
[79]. Somers, B., Francart, T., & Bertrand, A.
(2018). A generic EEG artifact removal
algorithm based on the multi-channel Wiener
filter. Journal of neural engineering, 15(3),
036007.
[80]. Saba-Sadiya, S., Chantland, E., Alhanai,
T., Liu, T., & Ghassemi, M. M. (2021).
Unsupervised EEG artifact detection and
correction. Frontiers in digital health, 2, 608920.
[81]. Islam, M. K., Rastegarnia, A., & Yang,
Z. (2016). Methods for artifact detection and
removal from scalp EEG: A review.
Neurophysiologie Clinique/Clinical
Neurophysiology, 46(4-5), 287-305.
[82]. Abreu, R., Leal, A., & Figueiredo, P.
(2018). EEG-informed fMRI: a review of data
analysis methods. Frontiers in human
neuroscience, 12, 29.
[83]. Varone, G., Hussain, Z., Sheikh, Z.,
Howard, A., Boulila, W., Mahmud, M., ... &
Hussain, A. (2021). Real-time artifacts reduction
during TMS-EEG co-registration: a
comprehensive review on technologies and
procedures. Sensors, 21(2), 637.
[84]. Jung, T. P., Humphries, C., Lee, T. W.,
Makeig, S., McKeown, M. J., Iragui, V., &
Sejnowski, T. J. (1998, September). Removing
electroencephalographic artifacts: comparison
between ICA and PCA. In Neural Networks for
Signal Processing VIII. Proceedings of the 1998
IEEE Signal Processing Society Workshop (Cat.
No. 98TH8378) (pp. 63-72). IEEE.
[85]. Anderer, P., Roberts, S., Schlögl, A.,
Gruber, G., Klösch, G., Herrmann, W., ... &
Saletu, B. (1999). Artifact processing in
computerized analysis of sleep EEG–a review.
Neuropsychobiology, 40(3), 150-157.
[86]. Chen, X., Xu, X., Liu, A., Lee, S., Chen,
X., Zhang, X., ... & Wang, Z. J. (2019). Removal
of muscle artifacts from the EEG: a review and
recommendations. IEEE Sensors Journal, 19(14),
5353-5368.
[87]. Cao, K., Guo, Y., & Su, S. W. (2015,
December). A review of motion related EEG
artifact removal techniques. In 2015 9th
International Conference on Sensing Technology
(ICST) (pp. 600-604). IEEE.
[88]. Klekowicz, H., Malinowska, U.,
Piotrowska, A. J., Wołyńczyk-Gmaj, D.,
Niemcewicz, S., & Durka, P. J. (2009). On the
robust parametric detection of EEG artifacts in
polysomnographic recordings. Neuroinformatics,
7(2), 147-160.
[89]. Minguillon, J., Lopez-Gordo, M. A., &
Pelayo, F. (2017). Trends in EEG-BCI for daily-
life: Requirements for artifact removal.
Biomedical Signal Processing and Control, 31,
407-418.
[90]. Sadiya, S., Alhanai, T., & Ghassemi, M.
M. (2021, May). Artifact detection and correction
in eeg data: A review. In 2021 10th International
IEEE/EMBS Conference on Neural Engineering
(NER) (pp. 495-498). IEEE.
[91]. Craik, A., He, Y., & Contreras-Vidal, J.
L. (2019). Deep learning for
electroencephalogram (EEG) classification tasks:
a review. Journal of neural engineering, 16(3),
031001.
[92]. Haumann, N. T., Parkkonen, L.,
Kliuchko, M., Vuust, P., & Brattico, E. (2016).
Comparing the performance of popular
MEG/EEG artifact correction methods in an
evoked-response study. Computational
Intelligence and Neuroscience, 2016.
[93]. Sazgar, M., & Young, M. G. (2019).
EEG artifacts. In Absolute epilepsy and EEG
rotation review (pp. 149-162). Springer, Cham.
[94]. Jung, T. P., Makeig, S., Humphries, C.,
Lee, T. W., Mckeown, M. J., Iragui, V., &
Sejnowski, T. J. (2000). Removing
electroencephalographic artifacts by blind source
separation. Psychophysiology, 37(2), 163-178.
[95]. Kaya, I. (2019). A brief summary of EEG
artifact handling. Brain-Computer Interface.
[96]. Taherisadr, M., Dehzangi, O., & Parsaei,
H. (2017). Single channel EEG artifact
identification using two-dimensional multi-
resolution analysis. Sensors, 17(12), 2895.
[97]. Jafarifarmand, A., & Badamchizadeh, M.
A. (2019). EEG artifacts handling in a real
practical brain–computer interface controlled
vehicle. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 27(6), 1200-
1208.
[98]. Gorjan, D., Gramann, K., De Pauw, K.,
& Marusic, U. (2022). Removal of movement-
induced EEG artifacts: current state of the art and
guidelines. Journal of neural engineering.
[99]. Hartmann, M. M., Schindler, K.,
Gebbink, T. A., Gritsch, G., & Kluge, T. (2014).
PureEEG: Automatic EEG artifact removal for
epilepsy monitoring. Neurophysiologie
International Journal of Electrical Engineering and Computer Science
DOI: 10.37394/232027.2023.5.8
Thotttempudi Pardhu, Nagesh Deevi