the precision of salient object recognition by 
efficiently integrating characteristics at various 
levels of abstraction. However, in difficult 
situations, the hierarchical feature fusion method 
was unable to fully capture all the minute details of 
the salient object in the image. 
Wu et al. [21] introduced a Dynamic Scale Routing 
for Salient Object Detection. Initially, the dynamic 
pyramid convolution (DPConv), which vigorously 
chose the optimal kernel sizes, was employed for the 
encoder design in place of the vanilla convolution 
with fixed kernel sizes. Second, to best suit the 
DPConv-based encoder, a self-adaptive 
bidirectional decoder design was offered. The 
primary significance was its ability to route across 
feature scales and their dynamic collection, which 
made the inference process scale-aware. However, it 
has trouble in correctly identifying salient objects in 
complex scenes with cluttered backgrounds. 
Kang et al. [22] presented a progressive and multi-
task learning scheme, to excerpt the object context 
by only operating the learning scheme without 
altering the network architecture. A technique to 
gradually develop the decoder in the train phase was 
the progressive learning scheme. A multi-task 
learning (MTL) strategy that concurrently processed 
the contour and object saliency map in a single 
network was trained using the MTL approach via an 
auxiliary branch that learned contours in an edge-
preserved manner. Other techniques for 
manipulating convolution blocks were integrated 
with the learning scheme. However, training takes a 
large amount of time and computer resources due to 
the progressive and multi-task learning approach. 
Lad et al. [23] proposed a Boundary Preserved 
Salient Object Detection by means of Guided Filter 

based Spatial Domain Analysis and Hybridization 
Approach of Transformation. To create the final 
saliency map, it entailed super pixel segmentation, 
wavelet-based and learning-based saliency map 
production, and guided filter fusion of the two. It 
offers computational efficiency and preserved object 
boundaries, making it useful for tasks where 
accurate object detection with preserved boundaries 
were important. However, it failed to detect specific 
salient regions when both the learning-based and 
transformation-based saliency maps were incapable 
to notice them simultaneously. 
Xu et al. [24] implemented a Multi-Stream 
Attention-Aware Graph Convolution Network for 
Video Salient Object Detection. The spatiotemporal 
graph creation, smoothness-aware regularization, 
attention-aware module, and graph convolution 
operation were the steps in the procedure. It aimed 
to address the challenge of preserving salient object 
boundaries and enhancing learning ability in video 
salient object detection. However, there was a need 
to improve the model's capacity to learn well and 
maintain salient object boundaries. 
Liu et al. [25] introduced a Stereoscopically 
Attentive Multiscale (SAM) module, which adopted 
a stereoscopic attention mechanism to adaptively 
fuse the features of various scales. SAMNet used a 
lightweight architecture, multi-scale feature 
extraction, and stereoscopic information to 
accurately and efficiently recognize salient objects 
in stereoscopic pictures. It was appropriate for real-
world applications with computing limitations due 
to its capacity to efficiently utilize stereoscopic 
information, extract multi-scale characteristics, and 
carry out accurate salient object recognition in a 
lightweight manner. However, its performance is 
subpar when it comes to conventional 2D images. 
Zhang et al. [26] introduced an augmenting 
feedforward neural networks by using the multistage 
refinement mechanism. The majority of the intricate 
structures were absent from the coarse prediction 
map created in the first stage using a master net. The 
subsequent phases involved the refining of the 
previous saliency maps in a stage-by-stage manner, 
made possible by the refinement net's layer-wise 
recurrent connections to the master net and its ability 
to gradually incorporate local context information 
across stages. Moreover, the channel attention 
module and pyramid pooling module were used to 
combine global contexts depending on several 
regions. It was employed to efficiently recognize 
and draw attention to the most significant or salient 
objects in an image. However, the accuracy of the 
salient item recognition is impacted when dealing 

International Journal of Electrical Engineering and Computer Science 
DOI: 10.37394/232027.2024.6.26 Gaurav Gupta, Arun K. Sunaniya

E-ISSN: 2769-2507 220 Volume 6, 2024



with objects whose colors or textures are 
comparable to the background. 
Zhou et al. [27] proposed end-to-end salient object 
detection in stereoscopic 3D images using Deep 
Convolutional Residual Autoencoder (DCRA). 
Multiple feature map fusion modules were built to 
examine the intricate linkages and take advantage of 
the complementarity among RGB and depth 
information. A convolutional residual module was 
useful to both the decoder and the encoder. 
Ultimately, a supervision pyramid depend on 
boundary loss and background previous loss was 
used to effectively optimize DCRA parameters. It 
was employed to precisely locate and extract 
significant sections or items from 3D images. 
However, it finds it difficult to accurately represent 
the depth information present in the 3D images. 
Zhou et al. [28] introduced an Edge-aware Multi-
Level Interactive Network, to identify the flaws 
from the strip steel surface. First, create a new 
connection where features from nearby encoder 
levels were transported to the similar stage of the 
decoder, excluding the skip connection, which 
merged the same stage of the encoder and decoder.  
Second, add the edge extraction branch after every 
decoder block to provide clearly defined bounds for 
expected outcomes. Edge-awareness and multi-level 
interaction were used in this strategy to efficiently 
identify and highlight regions of interest. However, 
it has trouble identifying extremely minute or 
intricate flaws in the surface of the strip steel. 
Li et al. [29] introduced a lightweight network for 
ORSI-SOD depend on edge alignment and semantic 
matching, termed SeaNet. Semantic kernels were 
created by first compressing the high-level 
characteristics. Then, using dynamic convolution 
operations in DSMM, semantic kernels were 
employed to stimulate salient object locations in two 
groups of high-level characteristics. In the 
meantime, ESAM employed L2 loss to self-align the 
cross-scale edge data that was taken from two sets 
of low-level features and utilized it for detail 
augmentation. Lastly, the decoder infered prominent 
objects depend on the precise placements and fine 
details found in the outcomes of the two modules, 
starting with the highest-level features. Using edge 
alignment and semantic matching, this technique 
quickly and accurately identified significant items. 
However, it struggled to correctly identify the most 
salient object in photos with several overlapping 
objects or complex textures. 
Wang et al. [30] proposed a deep subregion network 
(DSR-Net) equipped with a sequence of subregion 
dilated blocks (SRDB) by aggregating multi-scale 
salient context information of multiple sub-regions. 

A parallel ASPP module was created to enhance 
feature maps at each sub-region after SRDB divided 
the input feature map at various layers of a 
convolutional neural network (CNN) into distinct 
sub-regions. It analyzed sub-regions of an image 
using deep learning algorithms to identify the most 
important or visually striking sections. However, it 
viewed the salient objects with several non-salient 
interior holes as salient objects. 
According to the talks above, the network's 
complicated structure made it computationally 
expensive for [16], which restrict real-time 
applications. Future studies on [17] investigate how 
to improve the effectiveness of salient item detection 
and expand the technique to identify items in films 
by utilizing semantic priors or thermal infrared data. 
[18] is not effective when there were large 
fluctuations in the lighting or when there were 
occlusions in the scene. As a first step toward [19], 
the spatial information is not entirely preserved by 
the pooling algorithms, leading to a loss of specific 
details about the prominent objects. The hierarchical 
feature fusion method was unable to fully capture all 
the minute details of the salient object in the image 
for [20]. [21], has trouble in correctly identifying 
salient objects in complex scenes with cluttered 
backgrounds. In [22], the training took a large 
amount of time and computer resources due to the 
progressive and multi-task learning approach. [23] 
fails to detect specific salient regions when both the 
transformation-based and learning-based saliency 
maps were unable to detect them simultaneously. In 
[24], there was a need to improve the model's 
capacity to learn well and maintain salient object 
boundaries. In [25], its performance was subpar 
when it comes to conventional 2D images and in 
[26] the accuracy of the salient item recognition was 
impacted when dealing with objects whose colors or 
textures were comparable to the background. [27] 
found it difficult to accurately represent the depth 
information present in the 3D images and [28] has 
trouble identifying extremely minute or intricate 
flaws in the surface of the strip steel. [29] struggled 
to correctly identify the most salient object in photos 
with several overlapping objects or complex 
textures. [30] viewed the salient objects with several 
non-salient interior holes as salient objects. Hence 
there is a need to develop a novel model to tackle 
these problems in the future. 
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3. Attenuative Unified U-Net with 

Conditional Patchmatch Algorithm 

for Edge Preserving Salient Object 

Detection 
Salient object detection, which is usually taken as an 
important preprocessing procedure in various 
computer vision tasks, has undergone a very rapid 
development with the blooming of Deep Neural 
Network (DNN). However, the results of down 
sampling techniques like pooling and striding are 
invariably bluish near the margins, which has 
significantly impaired the performance of salient 
object detection. Hence, a novel "Attenuative 

Unified U-Net with Conditional PatchMatch 

Algorithm for Edge Preserving Salient Object 

Detection" has been developed to effectively 
addresses the aforementioned problems with edge-
preserving salient object recognition. The current 
models for edge-preserving salient object detection 
have limitations when it comes to identifying the 
edge and salient regions from a cluttered 
background. This is because the scenario involves 
multiple connecting objects, such as a bird perched 
on a rock, and it is challenging to distinguish the 
edge from various connected objects due to shared 
boundaries. The low-level and high-level feature 
maps were alone not feasible for identifying the edge 
and salient region, and in situations with several 
connecting items, these feature maps cause 
discontinuities at the boundaries of connected 
objects, which results in fragmented edge maps. It is 
difficult to capture well-defined boundaries in more 
complicated objects with irregular shapes using low-
level characteristics alone. Therefore, Attenuative 
Unified Backpropagated Entropy U-Net, a novel 
elucidate network, is presented. It incorporates an 
Attention Mechanism that learns to assign weights 
to various spatial locations or channels of the feature 
maps, emphasizing features or regions that are 
judged most relevant for edge and salient region 
detection. The Cascaded Laplace pyramid, which 
combines the series of Laplacian pyramids to 
decompose an image into a series of band-pass 
filtered versions with each level containing details at 
a specific scale, is incorporated into the Unified U-
Net's design to handle multiple types of information 
(depth, edge, and salient regions) simultaneously. 
This enables the network to process the image at 
multiple scales, which is essential for capturing 
features at different sizes, thereby effectively 
captures the contextual information and depth 
features from the edge and salient region at different 
scales and levels of complexity. Then the 
Backpropagated Entropy Loss Function is 

developed to encourage the network to provide an 
overall fused image output that is both accurate and 
confident, by defining a weighting factor for each 
map (depth, edge and salient region) depending on 
its importance in varied parts of image. The 
weighted total of the individual backpropagated 
entropy losses is used to calculate the overall 
entropy loss. Backpropagation is used to update the 
model's weights during training in order to minimize 
the backpropagated entropy loss. The depth map, 
edge map, and salient area map are combined in the 
U-Net's final output layer to create an overall fused 
image. Moreover, the current cross-modal network 
is unable to handle the discontinuity problem 
because the edges found in the RGB color channels 
do not perfectly align with the depth discontinuities. 
This results in differences between the edge map and 
the depth map, making it difficult to accurately 
detect edges and fuse them with the salient region 
for improved salient object detection. Hence, a novel 
Conditional PatchMatch Random Field Algorithm 
for solving the depth discontinuity problem is 
presented. This algorithm combines the advantages 
of contextual modeling with the effectiveness of 
Patch Match with the ability to search for similar 
patches throughout the image by repeatedly 
propagating matches from nearby patches. The 
relationships between the matched patches and their 
surrounding regions are taken into account by 
Conditional Random Field, which improves the 
PatchMatch outcomes. Thus, by offering superior 
completions or modifications in depth map 
reconstruction, the CPRMF addresses the depth 
discontinuity issue and improves the U-Net output 
with accurate salient object prediction. 

 
Fig.1.  Block diagram of the proposed model 

 
Fig.1 illustrates the block diagram of the proposed 
model. Salient object detection uses RGB-D picture 
data as the input. The detection process starts with 
preprocessing, where noise is reduced and the depth 
value is refined using Gaussian smoothening. Then, 
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the processed image is send to predict the depth and 
edge maps using the Attenuative Unified 
Backpropagated Entropy U-Net. The Cascaded 
Laplace pyramid, which combines the sequence of 
Laplacian pyramids to deconstruct an image into a 
succession of band-pass filtered variants, is 
incorporated into the Unified U-Net. Then, the 
Backpropagated Entropy Loss Function is defined to 
encourage the network to produce an overall fused 
image output that is both accurate and confident. 
Finally, the CPMRF algorithm is incorporated 
within U-Net, which solves the depth discontinuity 
problem by combining the benefits of Patch Match 
efficiency and CRFs' contextual modeling.  
3.1. RGB-D Salient Object Detection  
With a small modification, RGB-D salient object 
identification is directly performed using this 
structure. In contrast to RGB image salient object 
detection, RGB-D image salient object detection 
requires an additional input (depth). Consequently, 
use a backbone network to add depth feature inputs. 
3.2. Pre-processing 
Preprocessing is the first stage of salient object 
recognition, where Gaussian smoothening is used to 
lower noise and improve depth values. Let's 
represent the Gaussian smoothing process 
mathematically: 
Given an input image I, the output of the Gaussian 
smoothing operation 𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑  is computed as per 
equation (1): 

𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑(𝑥, 𝑦) = 𝑘
𝑖=−𝑘

  𝑘
𝑗=−𝑘

𝐺(𝑖, 𝑗, 𝜎) ⋅ 𝐼(𝑥 +

𝑖, 𝑦 + 𝑗)                      (1) 
where, 𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑(𝑥, 𝑦) is the pixel value at position 
(𝑥, 𝑦) in the smoothed image, 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) is the 
position’s pixel value at (𝑥 + 𝑖, 𝑦 + 𝑗) in the original 
image, 𝐺(𝑖, 𝑗, 𝜎) is the 2D Gaussian kernel having 
standard deviation 𝜎, and 𝑘 is the extent of the filter 
(kernel size). The kernel size determines the range 
of pixels to consider for the smoothing. 
The 2D Gaussian kernel 𝐺(𝑖, 𝑗, 𝜎) is defined in 
equation (2): 

𝐺(𝑖, 𝑗, 𝜎) =
1

2𝜋𝜎2 ⋅ 𝑒−(𝑖2+𝑗2)/(2𝜎2)                                          
(2) 

Here, 𝜎 controls the spread of the Gaussian 
distribution, and a larger 𝜎 results in a wider 
smoothing effect. Thus, the convolution of the input 
image with a 2D Gaussian kernel produces a 
smoothed version of the image using the Gaussian 
smoothing process, which also helps to improve the 
quality of depth measurements and lower noise. 

3.3. Attenuative Unified U-Net with 

Conditional PatchMatch Algorithm 
The preprocessed image is given as the input to U-
Net to detect the salient region with edge and depth 
features effectively. Biomedical picture 
segmentation is the focus of U-Net, a CNN 
architecture. Salient object detection and other 
semantic segmentation tasks have made extensive 
use of it. Salient object detection seeks to locate and 
extract from an image the objects that are most 
visually striking and significant. 

 
Fig. 2.  U-Net’s Design of the proposed model 

 
Fig. 2 shows the design of the U-Net for the 
proposed Attenuative Unified U-Net with 
Conditional PatchMatch Algorithm for Edge 
Preserving Salient Object Detection model. The 
input is send to the U-Net input layer first, then the 
attention mechanism is operated to apply weights. 
Next the Cascaded Laplace Pyramid is incorporated 
to handle depth, edge, and salient regions. Next, the 
network is motivated to create the Backpropagated 
Entropy Loss Function to generate an overall fused 
image output. In the U-Net’s output layer, for the 
depth discontinuity problem, the CPMRF approach 
combines the benefits of contextual modeling with 
the efficiency of Patch Match. 
The Attention Mechanism, which learns to apply 
weights to various spatial locations or channels of 
the feature maps, is merged with the Attenuative 
Unified Backpropagated Entropy U-Net approach to 
emphasize regions or features that are regarded most 
relevant for edge and salient region detection. The 
attention mechanism is useful in encoder-decoder 
architectures such as the U-net since it gives 
localized classification information as opposed to 
global classification. This enables various network 
segments in U-net to concentrate on segmenting 
distinct objects. Additionally, the network is trained 
to recognize specific items in a picture with correctly 
labeled training data. The attention gate operates by 
applying a function that weights the feature map 
based on each class, tuning the network to 
concentrate on a specific class and, as a result, focus 
on specific objects in an image. The attention 
mechanism is described by equation (3), 

  

Attenuative Unified 

Backpropagated Entropy U-Net 

CPMRF 
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𝑞𝑎𝑡𝑡
𝑙 = 𝜓𝑇 (𝜎1(𝑊𝑦

𝑇𝑦𝑖
𝑙 + 𝑊𝑔

𝑇𝑔𝑖 + 𝑏𝑔)) + 𝑏𝜓      (3) 
where 𝑦𝑙 is the features from the contracting path 
and 𝑔 is the gating signal. 
 Then the Cascaded Laplace pyramid is 
incorporated into the Unified U-Net's design to 
handle depth, edge, and salient regions. This allows 
the network to process the image at multiple scales. 
Then, by adding extra output channels to the decoder 
network, which effectively predict the depth and 
edge maps with the salient region at different scales, 
the depth and edge maps with the salient region are 
created simultaneously from a single input image 
based on the contextual information and depth cues. 
The Laplace Operator is defined in equation (4), 

𝑙  𝑖 
𝑛 = − ∑ (∆𝑋𝑖 log(∆𝑃𝑖) + (1 −

𝑠𝑖𝑧𝑒(𝑋)
𝑖=0

∆𝑋𝑖)𝑙𝑜𝑔(1 − ∆𝑃𝑖))                             (4) 
where, ∆ signifies the Laplace operation. The 
Laplace Operator is initially utilized to determine 
the boundaries of the saliency map and ground truth 
using the operation to obtain more accurate salient 
object boundaries.  
Encoder: 

Input: X (Original Input Image) 
Encoder Layer 1: H1=ConvBlock (X,64) 
Pooling Layer 1: P1=MaxPooling (H1) 
Laplace Pyramid Level 1: L1=LaplacePyramid 
(X,32) 
Concatenate 1: C1=Concatenate (P1, L1) 
Encoder Layer 2: H2=ConvBlock (C1,128)  
Pooling Layer 2: P2=MaxPooling (H2) 
Laplace Pyramid Level 2: L2=LaplacePyramid (P1
,16) 
Concatenate 2: C2=Concatenate (P2, L2) 
… (Continue the encoder structure)  
Decoder: 

 … (Continue the decoder structure) 
UpSampling Layer 3: U3=UpSampling(C2) 
Decoder Layer 3: D3=ConvBlock(U3,64) 
Output Layer: Y=Conv2D (D3, num_classes, (1,1), 
activation=′softmax′)  
Here, ConvBlock represents a series of 
convolutional layers, MaxPooling represents the 
max-pooling operation, LaplacePyramid represents 
the Laplace pyramid processing, and Concatenate 
represents the concatenation operation. 
The network is then encouraged to produce an 
overall fused image output that is both accurate and 
confident by developing the Backpropagated 
Entropy Loss Function. The overall entropy loss is 
processed as the weighted sum of the individual 
backpropagated entropy losses. To diminish the 
backpropagated entropy loss, the model's weights 
are updated via backpropagation during training. 
Equation (5) shows the backpropagation process, 

𝑊𝑖 = 𝑊𝑖−1 − 𝛼(
𝜕𝑒𝑟𝑟𝑜𝑟

𝜕𝑊𝑖 

)                                      (5) 

Where, 𝑊𝑖 is the new weight, 𝑊𝑖−1 is the out weight, 
and 𝛼 is the learning rate. 
In the U-Net's final output layer, the depth map, edge 
map, and salient area map are combined to produce 
an overall fused image. Let Y be the U-Net's output, 
𝑌𝑑𝑒𝑝𝑡ℎ be the depth map, 𝑌𝑒𝑑𝑔𝑒 be the edge map, and 
𝑌𝑠𝑎𝑙𝑖𝑒𝑛𝑡  be the salient area map, which is defined in 
equation (6)(7)(8). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠𝑑𝑒𝑝𝑡ℎ =

−
1𝑁 𝐶

𝑁𝑖=1 𝑗=1
 𝑌𝑑𝑒𝑝𝑡ℎ(𝑖, 𝑗). log (𝑌(𝑖, 𝑗))                    (6) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠𝑒𝑑𝑔𝑒 =

−
1𝑁 𝐶

𝑁𝑖=1 𝑗=1
 𝑌𝑒𝑑𝑔𝑒(𝑖, 𝑗). log (𝑌(𝑖, 𝑗))                        (7) 

   𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠𝑠𝑎𝑙𝑖𝑒𝑛𝑡 =

−
1𝑁 𝐶

𝑁𝑖=1 𝑗=1
 𝑌𝑠𝑎𝑙𝑖𝑒𝑛𝑡(𝑖, 𝑗). log (𝑌(𝑖, 𝑗))                    (8) 

where N is the count of pixels, C is the count of 
classes, and 𝑌(𝑖, 𝑗) is the predicted probability for 
class j at pixel i. The overall entropy loss is defined 
in equation (9), 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 =

−
1𝑁 𝐶

𝑁𝑖=1 𝑗=1
𝑌𝑑+𝑒+𝑠(𝑖, 𝑗). log (𝑌(𝑖, 𝑗).  𝑤𝑑+𝑒+𝑠        (9) 

where,  𝑤𝑑+𝑒+𝑠 is the weights assigned to the depth, 
edge, and salient maps, respectively and 𝑌𝑑+𝑒+𝑠 is 
the probability of depth, edge, and salient maps. 
The backpropagation algorithm is then used to 
update the model's weights to minimize the overall 
entropy loss. This involves computing the gradients 
of the overall entropy loss regarding the model's 
parameters and adjusting the parameters in the 
direction that reduces the loss. 

𝑌 = 𝑤𝑑𝑒𝑝𝑡ℎ. 𝑌𝑑𝑒𝑝𝑡ℎ + 𝑤𝑒𝑑𝑔𝑒 . 𝑌𝑒𝑑𝑔𝑒

+ 𝑤𝑠𝑎𝑙𝑖𝑒𝑛𝑡. 𝑌𝑠𝑎𝑙𝑖𝑒𝑛𝑡              
𝑌 =  𝑤𝑑+𝑒+𝑠. 𝑌𝑑+𝑒+𝑠          (10) 

Equation (10) represents a linear combination of the 
depth, edge, and salient maps with their respective 
weights to produce the final fused image 𝑌. Note 
that the weights 𝑤𝑑𝑒𝑝𝑡ℎ, 𝑤𝑒𝑑𝑔𝑒, and 𝑤𝑠𝑎𝑙𝑖𝑒𝑛𝑡 
determine the influence of each map in the final 
output. 
For the depth discontinuity problem, the CPMRF 
approach is described; this approach combines the 
benefits of contextual modeling with the efficiency 
of Patch Match. The PatchMatch algorithm 
iteratively propagates matches from nearby patches. 
The matching cost C for a pair of patches (𝑝, 𝑞) is 
computed, and the algorithm updates the matches 
based on the cost. The matching cost could involve 
measures like pixel differences or feature 
similarities. The matching cost is used to iteratively 
update the best-matching patches. After obtaining 
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initial PatchMatch results, CRFs are applied to 
refine the results by considering contextual 
information. The CRF model aims to minimize this 
energy function by adjusting the depth values. 
Equation (11) explains the CPMRF process, 

𝐸(𝑋, 𝑝, 𝑞) = ᵢ𝛹𝑑𝑎𝑡𝑎(𝑋𝑖) + ᵢ, 𝑗𝛹𝑠𝑚𝑜𝑜𝑡ℎ(𝑋𝑖, 𝑋𝑗) +

𝐶(𝑝, 𝑞)                     (11)                                   
where, 𝑋 is the set of random variables 
corresponding to the depth values of pixels, 𝛹𝑑𝑎𝑡𝑎

(𝑋𝑖) is the data term that encourages the depth 
values to be similar to the PatchMatch results, and 
𝛹𝑠𝑚𝑜𝑜𝑡ℎ(𝑋𝑖, 𝑋𝑗) is the smoothness term that 
encourages smooth transitions between neighboring 
pixels.  
The CPMRF algorithm integrates the PatchMatch 
results and CRF refinement. The refined depth map 
𝐷𝑟 is represented in equation (12) as, 

𝐷𝑟 = ᵢ𝛹𝑑𝑎𝑡𝑎(𝑋𝑖) + ᵢ, 𝑗𝛹𝑠𝑚𝑜𝑜𝑡ℎ(𝑋𝑖, 𝑋𝑗) +

𝐶(𝑝, 𝑞). 𝐷𝑖                                  (12) 
where 𝐷𝑖 is the initial depth map obtained from the 
PatchMatch algorithm. This objective combines the 
matching cost from the PatchMatch results and the 
smoothness term from the CRF model. The refined 
depth map 𝐷𝑟 obtained from the CPMRF algorithm 
is used to enhance the U-Net's output. This involve 
combining the refined depth map with the U-Net's 
predictions to enhance the accuracy of salient object 
prediction. The final output 𝑌𝑜𝑢𝑡𝑝𝑢𝑡 is shown in 
equation (13), 
𝑌𝑜𝑢𝑡𝑝𝑢𝑡 = (ᵢ𝛹𝑑𝑎𝑡𝑎(𝑋𝑖) + ᵢ, 𝑗𝛹𝑠𝑚𝑜𝑜𝑡ℎ(𝑋𝑖, 𝑋𝑗)

+ 𝐶(𝑝, 𝑞). 𝐷𝑖) + (𝑤𝑑+𝑒+𝑠. 𝑌𝑑+𝑒+𝑠) 
𝑌𝑜𝑢𝑡𝑝𝑢𝑡 = (𝐷𝑟 + 𝑌)   (13) 

 
Fig.3.  Flowchart of the proposed method 

Fig .3 describes the flowchart of the proposed 
method. First, the Attenuative Unified 
Backpropagated Entropy U-Net is introduced which 
integrates an Attention mechanism to assign weights 
to different spatial locations. Then, the Cascaded 
Laplace pyramid is incorporated with the U-Net 
which captures features at different sizes. Then, the 
Backpropagated Entropy Loss Function is defined to 
encourage the network to produce an overall fused 
image output that is both accurate and confident. 
Next, the CPMRF is introduced which combines the 

benefits of Patch Match efficiency and CRFs' 
contextual modeling.  
 

4. Result and Discussion 
This section contains a comprehensive analysis of 
the implementation outcomes, evaluates the 
performance of the proposed system, and includes a 
comparison segment to demonstrate the suitability 
of the proposed system for Attenuative Unified U-
Net with Conditional PatchMatch Algorithm in 
Edge Preserving Salient Object Detection. 
 
4.1 System configuration 
The proposed system is experimented with in 
MATLAB, and this section gives a full description 
of the implementation findings and the proposed 
system's performance, as well as a comparative 
analysis to confirm that the proposed system works 
well. 
Software : MATLAB 
OS : Windows 10  
Processor : Intel i5 

RAM : 8GB  

4.2 Simulated outcomes of the proposed 

model 
This section highlights the simulated output of the 
proposed model, Attenuative Unified U-Net with the 
Conditional PatchMatch Algorithm for Edge 
Preserving Salient Object Detection, starting from 
the initial setup. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)                                          

Fig.4.  Inputs taken from the dataset. 
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Fig. 4 shows the inputs taken from the datasets. Here 
the depth and the RGB image are taken together 
from the RGB-D dataset. Totally five different input 
samples are taken for the implementation to get 
better results. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig.5.  Edge Detected image 
Fig.5 displays the edge detected image of the given 
inputs. The edge detected image is obtained from the 
smoothed depth image. This process is done by the 
Attenuative Unified Backpropagated Entropy U-Net 
method, which integrates an Attention Mechanism 
that learns to allot weights to diverse spatial 
locations or channels of the feature maps, 
highlighting regions or features that are deemed 
most relevant for edge and salient region detection. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)                                              

Fig.6.  Laplacian Levels 
Fig.6  demonstrates the Laplacian levels of the given 
samples. A variety of information types can be 
handled by the Unified U-Net, which includes the 
Cascaded Laplace pyramid, which breaks down an 
image into a number of band-pass filtered versions 
by combining the series of Laplacian pyramids. 
Totally, four laplacian levels were taken place from 
level 0 to level 3, which helps to obtain clear 
boundary images. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig.7.  CPMRF Algorithm 
 

Fig.7 illustrates the Conditional PatchMatch 
Random Field Algorithm (CPMRF) applied to the 
samples taken. The CPMR provides a solution to the 
depth discontinuity problem. PatchMatch repeatedly 
propagates matches from surrounding patches to 
discover comparable patches in the remaining 
section of the image. By considering the connections 
between the matched patches and their surrounding 
areas, CRF enhances the PatchMatch results. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 8.  Output 
Fig.  8 elucidates the outcome of the sample images 
after the completion of each step. Three CPMRF 
levels were taken from level 1 to level 3 and finally, 
the output is displayed. The proposed method's 
output is better and more effective when compared 
with other existing methods. 
4.3 Performance metrics of the proposed system 

In this section, a detailed clarification of the efficacy 
of the suggested technique and the achieved 
outcome were explained. 

 
Fig. 9.  MaxF of the proposed system 

The MaxF of the proposed system for a diverse 
count of epochs has been shown in Fig. 9. The MaxF 
of the proposed system gains a maximum value of 
0.96 when the count of epochs is increased to 50 and 
gains a minimum value of 0.62 when the count of 
epochs is abridged. In salient object recognition, the 
combination of an Attenuative Unified U-Net with a 
Conditional PatchMatch Algorithm probably 
improves MaxF by strengthening the network's 
capacity to extract pertinent features, adjust to 
changing circumstances, and maintain edges 
efficiently. 

 

 
Fig.10.  MAE of the proposed system 

  
The MAE of the proposed system achieves a 
minimum value of 0.21 when the number of epochs 
is increased to 50 and attains a maximum value of 
0.64 when the number of epochs is reduced. This is 
shown in Figure 10, where the MAE of the proposed 
system varies with the number of epochs. When it 
comes to salient object recognition, attenuative 
backpropagated entropy U-Net techniques help 
reduce MAE. Accurate output images can be 
obtained using this. The MAE error rate in salient 
object detection is decreased by attenuating non-
salient regions. 

 
Fig. 11.  Accuracy of the proposed system 

Fig. 11 displays how accurate the suggested method 
is at changing the number of epochs. When more 
epochs are used, the accuracy of the suggested 
system reaches a maximum value of 0.9625 and a 
value of 0.83 when 30 epochs are used. The 
effectiveness of CPMRF in locating estimated 
nearest neighbors is well established. Incorporating 
this approach allows information to propagate 
throughout the image quickly and effectively, 
improving accuracy. 

 
Fig. 12.  Precision of the proposed system 

Fig. 12 illustrates the performances of the precision 
of the proposed model. When the epoch value is 1 it 
achieves the maximum precision value of 0.96 and 
while the iteration value is 50, it achieves the 
precision value of 0.83 when the epoch is 30. The 
model attains an equilibrium between capturing 
minute features and taking into account the wider 
environment by employing the CPMRF algorithm 
for contextual refinement and the U-Net architecture 
for edge preservation, which both contribute to 
increased precision. 
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Fig. 13.  Recall of the proposed system 

The Fig. 13 illustrates the recall of the proposed 
system when the number of epochs is varied. The 
proposed method achieves a maximum recall of 
0.9610 when the number of epoch is 50 and attains 
a recall of 0.75 when the number of epochs is 30. 
Attenuative Backpropagated Entropy U-Net 
mechanisms aid in lessening the effects of particular 
elements or qualities. This is useful when the model 
has to concentrate on particular areas or details 
inside the image. Attenuating non-salient regions 
improves recall in salient object detection by 
reducing false negatives. 

 
Fig. 14. F1 Score of the proposed system 

The Fig. 14 depicts the F1 Score of the proposed 
system for altering the number of epoch. When the 
number of epochs is 50, the F1 score of the proposed 
system reaches a maximum of 0.9735 and achieves 
a F1 score of 0.85 when the number of epochs is 30. 
The Attenuative Unified U-Net and Conditional 
PatchMatch pay attention to prominent regions and 
preserve edges, and also refines the segmentation 
findings, which helps to improve the F1 Score. 
4.4 Comparison of Proposed Model with 

Previous Models  
This section illustrates the outcomes based on 
several metrics, emphasizing the effectiveness of the 
proposed model by comparing it with existing 
methodologies. The comparisons are made from 
previous techniques with various metrics: accuracy, 
precision, recall, F1 score, MaxF, and mean absolute 
error (MAE). Comparisons are made with the 
existing techniques such as Pixel-wise contextual 
attention Network (PiCANet), Edge Guidance 
Network (EGNet), Cascaded Partial Decoder 
(CPD), and Deeply Supervised Structure (DSS). 

 
Fig. 15.  Comparison of the MaxF of the proposed 

model 
 
Fig. 15 exemplifies the comparison of the MaxF of 
the proposed model with existing models. The 
existing models such as PiCANet, EGNet, CPD, and 
DSS gains a MaxF value of 0.915, 0.921, 0.894, and 
0.88 respectively. Computed with existing models 
the proposed model gains a MaxF of 0.96. 

 
Fig. 16. Comparison of the MAE of the proposed 

model 
 The comparison of the suggested model's 
MAE with that of current models is shown in Figure 
16. The MAE values of the current models, 
including PiCANet, EGNet, CPD, and DSS, are 
0.65, 0.54, 0.35, and 0.65, respectively. When 
compared to current models, the suggested model 
has a mean average error of 0.21. 

 
Fig. 17.  Comparison of the Accuracy of the 

proposed model 
Figure 17 illustrates the comparison of the accuracy 
of the proposed model with existing models. The 
existing models such as PiCANet, EGNet, CPD, and 
DSS achieves an accuracy value of 0.90, 0.92, 0.925, 
and 0.953 respectively. Compared with existing 
models the proposed model achieves an accuracy of 
0.9625. 

 
Fig. 18.  Comparison of the Precision of the 

proposed model 
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Figure 18 illustrates the comparison of the precision 
of the proposed model with existing models. The 
existing models such as PiCANet, EGNet, CPD, and 
DSS achieves a precision value of 0.89, 0.90, 0.92, 
and 0.94 respectively. Compared with existing 
models the proposed model achieves a precision of 
0.96. 

 
Fig. 19.  Comparison of the Recall of the proposed 

model 
Fig. 19  illustrates the comparison of the recall of the 
proposed model with existing models. The existing 
models such as PiCANet, EGNet, CPD, and DSS 

achieves a recall value of 0.91, 0.92, 0.94, and 0.952 
respectively. Compared with existing models the 
proposed model achieves a recall of 0.9610. 

 
Fig. 20.  Comparison of the F1 Score of the 

proposed model 
Fig. 20 illustrates the comparison of the F1 score of 
the proposed model with existing models. The 
existing models such as PiCANet, EGNet, CPD, and 
DSS achieves a F1 score value of 0.913, 0.921, 
0.945, and 0.95 respectively. Compared with 
existing models the proposed model achieves a F1 
score of 0.9735. 

Table 1: Performance comparison of different methods 
Models MaxF MAE Accuracy Precision Recall F1 Score 

PiCANet 0.915 0.65 0.90 0.89 0.91 0.913 
EGNet 0.921 0.54 0.92 0.90 0.92 0.921 
CPD 0.894 0.44 0.925 0.92 0.94 0.945 
DSS 0.88 0.35 0.953 0.94 0.952 0.95 

Proposed 0.96 0.21 0.9625 0.96 0.9610 0.9735 

Table 1 shows the performance comparison table of 
different models. The proposed method yielded the 
highest MaxF of 0.96, while the existing methods 
such as PiCANet, EGNet, CPD, and DSS attained 
the MaxF of 0.915, 0.921, 0.894, and 0.88 
respectively. The proposed method yielded the 
lowest MAE of 0.21, while the existing methods 
such as PiCANet, EGNet, CPD, and DSS attained 
the MAE of 0.65, 0.54, 0.44, and 0.35 respectively. 
The proposed method yielded the highest accuracy 
of 0.9625, while the existing methods such as 
PiCANet, EGNet, CPD, and DSS attained the 
accuracy of 0.90, 0.92, 0.925, and 0.953 
respectively. The proposed method yielded the 
highest precision of 0.96, while the existing methods 
such as PiCANet, EGNet, CPD, and DSS attained 
the precision of 0.89, 0.90, 0.92, and 0.94 
respectively. The proposed method yielded the 
highest recall of 0.9610, while the existing methods 
such as PiCANet, EGNet, CPD, and DSS attained 
the recall of 0.91, 0.92, 0.94, and 0.952 respectively. 
The proposed method yielded the highest F1 Score 
of 0.9735, while the existing methods such as 
PiCANet, EGNet, CPD, and DSS attained the F1 
Score of 0.913, 0.921, 0.945, and 0.95 respectively. 
The comparison results confirm the superiority of 
the presented model over the existing methods. 

Overall, this section gives the detailed explanation 
of the results obtained by the proposed method 
which includes the system configuration, simulation 
output, performance of the proposed method, and 
the comparison of the proposed method with the 
existing methods. As a result, the generated model 
proved to be the most exact and precise compared to 
the other existing methods. 
 

5. Conclusion 
A simple yet effective Attenuative Unified U-Net 
with Conditional PatchMatch Algorithm for Edge 
Preserving Salient Object Detection was proposed 
here to overcome the issues in edge-preserving. 
First, Attenuative Unified Backpropagated Entropy 
U-Net, incorporated an Attention Mechanism by 
which the feature maps' various spatial locations or 
channels were trained to receive weights. Then, the 
Unified U-Net, which combined the Cascaded 
Laplace pyramid, combined the sequence of 
Laplacian pyramids to deconstruct an image into a 
series of band-pass filtered copies, was designed to 
handle many forms of information. The network was 
then encouraged to generate an overall fused image 
output that was both accurate and confident by 
defining the Backpropagated Entropy Loss 
Function. Finally, for the depth discontinuity 
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problem, the CPMRF algorithm, which combined 
the advantages of Patch Match efficiency and 
contextual modeling provided by CRFs. PatchMatch 
found similar patches in the remaining portion of the 
image by repeatedly propagating matches from 
nearby patches. CRF, which improve the 
PatchMatch results by taking into account the 
connections between the matched patches and the 
areas around them. Thus, the produced model turned 
out to be the most accurate and precise of all the 
previously developed models, scoring 0.9625 of 
accuracy, 0.96 of precision and yielded recall, 
MaxF, MAE and F1 score of 0.9610, 0.96, 0.21 and 
0.9735 respectively. 
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