
GPGPU based Dual Population Genetic Algorithm
for solving Constrained Optimization Problem

A. J. Umbarkar
Department of Information Technology

Walchand College of Engineering, Sangli
 Sangli, Maharashtra

anantumbarkar@rediffmail.com

P. D. Sheth
Department of MCA

Government College of Engineering, Karad
Maharashtra

 pranalisheth@gmail.com

Abstract—Dual Population Genetic Algorithm is a variant of
Genetic Algorithm that provides additional diversity to the main
population. It covers the premature convergence problem as well
as the diversity problem associated with Genetic Algorithm. But
also its additional population introduces large search space that
increases time required to find an optimal solution. This large scale
search space problem can be easily solved using consumer-level
graphics cards. The solution obtained using accelerated DPGA for
solving a constrained optimization problem from CEC 2006 is
compared with the obtained solution using sequential algorithm.
The results show speed up maintaining solution quality.

Keywords— High Performance Computing (HPC), CUDA C,
Dual Population Genetic Algorithm (DPGA), Constrained
Optimization Problems (COPs), Function Optimization

I. INTRODUCTION
Dual Population Genetic algorithms (DPGA) are

powerful, domain independent search technique that obtains
solution to optimization problems. It addresses diversity as
well as premature convergence problems of Genetic
Algorithm (GA). DPGA uses a reserve population along
with the main population. Both populations employ
selection, mutation, and crossover to generate new search
points in a state space. This provides additional diversity to
the main population [1]. Incurred overload of additional
population gives rise to increased execution time required
for evolution. Also execution time of DPGA can become a
limiting factor for some large computing intensive
problems, because a lot of candidate solutions must be
evaluated.

Graphic Processing Units (GPUs) have increasing
requirements from the video game industry, while their
price remained in the range of consumer market [2, 3]. They
offer floating point calculation much faster than CPU and,
also they can be targeted to solve general problems that can
be expressed in Single Instruction Multiple Data (SIMD)
format.

This paper uses Maximum Constrains Satisfaction Method
(MCSM) along with DPGA to solve Constrained
Optimization Problems (COPs). MCSM is a novel technique
this includes two phases. The first phase tries to satisfy
maximum constrains and then the second phase attempts

to optimize an objective function.
Section II provides a brief literature review about

evolution of DPGA, Evolutionary Algorithms for solving
COPs and implementation of GAs on GPGPU. Section III
describes algorithm of DPGA and code optimization.
Section IV presents experimental results and discussion.
Section V gives some conclusions and future scope.

II. LITERATURE REVIEW
DPGA for solving COPs on GPU is an open research

problem. Therefore we studied literature about evolution of
DPGA. We have also surveyed how other Evolutionary
Algorithms applied to solve COPs. DPGA yet not
implemented on GPUs therefore we studied how GAs are
implemented on GPUs using CUDA C.

 Park and Ruy (2006) [4] introduced DPGA. Park and
Ruy (2007) [5] proposed DPGA-ED that is an improved
design-DPGA. Unlike DPGA, the reserve population of
DPGA-ED evolves by itself. Park and Ruy (2007) [6]
proposed a method to dynamically adjust the distance
between the populations using the distance between good
parents. Park and Ruy (2007) [7] exhibited DPGA2 that
utilizes two reserve populations. Park and Ruy (2010) [1]
experimented DPGA on various classes of problems using
binary, real-valued, and order-based representations.
Umbarkar and Joshi (2013) [8] compared DPGA with
CUDA C GA for Multimodal Function Optimization. The
results show that the performance of OpenMP GA better
than SGA on the basis of execution time and speed up.
Umbarkar, Joshi, Hong (2014) [9] proposed Multithreaded
Parallel DPGA (MPDPGA) which outperforms serial
DPGA and simple GA.

 The basic and classical constrained optimization
methods include penalty function method, Lagrangian
method [10] and Sequential Quadratic Programming (SQP)
[11]. These are local search methods which can find a local
optimal solution. Recent trend is to make use of
evolutionary algorithms to solve constrained optimization
problems [12, 13]. Comparing with the traditional nonlinear
programming approach, evolutionary algorithms need less
information such as gradient (derivatives), as well as it is a
global searching approach.

 Arora, Tulshyan and Deb (2010) [14] proposed the
parallelization of binary & real coded GA on GPU using
CUDA. Kannan and Ganji (2010) [15] proposed GPU based

This research is supported by Nvidia,Pune for GeForce® GTX™
TITAN GPGPU card and funded by Technical Quality Improvement
Program, Phase -II (TEQIP-II), Government of India.

Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 4, 2022

ISSN: 2769-2507 15

GA to find the optimal docking position of a ligand to a
protein. Yoshimi, Kurano, Miki et al (2010) [16] proposed a
framework for implementation of parallel computing on
GPU by evaluating simple genetic algorithms (SGA). They
showed the relationship between computational speed and
execution condition. Oiso, Yasuda, Ohkura, and Matumura
(2011) [17] implemented Steady state GA on GPU using
CUDA for function optimization. The results of Steady state
GA on GPU are 3 to 6 faster than CPU Intel corei7 (2.8
Ghz). Munawar, Wahib, Munetomo and Akama (2011) [18]
proposed Adaptive Resolution GA to solve non-convex
Mixed Integer Non-Linear Programming (MINLP) and non-
convex Non Linear Programming (NLP) problems over
GPU.

III. GPGPU BASED DUAL POPULATION GENETIC
ALGORITHM

DPGA starts with two randomly generated populations
viz., main population and reserve population. The
individuals of each population are evaluated by their own
fitness functions. The evolution of each population is
obtained by inbreeding between parents from the same
population, crossbreeding between parents from different
populations, and survival selection among the obtained
offspring [1]. The methodology for applying DPGA for
COPs is described in this section. A detailed pseudo code is
explained in Fig.2 entitled DPGA_MCSM. MCSM is a
novel technique based on Deb’s rule that in the category of
methods searching for feasible solutions. It states any
feasible solution is preferable to any infeasible one [19].

The objective function is used as fitness function for
evolution of the main population. Fitness function for the
reserve population is defined in another way. An individual
in the reserve population is given a high fitness value if its
average distance from each of the individuals of the main
population is large. Therefore the reserve population can
provide the main population with additional diversity.
Equation (1) describes fitness function for reserve
population. Each individual of the reserve population can
maintain a given distance δ from the individuals of the main
population [1, 4, 5].

|),(|1)(xMdxfr −−= δδ (1)

Where,
d(M, x): average distance (0 ≤ d(M, x) ≤ 1) between the

main population M and individual x of the reserve
population

δ: desired distance (0 ≤ δ ≤ 1) between two population

This paper uses Compute Unified Device Architecture
(CUDA) [cuda] framework to implement DPGA on GPU as
it promises best achieved results so far.The GPU is
optimised to SIMD type processing and contains hardware
scheduler which swiftly swaps existing threads to hide main
memory latency. Because of this, a proposed model should
utilize thousands of parallel threads with minimum code
branching. NVidia GPU consists of multiprocessors capable
to perform tasks in parallel. Threads running in these units
are very lightweight. The memory attached to graphics cards

is divided into two levels main memory and on-chip
memory.

The main memory has a big capacity (hundreds of MB)
and holds a complete set of data as well as user programs. It
also acts as an entry/output point during communication
with CPU. Unfortunately, big capacity is outweighed with
high latency. On the other hand, the on chip memory is very
fast, but has very limited size. Apart from per-thread local
registers, the on-chip memory contains particularly useful
per-multiprocessor shared segments.

The CUDA C DPGA algorithm exactly emulates the
sequential algorithm stated in Fig.2 except for fitness
calculation function, wherein small changes are introduced
to get better performance. This method evaluates fitness of
each individual using a defined objective function. As
fitness evaluation of each individual is an independent step
it can be executed in parallel.

Accelerated GA model maps GA to CUDA API with a
special focus on the massive parallelism. The focus is that
every individual is controlled by a single CUDA thread. We
launch a thread block of 128 threads to compute fitness
values of 128 individuals of the population. In our model
every CUDA thread computes fitness of objective function.
In this way, this step reduces the overall time required to
evaluate the fitness of all individuals in the population. And
thus helps significantly to reduce the amount of time
required for total execution.

The local populations are stored in shared on-chip
memory on particular GPU multiprocessors. As
communication between CPU and GPU happens only
during results exchange, this model also avoids PCI express
bandwidth bottleneck which drastically chokes performance
of some existing applications.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
 This paper solves first problem from Problem

Definitions and Evaluation Criteria for the Congress on
Evolutionary Computation 2006 Special Session on
Constrained Real-Parameter Optimization problem [41]. In
this report, 24 benchmark functions are described.
Guidelines for conducting experiments, statistical
parameters and its formulae, performance evaluation criteria
are given at the end of this report. Table I describes function
g01 from CEC 2006. It describes function with its name,
dimension (D), type of function, no. of linear inequality
constrains (LI), no. of non-linear inequality constrains (NI),
no. of linear equality constrains (LE) and no. of non-linear
equality constrains (NE).
 Table II exhibits the parameter settings used for
experimentation. Consecutive 30 runs are calculated for each
function keeping these parameter values constant.
Size of the main population as well as the reserve population
is taken as 100. Crossover rate, elitism rate, mutation rate
and crossbreed rate are kept identical for both the main
population and the reserve population. Sequential as well as
parallel algorithm uses identical parameter setting.

TABLE I .FUNCTION DESCRIPTION
Function D Type LI NI LE NE

g01 13 Quadratic 9 0 0 0

Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 4, 2022

ISSN: 2769-2507 16

TABLE II. . PARAMETER SETTINGS

1) Solution Quality
Achievable solution quality and speedup of the

proposed DPGA were examined using g01 function is given
in table III.

Solution obtained using proposed parallel algorithm
and sequential algorithm is close from each other. Table III
shows Optimal Solutions Found (OSF) in sequential as well
as CUDA C DPGA algorithm. For CUDA C DPGA, the
results are taken on NVIDIA GeForce GTX 9400, Tesla
C1060, NVIDIA GeForce 660 and NVIDIA GTX TITAN
which has 16, 240, 960 and 2688 CUDA cores respectively.
Results in Table III show that, CUDA C DPGA algorithm
converges and produces the same and sometimes better
solution as that of the Sequential DPGA algorithm. Standard
Deviation (S.D.) and Standard Error of Mean (S.E.M)
produce small values that show CUDA C converges.

TABLE III . OSF IN SEQUENTIAL, CUDA C DPGA

2) Speedup

 CUDA C DPGA for COPs using MCSM experimented
on different GPUs. Table IV gives time required to
converge algorithm for g01 using parameter settings given
in Table II.

Speed-up measures performance gain achieved by
parallelizing a given application over sequential
implementation. The speed-up is the ratio of sequential run
time to parallel run time.

p

s

T
TS =

 (2)
Table IV gives the speed-up using GPUs for the test

problem g01.

It is observed that, as the number of cores increases, speed-
up increases. The corresponding graph in Fig.1 shows
speedup obtained using GPUs with increasing cores for the
test function g01. Copying between host and device
memory may incur a performance hit due to system bus
bandwidth and latency. With the effect of that we do not get
speed up for GTX 9400. With asynchronous memory
transfers, handled by the GPU's DMA engine this problem

can be alleviated for high end cards Tesla C1060 and GTX
660.

TABLE IV . SPEED UP OBTAINED BY CUDA C DPGA ON GPUS

TABLE IV . SPEED UP OBTAINED BY CUDA C DPGA ON GPUS

Fig.1. Speed up obtained using GPUs with increasing number of cores

Further, GPUs are targeted for computational intensive
problems. Therefore, for the problems that are not sufficient
complex CPU can outperform them. GPU implementation
achieves better power-to-watt ratio then CPU, thus electrical
energy is saved during the computation. Furthermore, the
graphics card used is cheaper than any CPU running at the
same speed.

V. CONCLUSION
CUDA C DPGA is a novel technique for solving COPs

which aims to GPUs for general purpose programming.
Experiments conduct using CEC 2006 problems set show
increase in speed up with increase is no. of cores of GPUs.
Copying between host and device memory may incur a
performance hit. GPUs save electrical energy due to lower

Parameter Value Parameter Value
Crossover Rate 0.80 Elitism Rate 0.10
Mutation Rate 0.09 Crossbreed Rate 0.10

Main Pop. Size 128 Reserve Pop. Size 128

Function-
g01 OSF by CUDA C DPGA

OSF in Sequential Algorithm -10.874

Statistical
Measures

GTX 9400 Tesla C1060 GTX 660 GTX Titan

16 cores 240 cores 960 cores 2688 cores

Mean -10.765 -10.23 -11.12 -10.97

S.D 0.608 0.075 0.421 0.141

S.E.M. 0.192 0.024 0.133 0.045

Sr.
No. Sequential GTX

9400
Tesla
C1060 GTX 660 GTX

Titan

 Time (sec) 16 cores 240 cores 960 cores 2688
cores

1 37.54 39.91 31.02 23.23 12.06

2 37.73 39.90 31.25 24.00 12.07

3 37.54 38.23 31.26 23.23 12.26

4 37.53 39.91 31.26 23.20 11.98

5 36.54 39.91 31.26 23.23 12.27

6 36.60 38.76 31.26 23.22 12.28

7 37.50 39.91 31.25 23.23 11.96

8 37.54 39.90 31.26 23.30 12.27

9 37.53 39.90 31.26 23.23 11.98

10 37.58 39.91 31.26 22.23 12.27

Avg. 37.36 39.624 31.234 23.2100 12.14

Function

Speed Up by CUDA C DPGA

GTX 9400 Tesla C1060 GTX 660 GTX Titan

g01 16 cores 240 cores 960 cores 2688 cores

Speed up → 0.942 1.196 1.610 3.101

Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 4, 2022

ISSN: 2769-2507 17

power-to-watt ratio compared to CPU. Furthermore, GPUs
are effectively cheaper than CPUs. In future, it is expected
that proposed technique will scale and give better speedup.
Also using alternative constraints handling method, parallel
algorithm and high performance computing paradigm a
better speed up can be achieved.

ACKNOWLEDGMENT
 We express our sincere thanks to all authors, whose
papers in the area of DPGA, COPs and GA using CUDA are
published in various conference proceedings and journals.

REFERENCES
[1] T. Park, K. Ruy, “A Dual-Population Genetic Algorithm for Adaptive

Diversity Control”, IEEE transactions on evolutionary computation,
vol. 14, no.6, pp 865-883, Dec. 2010, pp 865-883.
DOI:10.1109/TEVC.2010.2043362

[2] NVIDIA, C.: Compute Unified Device Architecture Programming
Guide. NVIDIA: Santa Clara, CA, 2007

[3] H. Nguyen. GPU Gems 3. Addison-Wesley Professional, 2007
[4] T. Park, K. Ruy, “A Dual-Population Genetic Algorithm for Balance

Exploration and Exploitation”, Acta Press Computational
Intelligence, 2006.

[5] T. Park and K. Ruy, “A dual population genetic algorithm with
evolving diversity”, in Proc. IEEE Congress Evolutionary
Computation, 2007, pp. 3516–3522.
DOI:10.1109/CEC.2007.4424928

[6] T. Park and K. Ruy, “Adjusting population distance for dual-
population genetic algorithm,” in Proc. Aust. Joint Conf. Artificial
Intelligence, 2007, pp. 171–180. DOI:10.1109/TEVC.2010.2043362

[7] T. Park, R. Choe, K. Ruy, “Dual-population Genetic Algorithm for
Nonstationary Optimization”, in Proc. GECCO’08 ACM, 2008,
pp.1025-1032. DOI: 10.1145/1389095.1389286

[8] A. Umbarkar, M. Joshi, “Dual Population Genetic Algorithm (GA)
versus OpenMP GA for Multimodal Function Optimization”,

International Journal of Computer Applications, vol. 19, no. 64,
February 2013, pp. 29-36. DOI: 10.5120/10744-5516

[9] A. Umbarkar, M. Joshi, W. Hong, “Multithreaded Parallel Dual
Population Genetic Algorithm (MPDPGA) for unconstrained function
optimizations on multi-core system”, Appl. Math. Comput., Vol. 243,
pp. 936–949 2014,, http://dx.doi.org/10.1016/j.amc.2014.06.033

[10] D. Luenberger and Y. Ye, “Linear and nonlinear programming third
edition”, New York, NY: Springer, 2007. ISBN 978-0-387-74503-9

[11] P. Boggs and J. Tolle, “Sequential quadratic programming,” Acta
Numerica, vol.4, no.1, Jan. 1995, pp.1-51.

[12] C. Coello Coello, “Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: A survey of the state of
the art,” Comput. Methods Appl. Mech. Eng., vol.191, no.11-12, Jan.
2002, pp.1245-1287. DOI: 10.1016/j.bbr.2011.03.031.

[13] H. Lu and W. Chen, “Self-adaptive velocity particle swarm
optimization for solving constrained optimization problems” J. Global
Optimiz., vol.41, no.3, Jul. 2008, pp.427-445. DOI: 10.1007/s10898-
007-9255-9.

[14] R. Arora, R. Tulshyan, K. Deb, “Parallelization of binary and real-
coded genetic algorithm on GPU using CUDA”, IEEE explorer, 2010

[15] S. Kannan and R. Ganji, “Porting Autodock to CUDA”, IEEE
explorer, 2010.

[16] Masato Yoshimi, Yuki Kurano, Mitsunori Miki et al, “An
Implementation and Evaluation of CUDA-based GPGPU Framework
by Genetic Algorithms”,IJCSNS International Journal of Computer
Science and Network Security, VOL.10 No.12, December 2010

[17] M. Oiso and Y. Matumura, “Accelerating Steady-state genetic
algorithms based on CUDA architecture”, IEEE explorer, pp. 687-
692 2011.

[18] Munawar, M. Wahib, M. Munetomo and K. Akama, “Advanced
genetic algorithm to solve MINLP problems over GPU”, IEEE
explorer, pp. 318-325, 2011.

[19] K. Deb, “An efficient constraint handling method for genetic
algorithms, Computer Methods in Applied Mechanics and
Engineering”, vol.186, no.2–4, pp. 311–338, 2000. DOI:
10.1016/S0045-7825(99)00389-8.

Fig.2. Pseudo code of DPGA_MCSM

Procedure DPGA_MCSM
begin
 Initialize main population M0, reserve population R0, crossover rate, elitism rate, mutation rate, crossbreeding rate, tour size, max

generation tmax
 Initialize M0 of size m, accept individuals which satisfies all constrains
 Initialize R0 of size n, n>m
 t: = 0
 Repeat
 Step I: Encoding of both population from decimal to binary value representation
 Step II: Fitness Calculation

a. Evaluate M0 using objective function fm(x)
b. Evaluate R0 using fitness function for reserve population (1) fr(x)

 Step III: Inbreeding of main population and intermediate main population Om generation via crossover
Step IV: Inbreeding of reserve population and intermediate reserve population Or generation via crossover

 Step V: Crossbreeding
a. Offspring C of size (n-m) using best individuals from Om and Or
b. Make Im = C U Om and Ir = C U Or

 Step VI: Decoding: Decoding of both population from binary representation to decimal representation
 Step VII: Evaluation

a. Evaluate Im using fm(x)
b. Evaluate Ir using fr(x)

 Step VIII: Survival selection from Im of size m and from Ir of size n
 t = t + 1
 Until
 fm(x) > = global optimal value or t > tmax

End
Where,
t : index of current generation M0, R0: main, reserve population
fm(x): objective function Om, Or: intermediate main, reserve population respectively
fr(x): fitness function for reserve population Im, Ir: constitute set of main, reserve population respectively
C: offspring tmax: maximum generations

Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 4, 2022

ISSN: 2769-2507 18

http://dx.doi.org/10.1109/TEVC.2010.2043362
http://dx.doi.org/10.1109/CEC.2007.4424928
http://dx.doi.org/10.1109/TEVC.2010.2043362
http://dl.acm.org/citation.cfm?id=1389286
http://www.ijcaonline.org/archives/volume64/number19/10744-5516
http://www.sciencedirect.com/science/journal/00963003/243/supp/C
http://dx.doi.org/10.1016/j.amc.2014.06.033
http://dx.doi.org/10.1016/S0045-7825(99)00389-8

