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Abstract: -Fast and accurate weighing of the weighing systems used in industrial filling systems is of great 
importance in terms of increasing production capacity and maintaining product quality. In facilities that grind 
and process grain, machines and equipment are positioned horizontally and vertically on steel structures. 
Since these machines continuously perform grinding, transferring, filling, and emptying operations, they 
create continuous vibration in the mechanical systems they are connected to. Moving weighing systems are 
significantly affected by these mechanical systems. When the impact effect of pneumatic valves-controlled 
covers in moving weighing systems is added to these structural mechanical vibrations, there are significant 
waits and delays in weighing systems that measure performance. For this reason, in a performance 
measurement system in a flour mill, the measurement interval increases as the amount of weighing increases. 
For example, in a moving weighing system that performs 50 kg performance weighing, the measurement 
interval can increase up to 15 seconds, which is quite long. In this study, an applied study has been conducted 
to increase the weighing performance in moving weighing systems and to minimize the measurement interval. 
The data collection process in the study focuses on two main components: load cell data and IMU data. Thus, 
it is aimed to overcome the difficulties of traditional methods used in weighing systems, which are generally 
observed to be insufficient to combat slow and noisy data. The analysis techniques used in this study are 
Kalman Filtering, Dynamic Q and R Matrix Updates, Comparative Analysis and Statistical Analysis. The 
Kalman filter was used for the integration of Load cell and IMU data and was applied to filter out noise and 
oscillations in the weighing data and make more accurate weight estimates. The results obtained showed that 
the dynamic Kalman filtering method can provide faster and more accurate weighing results compared to 
traditional methods, with error rates varying between 0.4% and 1% for different combinations of Q and R 
values in measurements made on the scale. Dynamic Kalman filtering method effectively filters oscillatory 
and noisy load cell signals, with error rates of 0.7% to 1% for Q=0.02 and R=17 parameters, and error rates of 
0.4% to 0.7% for Q=0.07 and R=13 parameters. was able to obtain more accurate weight estimates. This study 
has shown that the dynamic Kalman filtering method is a potential method that can be used in industrial filling 
systems. This method can contribute to increasing production capacity and maintaining product quality by 
providing faster and more accurate weighing results. In this respect, the research has a unique contribution. 
This method provides a revolutionary development in industrial weighing systems and fills an important gap 
in the literature.  
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1. Introduction  
Mobile measurement systems are systems used to 

collect accurate and reliable data in dynamic 
environmental conditions. These systems are widely 
used in various application areas, for example, 
robotics, vehicle control, aircraft, marine vessels and 
mobile sensor networks. Fuzzy logic-based adaptive 
parameters are used to increase the performance of 

such systems. In today's modern industrial systems, 
weighing is a critical process control phase. In raw 
material and related sectors, the need for fast and 
precise weighing is increasing day by day. The grain 
industry is also at the forefront of these sectors [1], 
[2]. Active weighing systems are systems used in the 
grain industry to weigh products such as wheat, flour 
and bran during production, without interrupting 
production. Thanks to the efficiency systems with 
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advanced technological infrastructure, production-
related information such as capacity and efficiency 
values can be easily accessed at any time while 
production continues. In this context, it is critical that 
the measured values exactly match the real values. 
Even the slightest error in measured values can lead 
to huge financial losses in mass production factories. 
The use of the dynamic weighing method in the grain 
industry and related production systems provides an 
increase in the amount of product weighed per unit 
time due to the products being in motion. In this way, 
time and economy are saved [1], [3], [4]. In the 
dynamic weighing method, in order to reach the 
desired weighing speeds, the products must be 
weighed without stopping; However, mechanical 
vibrations and environmental harmonics may cause 
distortions in the measurement signal that vary 
depending on the speed of the moving system and the 
weight of the object to be measured [5]-[7], [17], 
[18], [27]-[30]. 

Load Cells are generally used as weight sensors in 
weighing systems. The combination of load cells 
with an oscillatory response due to their nature and 
the low-frequency disturbance caused by vibrations 
in the system results in a noisy measurement signal 
[6], [19], [31]. It is very difficult to separate these 
disturbing effects, which occur from mechanical and 
structural effects, from the measurement signal.  To 
correct the system response, filtering of the 
measurement signal is generally used [5]. Generally 
speaking, when we look at the literature, passive 
vibration reduction approaches are used in 
engineering applications when the general 
characteristics of vibration are known, but over time, 
both structural changes and modifications on the 
system may cause problems with low-frequency 
vibrations [8], [9], [20]-[32]. 

With the advancement of technology, new types 
of actuators and sensors are emerging, and with the 
cheaper computing technology, active vibration 
control has become applicable to many problems 
[10], [11], [32]. While different numerical models are 
designed to create active vibration control algorithms, 
it is important that the dynamic properties of the 
structure to be measured must be preserved 
throughout the control or measurement process. This 
enables the adjustment of some controllers used to 
reduce or characterize vibration, such as positive 
position feedback (PPF) [9], [11], while controls to 
be made with algorithms such as linear quadratic 
(LQ) [10], [12] or model estimation. [13], [14] enable 
results to be obtained in different ways. 

In industrial filling systems, especially in grain 
processing facilities, high-precision and high-speed 
weighing operations are critical for production 
efficiency and product quality. The continuous 

movement of machines and equipment in these 
facilities causes significant vibrations in the 
associated structural systems. These vibrations 
negatively affect the measurement accuracy of 
moving weighing systems, leading to delays and 
erroneous results in weighing processes. The impact 
effect of pneumatic valves, in particular, further 
exacerbates these negative effects. This study aims to 
investigate ways to improve weighing performance 
and reduce measurement times in moving weighing 
systems in grain processing facilities. To this end, 
dynamic parameters were determined using the 
Kalman filtering method with load cell and Inertial 
Measurement Unit (IMU) data. The primary 
objective of the study is to develop a model to obtain 
more accurate and faster weighing results, despite the 
adverse effects of vibrations and external factors 

2. Materıals and Methods 

In this study, MPU6050 was used as the IMU and 
STM32F407V series 168 MHz processor was used as 
the microcontroller. Figure 1 shows the 
microcontroller used in the study. Through this 
control card, the UART communication output was 
connected to the computer with a UART-USB 
converter and the module was made ready for data 
transfer. 

 
Fig. 1.  Data collection card used 

 The data collection module connection is 
seen in figure 2. The Control Card is placed in two 
different orientation positions on the mobile grain 
weighing system. The reason for using two different 
sensor modules was that the sensitivity of the 
acceleration movement in the Z axis would be low, 
and the two cards were placed at a 90-degree angle to 
each other. Thus, more accurate data was obtained. 
Both cards were placed in the chamber within the 
measurement system, thus creating a data collection 
environment that could absorb all the noise that the 
weighing system would be exposed to. 
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Fig. 2. Control system connected to active weighing 
system 

3. Results and Dıscussıons 

Figure 3 shows the acceleration values on the X 
axis from the data taken in the measurement 
environment. From the amplitude value given here, it 
can be seen that periodic accelerations or noise occur. 

 
Fig. 3. X-axis acceleration value of the mobile 
weighing system 

Figure 4 shows the acceleration amplitudes of the 
Y axis to which the control system is connected. 
When these values are compared with the X-axis 
acceleration values in the previous graph, it is seen 
that the oscillation is not much in the Y direction. 
This direction is actually 90 degrees perpendicular to 
the pneumatic valves. In this way, limitation in one 
direction affects the vibration. 

 
Fig. 4. Y-axis acceleration value of the mobile 
weighing system 

Figure 5 shows the Z axis acceleration value of 
the mobile weighing system. Here, it has been 
observed that in normal cases, no vibration is 
observed or the noise in the Z direction is very low 
due to the gravitational effect on the Z axis, but it has 
been observed that it has serious effects on the Z axis 
due to the knocking during opening and closing of 
the covers connected to the pneumatic pistons. This 

situation affects the weighing process extremely 
negatively. 

 
Fig. 5.  Z axis acceleration value of the mobile 
weighing system   

These noises in the Z axis are the noises created 
by the system's moving elements (pneumatic 
systems, etc.) and the released elements in the system 
(joints, etc.). These noises completely change the 
measurement characteristics. Therefore, it was 
concluded that it would be more accurate to 
determine the parameters by taking into account the 
effects of these elements in order for the selected 
filters to be adaptive. 

Noise was eliminated by applying a Kalman filter 
on the Z-axis speed and position displacement values 
in the active weighing system. After removing the 
noise, RMS values were obtained for speed and 
position change. Accordingly, the RMS values of 
speed and position change are RMSpeed = 0.51; 
RMSposition = 0.46. 

Figure 6 shows the Z axis speed change value 
over rms value graph in the active weighing system. 
When this graph is compared with the previous 
graph, the noise effect of moving and free elements 
on the measurement between measurement periods is 
clearly seen. If you pay attention, the noise 
characteristics in each period are not the same. 
Therefore, if the noises within a 120-second 
measurement are taken as reference, the filter 
parameters can be determined as accurately as 
possible. As can be seen here, position changes occur 
in both directions of the axis and position changes are 
very high due to moving free elements during 
measurement. Here too, taking displacement values 
above the RMS values enabled the grouping of the 
data's measurement periods. 

 
Fig. 6. Z axis Speed and Position Change Value in the 
active weighing system is above the RMS Value 

Within the scope of this study, adaptive 
adjustment of the fuzzy logic-based measurement 
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noise covariance matrix R or process noise 
covariance matrix Q was provided. Adaptively 
specifying these parameters improves Kalman filter 
performance and prevents the filter from biasing 
when R or Q are uncertain.  

In dynamic weighing systems, mechanical covers 
create delays in weighings due to physical constraints 
during stops and starts. These physical constraints 
and time delays impose certain acceptable time 
intervals for measurements. For example, in grain 
performance weighing systems, weighing intervals 
vary between 5 and 15 seconds. Generally, the first 4-
5 seconds of this interval is due to mechanical 
constraints. 

This fuzzy logic based adaptive Kalman filter was 
tested on a digitally developed weighing system. It 
has been observed that the fuzzy logic based adaptive 
Kalman filter gives much better performance at 
acceptable phase shift. 

An algorithm using fuzzy logic principles has 
been created to adaptively adjust the Q and R matrix 
of the noise covariance matrix. Speed and position 
data derived from acceleration data received from the 
IMU sensor were used in the fuzzy logic design. 
Speed and position data here play a key role in 
determining noise during measurement. The obtained 
average speed and position data were used as fuzzy 
logic input set membership function data. At this 
stage, minimum and maximum speeds and position 
displacements are given in Table 1. 

Table 1.  Inimum and  Maximum Values of  
Speed and  Position Data 

 Minimum Maxsimum Average 
Speed 0 5 3,71 
Position 0 13 8,88 

At this stage, a fuzzy logic inference system with 
two inputs and two outputs is designed. This system 
was made for both Mamdani and Sugeno. Speed and 
position data were determined as inputs, and Q and R 
values were determined for the outputs. For 
Mamadani, the “AND” method and minimum value 
were determined for two entries, and the center of 
gravity method was selected in the rinsing process. 
Figure 7. A visual representation of the Mamdani 
type fuzzy logic inference system is given. The 
selected features are also shown on the image. 

 
Fig. 7. Visual demonstration of mamdani type fuzzy 
logic inference system 

Speed and location data were used as input. In 
Table 2, the velocity input membership function data 
is given, and in Figure 8, the graphical representation 
of the velocity input membership function data is 
given. Here, the input data is divided into five fuzzy 
sets and determined as smallest (vs), small (s), 
medium (m), high (h) and highest (vh). Triangular 
membership function was preferred. While 
determining the minimum and maximum values of 
the data, 0 and the maximum value were determined 
by rounding the highest speed value read on the 
weighing system to the upper integer. 

Table 2.  Velocity Input  Membership 
Function Data 

Velocity Input Membership Function 

Vs 0 0,75 1,50 

S 0,25 1,5 2,5 

M 1,5 2,5 3,5 

H 2,5 3,5 4,75 

Vh 3,5 4,25 5 

 

 
Fig. 8. Graphical representation of velocity entry 
membership function data 
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Figure 9 shows the graphical representation of the 
distance input membership function. As in the 
velocity table, a triangular membership function was 
used here and the data was determined by rounding 
the data from 0 to the maximum displacement data to 
the upper integer. Here, the creation of a triangular 
membership function has been determined entirely 
based on experience. 

 
Fig. 9. Graphical representation of Q Parameter 
output membership function 

Figure 10 shows the graphical representation of 
the Q parameter output membership function. 
Determining the output of this parameter is based 
entirely on observation. The lowest Q value 
completely eliminates noise by making a very flat 
prediction at the filter output and creates a noticeable 
phase shift. The lowest acceptable Q value observed 
on the scale is 0.001. This value is the minimum 
value that can be used if there is very high speed and 
very large positional displacement. If it is for the 
lowest speed and smallest positional displacement, 
the highest Q value that can be used is 0.1. Fuzzy 
inference will make an inference in the meantime. 

 
Fig. 10. Graphical representation of distance entry 
membership function 

Figure 11 shows the graphical representation of 
the R parameter output membership function. As can 
be seen from here, the change in R affects the output 
with a linear change, not with an exponential change 
like Q. 

 

 
Fig. 11. R parameter output membership function 
graphical representation  

 Table 3 gives the rule table defined for output. 
While creating the rule table defined for the output, 
the output definition according to the inputs was 
determined according to the effect of 40% speed and 
60% position change. Since this proportional 
determination has a greater effect of spatial 
displacement on noise than speed, output 
memberships were determined according to this rule.  

Table 3.  Rules Definations 

 Velocity Distance   Q R 
1 VS VS VH S 
2 VS S H S 
3 VS M H M 
4 VS H M M 
5 VS VH M H 
6 S VS VH S 
7 S S H S 
8 S M M M 
9 S H M M 

10 S VH S H 
11 M VS H S 
12 M S H M 
13 M M M M 
14 M H S H 
15 M VH S H 
16 H VS H M 
17 H S M M 
18 H M M H 
19 H H S H 
20 H VH VS H 
21 VH VS M M 
22 VH S M M 
23 VH M S H 
24 VH H S H 
25 VH VH VS H 

 
 The distribution of these inferences made for 
Mandani on the membership functions is given in 
figures 12, 13, 14 and 15. 
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Fig. 12. Mamdani Fuzzy Logic Inference Example 
Input Speed = 0.5, Position = 1 for Q = 0.07 ,  R = 6 

 
Fig. 13. Mamdani Fuzzy Logic Inference Example 
Input Speed = 2.5, Position = 6.5 for Q = 0.028 ,  R 
= 12 

 
Fig. 14. Mamdani Fuzzy Logic Inference Example 
Input Speed = 4,9,  Position = 12.9  for Q = 0.005, R 
= 16 

 
Fig. 15. Mamdani Fuzzy Logic Inference Example for 
Input Speed = 3.71 and Position = 8.8 ,  Q = 0.02 
and R = 12 

 The same fuzzy logic inference was also made in 
the Sugeno method, which gives linear output. The 
distribution of these inferences made for Sugeno on 
the membership functions is given in figures 16, 17, 
18, and 19. 

 

Fig. 16. Sugeno Fuzzy Logic Inference Example for 
Input Speed=0.5 and Position=1, Q=0.1 R=2 

 

Fig. 17. Sugeno Fuzzy Logic Inference Example for 
Input Speed=2.5 and Position=6.5, Q=0.09 R=8 
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Fig. 18. Sugeno Fuzzy Logic Inference Example for 
Input Speed=3.7 and Position=8.8, Q=0.07 R=13 

 

Fig. 19. ugeno Fuzzy Logic Inference Example for 
Input Speed=4.9 and Position=12.9, Q=0.001 R=17 

Figure 20 shows the Sugeno fuzzy logic software 
interface made in Python. 

 
Fig. 20. Mamdani Fuzzy Logic Software Made in 
Python Programming Language 

When the Table 4 is examined for the fuzzy 
inference results obtained with Mamdani and 
Sugeno, it is seen that the linear inference results 
obtained from Sugeno are more meaningful and 
closer to reality. 

Table 4.  Table Type Styles 

 Velocity Position Q R 
Input Sugeno    
1 0,5 1 0,1 2 
2 2,5 6,5 0,09 8 
3 4,9 12,9 0,001 21 
4 3,71 8,8 0,07 13 
Input Mamdani    
1 0,5 1 0,07 6 
2 2,5 6,5 0,028 12 
3 4,9 12,9 0,005 16 
4 3,71 8,8 0,02 17 

Figure 21 shows Mamdani fuzzy inference results 
and original weighing data graph, final weighing 
result graph using Kalman filter with parameter 
defined for Q=0.02 and R=17. Here, it has been 
observed that for the coefficients R = 17, Q = 0.02, 
the error rate is 0.7% in 6 weighings, 0.9% in 7 
weighings and 1% in 8 weighings. The reason for the 
increase in the error rate can be attributed to the 
increased phase lag between the raw data and the 
filtered data as the system better suppresses noise. As 
the phase shift increases, the error also increases 
significantly, resulting in a longer weighing time. The 
data obtained as a result of weighing were as shown 
in Figures 22 and 23, respectively. 

 
Fig. 21. R:17 Q:002 Number of Weighings:6 

 
Fig. 22. R:17 Q:002 Number of Weighings:7 
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Fig. 23.  R:17 Q:002 Number of Weighings:8 

Figure 24 shows the original weighing data 
and graph of Sugeno fuzzy inference results, data 
graph results using Kalman filter with parameter 
defined for Q=0.07 and R=13. It has been observed 
that the system works successfully with an error rate 
of 0.4% in 6 weighings, 0.6% in 7 weighings and 
0.7% in 8 weighings for the coefficients R = 13, Q = 
0.07. The data obtained as a result of weighing were 
as shown in Figures 25 and 26, respectively. 

 
Fig. 24. R:13 Q:007 Number of Weighing:6 

 
Fig. 25. R:13 Q:007 Number of Weighing:7 

 
Fig. 26.  R:13 Q:007 Number of Weighing:8 

The available studies focusing on dynamic 
parameter estimation with the Kalman filter method 
using acceleration, velocity and position data are 
presented in the Table 5. 

Table 5.  Comparison of This Study with the 
Literature 

Refrenc
es 

Main 
Theme 

Application Area 

[1], [2], 
[5], [6], 

[7], 
[17], 
[18], 
[20], 
[27], 
[28], 
[29], 
[30], 

Dynamic 
Weighing 

Continuous mass 
measurement in 

checkweighers, dynamic 
compensation, dynamic 

load identification 

[1], 
[21], 
[22], 
[23], 
[24], 
[25], 
[26] 

Kalman 
Filter 

attitude estimation, state 
estimation, adaptive 

filtering 

[8], [9], 
[10], 
[11], 
[12], 
[13], 
[14], 
[15], 
[16], 

Mechanic
al 

Vibration 

LQG control of vibrations 
in flexible structures, 

vibration control of active 
structures. 

This 

study  

Kalman 
filter, 

mobile 
measurem
ent, load 
cell, IMU 

sensor, 

As can be seen above, this 
study shares common 

aspects with other studies 
in the literature, but it 
offers originality in its 

practical application. By 
eliminating environmental 
and structural vibrations 
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mobile 
grain, 

weighing 
system, 

Estimatio
n, 

Measure
ment, 
fuzzy 
logic 

inference 
system, 

membersh
ip 

function, 
accelerati

on, 
velocity, 
position 

that occur during dynamic 
grain weighing, it 

accelerates the weighing 
process. This is achieved by 

estimating dynamic 
parameters using the 

Kalman filter method with 
raw load cell data and 

acceleration, speed, and 
position data obtained from 

the IMU sensor. This 
approach allows for faster 

weighing. 

 

4. Conclusıons 

Active farming systems produce very noisy 
measurement results due to both the mechanical and 
structural vibrations of their environment and various 
external factors. This can lead to deviations in 
measurement values and sometimes even serious 
measurement errors. While measurements are made 
relatively quickly in non-dynamic structural systems, 
filtering measurements of vibrations on dynamic and 
moving systems and vibrations on a dynamically 
operating system is very important for the industrial 
sector. 

In this study, filters that can be used for 
measurements of moving weighing systems and the 
effects of these filters on measurement and 
performance characteristics were investigated. The 
results obtained allowed the development of a fuzzy 
logic-based parameter extraction system to update the 
coefficients of the active filters used. 

In this study, Mamdani and Sugeno fuzzy inference 
methods were combined with the Kalman filtering 
technique to reduce measurement errors in moving 
weighing systems. While both methods yielded 
successful results to a certain extent, the Sugeno 
method was observed to improve system 
performance with lower error rates. 

Mamdani Method: In the Mamdani method, although 
the obtained results suppressed the noise in the 
system better, they caused an increase in the error 
rate due to the phase shift between the raw data and 

the filtered data. This situation is undesirable, 
especially in applications requiring high precision. 

Sugeno Method: The Sugeno method, on the other 
hand, was successful in both noise suppression and 
minimizing phase shift, resulting in lower error rates. 
This result indicates that the Sugeno method is more 
suitable for such applications. 

In conclusion, a fuzzy logic-based parameter update 
system has been developed to increase the 
measurement accuracy in moving weighing systems. 
In this system, it has been observed that the Sugeno 
method is more successful and provides significant 
improvement when used with Kalman filtering. The 
obtained results indicate that this method can also be 
used in different industrial applications 
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