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Abstract—Dual Population Genetic Algorithm is a variant of 
Genetic Algorithm that provides additional diversity to the main 
population. It covers the premature convergence problem as well 
as the diversity problem associated with Genetic Algorithm. But 
also its additional population introduces large search space that 
increases time required to find an optimal solution. This large scale 
search space problem can be easily solved using consumer-level 
graphics cards. The solution obtained using accelerated DPGA for 
solving a constrained optimization problem from CEC 2006 is 
compared with the obtained solution using sequential algorithm. 
The results show speed up maintaining solution quality. 

Keywords— High Performance Computing (HPC), CUDA C, 
Dual Population Genetic Algorithm (DPGA), Constrained 
Optimization Problems (COPs), Function Optimization  

I.  INTRODUCTION  
Dual Population Genetic algorithms (DPGA) are 

powerful, domain independent search technique that obtains 
solution to optimization problems. It addresses diversity as 
well as premature convergence problems of Genetic 
Algorithm (GA). DPGA uses a reserve population along 
with the main population. Both populations employ 
selection, mutation, and crossover to generate new search 
points in a state space. This provides additional diversity to 
the main population [1]. Incurred overload of additional 
population gives rise to increased execution time required 
for evolution. Also execution time of DPGA can become a 
limiting factor for some large computing intensive 
problems, because a lot of candidate solutions must be 
evaluated.  

Graphic Processing Units (GPUs) have increasing 
requirements from the video game industry, while their 
price remained in the range of consumer market [2, 3]. They 
offer floating point calculation much faster than CPU and, 
also they can be targeted to solve general problems that can 
be expressed in Single Instruction Multiple Data (SIMD) 
format.  

This paper uses Maximum Constrains Satisfaction Method 
(MCSM) along with DPGA to solve Constrained 
Optimization Problems (COPs). MCSM is a novel technique  
this includes two phases. The first phase tries to satisfy 
maximum constrains and then the second phase attempts    

to optimize an objective function.  
Section II provides a brief literature review about 

evolution of DPGA, Evolutionary Algorithms for solving 
COPs and implementation of GAs on GPGPU. Section III 
describes algorithm of DPGA and code optimization. 
Section IV presents experimental results and discussion. 
Section V gives some conclusions and future scope. 

II. LITERATURE REVIEW 
DPGA for solving COPs on GPU is an open research 

problem. Therefore we studied literature about evolution of 
DPGA. We have also surveyed how other Evolutionary 
Algorithms applied to    solve COPs. DPGA yet not 
implemented on GPUs therefore we studied how GAs are 
implemented on GPUs using CUDA C. 

 Park and Ruy (2006) [4] introduced DPGA. Park and 
Ruy (2007) [5] proposed DPGA-ED that is an improved 
design-DPGA. Unlike DPGA, the reserve population of 
DPGA-ED evolves by itself. Park and Ruy (2007) [6] 
proposed a method to dynamically adjust the distance 
between the populations using the distance between good 
parents. Park and Ruy (2007) [7] exhibited DPGA2 that 
utilizes two reserve populations. Park and Ruy (2010) [1] 
experimented DPGA on various classes of problems using 
binary, real-valued, and order-based representations. 
Umbarkar and Joshi (2013) [8] compared DPGA with 
CUDA C GA for Multimodal Function Optimization. The 
results show that the performance of OpenMP GA better 
than SGA on the basis of execution time and speed up. 
Umbarkar, Joshi, Hong (2014) [9] proposed Multithreaded 
Parallel DPGA (MPDPGA) which outperforms serial 
DPGA and simple GA. 

 The basic and classical constrained optimization 
methods include penalty function method, Lagrangian 
method [10] and Sequential Quadratic Programming (SQP) 
[11]. These are local search methods which can find a local 
optimal solution.  Recent trend is to make use of 
evolutionary algorithms to solve constrained optimization 
problems [12, 13]. Comparing with the traditional nonlinear 
programming approach, evolutionary algorithms need less 
information such as gradient (derivatives), as well as it is a 
global searching approach.  

  Arora, Tulshyan and Deb (2010) [14] proposed the 
parallelization of binary & real coded GA on GPU using 
CUDA. Kannan and Ganji (2010) [15] proposed GPU based 
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GA to find the optimal docking position of a ligand to a 
protein. Yoshimi, Kurano, Miki et al (2010) [16] proposed a 
framework for implementation of parallel computing on 
GPU by evaluating simple genetic algorithms (SGA). They 
showed the relationship between computational speed and 
execution condition. Oiso, Yasuda, Ohkura, and Matumura 
(2011) [17] implemented Steady state GA on GPU using 
CUDA for function optimization. The results of Steady state 
GA on GPU are 3 to 6 faster than CPU Intel corei7 (2.8 
Ghz). Munawar, Wahib, Munetomo and Akama (2011) [18] 
proposed Adaptive Resolution GA to solve non-convex 
Mixed Integer Non-Linear Programming (MINLP) and non-
convex Non Linear Programming (NLP) problems over 
GPU. 

III. GPGPU BASED DUAL POPULATION GENETIC 
ALGORITHM 

DPGA starts with two randomly generated populations 
viz., main population and reserve population. The 
individuals of each population are evaluated by their own 
fitness functions. The evolution of each population is 
obtained by inbreeding between parents from the same 
population, crossbreeding between parents from different 
populations, and survival selection among the obtained 
offspring [1]. The methodology for applying DPGA for 
COPs is described in this section. A detailed pseudo code is 
explained in Fig.2 entitled DPGA_MCSM. MCSM is a 
novel technique based on Deb’s rule that in the category of 
methods searching for feasible solutions. It states any 
feasible solution is preferable to any infeasible one [19].  

The objective function is used as fitness function for 
evolution of the main population. Fitness function for the 
reserve population is defined in another way. An individual 
in the reserve population is given a high fitness value if its 
average distance from each of the individuals of the main 
population is large. Therefore the reserve population can 
provide the main population with additional diversity. 
Equation (1) describes fitness function for reserve 
population. Each individual of the reserve population can 
maintain a given distance δ from the individuals of the main 
population [1, 4, 5]. 

|),(|1)( xMdxfr −−= δδ               (1) 

Where, 
d(M, x): average distance (0 ≤ d(M, x) ≤ 1) between the 

main population M and individual x of the reserve 
population 

δ: desired distance (0 ≤ δ ≤ 1) between two population 

This paper uses Compute Unified Device Architecture 
(CUDA) [cuda] framework to implement DPGA on GPU as 
it promises best achieved results so far.The GPU is 
optimised to SIMD type processing and contains hardware 
scheduler which swiftly swaps existing threads to hide main 
memory latency. Because of this, a proposed model should 
utilize thousands of parallel threads with minimum code 
branching. NVidia GPU consists of multiprocessors capable 
to perform tasks in parallel. Threads running in these units 
are very lightweight. The memory attached to graphics cards 

is divided into two levels main memory and on-chip 
memory.  

The main memory has a big capacity (hundreds of MB) 
and holds a complete set of data as well as user programs. It 
also acts as an entry/output point during communication 
with CPU. Unfortunately, big capacity is outweighed with 
high latency. On the other hand, the on chip memory is very 
fast, but has very limited size. Apart from per-thread local 
registers, the on-chip memory contains particularly useful 
per-multiprocessor shared segments.  

The CUDA C DPGA algorithm exactly emulates the 
sequential algorithm stated in Fig.2 except for fitness 
calculation function, wherein small changes are introduced 
to get better performance. This method evaluates fitness of 
each individual using a defined objective function. As 
fitness evaluation of each individual is an independent step 
it can be executed in parallel. 

Accelerated GA model maps GA to CUDA API with a 
special focus on the massive parallelism. The focus is that 
every individual is controlled by a single CUDA thread. We 
launch a thread block of 128 threads to compute fitness 
values of 128 individuals of the population. In our model 
every CUDA thread computes fitness of objective function. 
In this way, this step reduces the overall time required to 
evaluate the fitness of all individuals in the population. And 
thus helps significantly to reduce the amount of time 
required for total execution. 

The local populations are stored in shared on-chip 
memory on particular GPU multiprocessors. As 
communication between CPU and GPU happens only 
during results exchange, this model also avoids PCI express 
bandwidth bottleneck which drastically chokes performance 
of some existing applications.  

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
       This paper solves first problem from Problem 

Definitions and Evaluation Criteria for the Congress on 
Evolutionary Computation 2006 Special Session on 
Constrained Real-Parameter Optimization problem [41]. In 
this report, 24 benchmark functions are described. 
Guidelines for conducting experiments, statistical 
parameters and its formulae, performance evaluation criteria 
are given at the end of this report. Table I describes function 
g01 from CEC 2006. It describes function with its name, 
dimension (D), type of function, no. of linear inequality 
constrains (LI), no. of non-linear inequality constrains (NI), 
no. of linear equality constrains (LE) and no. of non-linear 
equality constrains (NE). 
    Table II exhibits the parameter settings used for 
experimentation. Consecutive 30 runs are calculated for each 
function keeping these parameter values constant. 
Size of the main population as well as the reserve population 
is taken as 100. Crossover rate, elitism rate, mutation rate 
and crossbreed rate are kept identical for both the main 
population and the reserve population. Sequential as well as 
parallel algorithm uses identical parameter setting. 

TABLE I .FUNCTION DESCRIPTION 
Function D Type LI NI LE NE 

g01 13 Quadratic 9 0 0 0 
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TABLE II.  . PARAMETER SETTINGS 

 
1) Solution Quality 
Achievable solution quality and speedup of the 

proposed DPGA were examined using g01 function is given 
in table III. 

Solution obtained using proposed parallel algorithm 
and sequential algorithm is close from each other. Table III 
shows Optimal Solutions Found (OSF) in sequential as well 
as CUDA C DPGA algorithm. For CUDA C DPGA, the 
results are taken on NVIDIA GeForce GTX 9400, Tesla 
C1060, NVIDIA GeForce 660 and NVIDIA GTX TITAN 
which has 16, 240, 960 and 2688 CUDA cores respectively. 
Results in Table III show that, CUDA C DPGA algorithm 
converges and produces the same and sometimes better 
solution as that of the Sequential DPGA algorithm. Standard 
Deviation (S.D.) and Standard Error of Mean (S.E.M) 
produce small values that show CUDA C converges.  

 
TABLE III . OSF IN SEQUENTIAL, CUDA C DPGA 

 
2)  Speedup 

       CUDA C DPGA for COPs using MCSM experimented 
on different GPUs. Table IV gives time required to 
converge algorithm for g01 using parameter settings given 
in Table II. 

Speed-up measures performance gain achieved by 
parallelizing a given application over sequential 
implementation. The speed-up is the ratio of sequential run 
time to parallel run time.  

p

s

T
TS =

                                          (2) 
Table IV gives the speed-up using GPUs for the test 

problem g01. 

It is observed that, as the number of cores increases, speed-
up increases. The corresponding graph in Fig.1 shows 
speedup obtained using GPUs with increasing cores for the 
test function g01. Copying between host and device 
memory may incur a performance hit due to system bus 
bandwidth and latency. With the effect of that we do not get 
speed up for GTX 9400. With asynchronous memory 
transfers, handled by the GPU's DMA engine this problem 

can be alleviated for high end cards Tesla C1060 and GTX 
660. 

TABLE IV  . SPEED UP OBTAINED BY CUDA C DPGA ON GPUS 

 
TABLE IV . SPEED UP OBTAINED BY CUDA C DPGA ON GPUS 

 

 
Fig.1. Speed up obtained using GPUs with increasing number of cores 
 

Further, GPUs are targeted for computational intensive 
problems. Therefore, for the problems that are not sufficient 
complex CPU can outperform them. GPU implementation 
achieves better power-to-watt ratio then CPU, thus electrical 
energy is saved during the computation. Furthermore, the 
graphics card used is cheaper than any CPU running at the 
same speed. 

V. CONCLUSION 
CUDA C DPGA is a novel technique for solving COPs 

which aims to GPUs for general purpose programming. 
Experiments conduct using CEC 2006 problems set show 
increase in speed up with increase is no. of cores of GPUs. 
Copying between host and device memory may incur a 
performance hit. GPUs save electrical energy due to lower 

Parameter Value Parameter Value 
Crossover Rate 0.80 Elitism Rate 0.10 
Mutation Rate 0.09 Crossbreed Rate 0.10 

Main Pop. Size 128 Reserve Pop. Size 128 

Function-
g01 OSF by CUDA C DPGA 

OSF in Sequential Algorithm -10.874 

Statistical 
Measures 

GTX 9400 Tesla C1060 GTX 660 GTX Titan 

16 cores 240 cores 960 cores 2688 cores 

Mean -10.765 -10.23 -11.12 -10.97 

S.D 0.608 0.075 0.421 0.141 

S.E.M. 0.192 0.024 0.133 0.045 

Sr. 
No. Sequential GTX 

9400 
Tesla 
C1060 GTX 660 GTX 

Titan 

 Time (sec) 16 cores 240 cores 960 cores 2688 
cores 

1 37.54 39.91 31.02 23.23 12.06 

2 37.73 39.90 31.25 24.00 12.07 

3 37.54 38.23 31.26 23.23 12.26 

4 37.53 39.91 31.26 23.20 11.98 

5 36.54 39.91 31.26 23.23 12.27 

6 36.60 38.76 31.26 23.22 12.28 

7 37.50 39.91 31.25 23.23 11.96 

8 37.54 39.90 31.26 23.30 12.27 

9 37.53 39.90 31.26 23.23 11.98 

10 37.58 39.91 31.26 22.23 12.27 

Avg. 37.36 39.624 31.234 23.2100 12.14 

Function 
 

Speed Up by CUDA C DPGA 

GTX 9400 Tesla C1060 GTX 660 GTX Titan 

g01 16 cores 240 cores 960 cores 2688 cores 

Speed up → 0.942 1.196 1.610 3.101 
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power-to-watt ratio compared to CPU. Furthermore, GPUs 
are effectively cheaper than CPUs. In future, it is expected 
that proposed technique will scale and give better speedup. 
Also using alternative constraints handling method, parallel 
algorithm and high performance computing paradigm a 
better speed up can be achieved.  
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Fig.2. Pseudo code of DPGA_MCSM 
 

Procedure DPGA_MCSM 
begin  
 Initialize main population M0, reserve population R0, crossover rate, elitism rate, mutation rate, crossbreeding rate, tour size, max 

generation tmax                        
 Initialize M0 of size m, accept individuals which satisfies all constrains   
 Initialize R0 of size n, n>m 
 t: = 0  
 Repeat  
  Step I: Encoding of both population from decimal to binary value representation 
  Step II: Fitness Calculation 

a. Evaluate M0 using objective function fm(x) 
b. Evaluate R0 using fitness function for reserve population (1)  fr(x) 

 Step III: Inbreeding of main population and intermediate main population Om generation via crossover 
Step IV: Inbreeding of reserve population and intermediate reserve population Or generation via         crossover 

 Step V: Crossbreeding 
a. Offspring C of size (n-m) using best individuals from Om  and Or 
b. Make Im = C U Om and Ir = C U Or 

       Step VI: Decoding: Decoding of both population from binary representation to decimal representation 
       Step VII: Evaluation  

a. Evaluate Im using fm(x)  
b. Evaluate Ir using fr(x) 

              Step VIII: Survival selection from Im of size m and from Ir of size n  
 t  = t + 1  
  Until  
        fm(x) > = global optimal value or  t > tmax 

End 
Where,  
t : index of current generation   M0, R0: main, reserve population  
fm(x): objective function     Om, Or: intermediate main, reserve population respectively 
fr(x): fitness function for reserve population   Im, Ir: constitute set of main, reserve population respectively 
C: offspring     tmax: maximum generations  
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