
The scheduling problems deal with a finite set of requests called
jobs to be performed (or scheduled) on a finite (and limited) set of
resources called machines (or processors). The aim is to choose
the order of processing the jobs on machines so as to meet a given
objective criteria.

In a basic single-machine scheduling problem that we con-
sider in this paper we have one machine that can process n jobs.
The processing time pj of job j is the amount of time that it re-
quires on the machine; job j is available from its release time rj .
The machine can handle at most one job at a time. Once job j
completes on the machine, it still needs a (constant) delivery time
qj for its full completion. The delivery is machine-independent,
i.e., it consumes no machine time (the jobs are delivered by an
independent unit and this takes no machine time). The objective
is to find a job sequence on the machine that minimizes the maxi-
mum job full completion time.

According to the conventional three-field notation introduced
by Graham et al. [11] the above problem is abbreviated as
1|rj , qj |Cmax: in the first field the single-machine environment
is indicated, the second field specifies job parameters, and in the
third field the objective criteria is given.

The problem has an equivalent formulation 1|rj |Lmax in
which delivery times are interchanged by due-dates. The due-
date dj of job j is the desirable time for the completion of job j.
Whenever that job is completed on the machine behind its due-
date, it is said to be late. In this setting the maximum job lateness
Lmax, that is, the difference between the job completion time and
its due-date, is to be minimized.

Given an instance of 1|rj , qj |Cmax, one can obtain an equiv-
alent instance of 1|rj |Lmax as follows. Take a suitably large con-
stant K (no less than the maximum job delivery time) and define
due-date of every job j as dj = K − qj . Vice-versa, given an in-
stance of 1|rj |Lmax, an equivalent instance of 1|rj , qj |Cmax can
be obtained by defining job delivery times as qj = D−dj , where

D is a suitably large constant (no less than the maximum job due
date). It is straightforward to see that the pair of instances defined
in this way are equivalent; i.e., whenever the makespan for the
version 1|rj , qj |Cmax is minimized, the maximum job lateness in
1|rj |Lmax is minimized, and vice-versa (see Bratley et al. [1] for
more details).

Because of the above equivalence, we can use both above
formulations interchangeably.

Our problem is known to be strongly NP-hard (Garey and
Johnson [8]). For exact implicit enumerative algorithms see for
instance, McMahon & Florian [15] and Carlier [3]. An effi-
cient heuristic method that has been commonly used for problem
1|rj , qj |Cmax is the so-called Earliest Due-Date (EDD) heuristic
proposed long time ago by Jackson [14] (see also Schrage [18]).
Jackson’s heuristic iteratively, at each scheduling time t (given by
job release or completion time), among the jobs released by time t
schedules one with the the largest delivery time (or smallest due-
date). For the sake of conciseness Jackson’s heuristic has been
commonly abbreviated as EDD-heuristic (Earliest Due-Date) or
alternatively, LDT-heuristic (Largest Delivery Time). Since the
number of scheduling times is O(n) and at each scheduling time
search for a minimal/maximal element in an ordered list is accom-
plished, the time complexity of the heuristic is O(n logn).

Jackson’s heuristic gives the worst-case approximation ra-
tio of 2, i.e., it delivers a solution which is at most twice worse
than an optimal one. There are polynomial time algorithms with
a better approximation. Potts [17] has proposed a modification
of Jackson’s heuristic for the problem 1|rj , qj |Cmax. His al-
gorithm repeatedly applies the heuristic O(n) times and obtains
an improved approximation ratio of 3/2. Hall and Shmoys [12]
have elaborated polynomial approximation schemes for the prob-
lem, and also an 4/3-approximation an algorithm for its version
with the precedence relations with the same time complexity of
O(n2 logn) as the above algorithm from [17].

In a recent work [28], the maximum job processing time
pmax is expressed as a fraction κ of the optimal objective value
and a more accurate approximation ratio in terms of that frac-
tion is derived. It was shown that Jackson’s heuristic delivers a
solution within a factor of 1 + 1/κ of the optimum. Such an es-
timation is useful, in practice, since it may drastically outperform
the worst-case ratio of 2, as it was suggested by the computational
experiments reported in the paper.

As to the special cases of our problem, if job release times,
processing times and delivery time are restricted in such way that
each rj lies in the interval [q−qj−pj−A, q−qj−A], for some
constant A and suitably large q, then the problem can also be
solved in time O(n logn), see Hoogeveen [13]. Garey et al. [9]
have proposed an O(n logn) algorithm for the feasibility version
with equal-length jobs (in the feasibility version job due-dates are
replaced by deadlines and a schedule in which all jobs complete
by their deadlines is looked for). Later in [22] was proposed an
O(n2 logn) algorithm for the minimization version with two pos-

Polynomially solvable and NP-hard special cases for
scheduling with heads and tails

Elisa Chinos, Nodari Vakhania

Centro de Investigaci´on en Ciencias, UAEMor, Mexico

Abstract— We consider a basic single-machine

scheduling problem when jobs have release and

delivery times and the objective is to minimize

maximum job lateness. This problem is known to be

strongly NP-hard. We study inherent structure of

this problem exploring its special cases and the

conditions when the problem can be efficiently

solved.

Keywords– scheduling single-machine; heuristic;

algorithm; release time; delivery time; due-date

I. INTRODUCTION

Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 4, 2022

ISSN: 2769-2507 10

sible job processing times.
For other related criteria, in [23] an O(n3 logn) algorithm

that minimizes the number of late jobs with release times on a
single-machine when job preemptions are allowed. Without pre-
emptions, two polynomial-time algorithms for equal-length jobs
on single machine and on a group of identical machines were
proposed in [25] and [24], respectively, with time complexities
O(n2 logn) and O(n3 logn log pmax), respectively.

Our problem 1|rj , qj |Cmax has been shown to be useful
also for the solution of the multiprocessor scheduling problems.
For example, for the feasibility version with m identical ma-
chines and equal-length jobs, algorithms with the time com-
plexities O(n3 log logn) and O(n2m) were proposed in Si-
mons [19] and Simons & Warmuth [20], respectively. Using the
same heuristic as a schedule generator in [21] was proposed an
O(qmaxmn logn+O(mνn)) algorithm for the minimization ver-
sion of the latter problem, where qmax is the maximal job delivery
time and ν < n is a parameter.

The problem 1|rj , qj |Cmax is commonly used for the so-
lution of more complex job-shop scheduling problems. A solu-
tion of the former problem gives a string lower bound for job-
shop scheduling problems. In the classical job-shop scheduling
problem the preemptive version of Jackson’s heuristic applied for
a specially derived single-machine problem immediately gives a
lower bound, see, for example, Carlier [3], Carlier and Pinson [4]
and Brinkkotter and Brucker [2] and more recent works of Gharbi
and Labidi [10] and Della Croce and T’kindt [7]. Carlier and Pin-
son [5] have used the extended Jackson’s heuristic for the solution
of the multiprocessor job-shop problem with identical machines,
and it can also be adopted for the case when parallel machines are
unrelated (see [26]). Jackson’s heuristic can be useful for paral-
lelizing the computations in scheduling job-shop Perregaard and
Clausen [16], and also for the parallel batch scheduling problems
with release times Condotta et al. [6].

The paper is organized as follows. xxxx In the next sub-
section we give a general overview of combinatorial optimiza-
tion and scheduling problems mentioning the importance of good
approximation algorithms and efficient heuristics for these prob-
lems. Then we give an overview of some related work. In the
following section we describe Jackson’s heuristic, give some ba-
sic concepts and facts and derive our estimations on the worst-
case performance of Jackson’s heuristic. In the final section we
present our computational experiments.

We start this section with a more detailed description of Jackson’s
heuristic. It distinguishes n scheduling times, the time moments
at which a job is assigned to the machine. Initially, the earliest
scheduling time is set to the minimum job release time. Among all
jobs released by that time a job with the mini- mum due-date (the
maximum delivery time, alternatively) is assigned to the machine
(ties being broken by selecting a longest job). Iteratively, the next
scheduling time is either the completion time of the latest assigned
so far job to the machine or the minimum release time of a yet
unassigned job, whichever is more (as no job can be started before
the machine gets idle nether before its release time). And again,
among all jobs released by this scheduling time a job with the
minimum due-date (the maximum delivery time, alternatively) is
assigned to the machine. Note that the heuristic creates no gap that
can be avoided always scheduling an already released job once

the machine becomes idle, whereas among yet unscheduled jobs
released by each scheduling time it gives the priority to a most
urgent one (i.e., one with the smallest due-date or alternatively
the largest delivery time).

Let SJ be a J-schedule, i.e., one obtained by the application
of Jackson’s heuristic (J-heuristic, for short) to the given problem
instance. A J-schedule may contain a gap, which is its maximal
consecutive time interval in which the machine is idle. We assume
that there occurs a 0-length gap (ci, ti) whenever job i starts at
its earliest possible starting time, that is, its release time, imme-
diately after the completion of job Ji; here ti (ci, respectively)
denotes the starting (completion, respectively) time of job Ji.

A block in a J-schedule is its consecutive part consisting of
the successively scheduled jobs without any gap in between pre-
ceded and succeeded by a (possibly a 0-length) gap. J-schedules
have useful structural properties. The following basic definitions,
taken from [22], will help us to expose these properties.

Among all jobs in a J-schedule S, we distinguish the ones
which full completion time realizes the maximum full completion
time in S; the latest scheduled such job is called the overflow
job in S. We denote the overflow job in S by o(S). The block
critical of S, B(S) is the block containing o(S). Job l is called
an emerging job in S if l ∈ B(S) and ql < qo(S). The latest
scheduled emerging job before the overflow job o(S) is called
live.

The kernel of S,K(S) consists of the set of jobs scheduled in
S between the live emerging job l(S) and the overflow job o(S),
not including l(S) but including o(S) (note that the tail of any job
K(S) is no less than of o(S)).

It follows that every kernel is contained in some block in
S, and the number of kernels in S equals to the number of the
overflow jobs in it. Furthermore, since any kernel belongs to a
single block, it may contain no gap.

If a J-schedule S is not optimal, then the overflow job o(S)
must be restarted earlier. In S we look for the overflow job o(S),
the kernel K(S)and the set of emerging jobs. In order to reduce
the maximum job lateness in S (|S|), we apply an emerging job
l for K(S), that is, we reschedule l after K(S). Technically, we
accomplish this into two steps: first we increase artificially the
release time of l, assigning to it a magnitude, no less than the
latest job release time in K(S); then apply the J-heuristic to the
modified in this way problem instance. Since now the release time
of l is no less than that of any job of K(S), and ql is less than any
job tail from K(S), the J-heuristic will give priority to the jobs
of K(S) and l will be scheduled after all these jobs. We call the
J-schedule obtained from S in this way a weakly complementary
to S schedule and denote it by Sl.

In this section we present the conditions leading to the efficient so-
lution of our problem. These conditions are derived by the analy-
sis J-schedule SJ and hence provide anO(n logn) time decision.

Lemma 1 If the overflow job o(SJ) is scheduled at its release
time, then SJ is optimal.

Proof. If o(SJ) is scheduled at its release time ro(S) then its
starting time to(S) = ro(S). Hence job o(SJ) starts at its early
starting time in SJ and ends at its minimum completion time.

II. BASIC CONCEPTS AND DEFINITIONS

III. THE CASES AND CONDITIONS FOR
POLYNOMIAL SOLUTION

OF THE PROBLEM

Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 4, 2022

ISSN: 2769-2507 11

Therefore, o(SJ) can not be rescheduled earlier in SJ , i.e., there

is no scheduling SJ
′

such that
∣∣∣SJ′ ∣∣∣ < ∣∣SJ ∣∣ and SJ is optimal.

If o(SJ) is not scheduled at its release time, then the starting
time of o(SJ) must be the completion time of some other job.
Another case when schedule SJ is optimal, is when the tails of all
the jobs scheduled in the critical block before o(SJ) are greater
than o(SJ):

Lemma 2 If the critical blockB(SJ) does not contain an emerg-
ing job, then SJ is optimal.

Proof. Assume that SJ contains a critical block B(SJ) which
does not contain an emerging job, i. e., for all e ∈ B(SJ) sched-
uled before job o(SJ), qe ≥ qo(SJ).

Suppose there is a non-empty sequence E of jobs in B(SJ)
scheduled before o(S). If we reschedule some jobs of E after

o(S) the in the resultant schedule SJ
′

at least one job e will be
completed no earlier than at the moment co(SJ). But as e is not
an emerging job, qe ≥ qo(SJ) and therefore the full completion

time of e, Ce, will be no less than Co(SJ). Then
∣∣∣S′
∣∣∣ > |S|.

Therefore, SJ is optimal.
If set E is empty then o(SJ) is scheduled in SJ at its release

time, therefore by Lemma 1, SJ is optimal.

Lemma 3 If all release times ri (i = 1, . . . , n) of jobs in SJ are
equal to a constant r for then SJ is optimal.

Proof. As all jobs Ji(i = 1, . . . , n) are released at the time r,
then the Jackson’s algorithm in each iteration schedules the job j
with largest tail. This gives us a schedule SJ , such that jobs are
scheduled in non-increasing order. Then SJ cannot contain an
emerging job and by Lemma 2, SJ is optimal.

Lemma 4 Let SJ be a J-schedule with jobs Ji(i = 1, ...n) with
integer release times ri and unit processing times pi = 1 (i =
1, ..., n). Then SJ is optimal.

Proof. Since the release time ri each job Ji is an integer number
and its processing time is 1, during the execution of that job no
other more urgent job may be released. Hence, at each scheduling
time t, J-algorithm, among all the released by that time moment
jobs, will include one with the largest tail. In addition, in SJ ,
every job is scheduled at its release time ri or at the completion
time of another job. If job o(SJ) is scheduled at time t = ro(SJ),
then SJ is optimal by Lemma 1. If o(SJ) is scheduled at the
completion time of another job Jk so that job o(SJ) was released
before the completion time of that job, then qk ≥ qo(SJ). Hence,
there may exist no emerging job and SJ is optimal by Lemma 2.

Lemma 5 Let jobs in J =
{
Jij
}
j=1,...,n

be ordered by a non-

decreasing sequence of their release times. Then SJ is optimal
if for any neighboring jobs Jij and Jij+1 (j = 1, . . . , n − 1),
rij+1 ≥ rij + pij .

Proof. By the condition in the lemma, every job Jij (j =

1, . . . , n) is scheduled in SJ in the interval
[
rij , rij + pij

]
. So,

the starting time of each job in SJ is tj = rij , i. e., each job Jij
begins at its early starting time in SJ . This is true, in particular,
for job o(SJ) and therefore, by Lemma 2, SJ is optimal.

From here on, we shall focus our attention on the special case of
our problem with only 2 allowable job release times and tails.
As we have seen earlier, Jackson’s heuristic delivers an opti-
mal schedule whenever we have a single release time or a single
tail (or due-date), i.e., the problems 1|qj |Cmax and 1|rj |Cmax

(1||Lmax and 1|rj , dj = d|Lmax) are solvable in an almost
linear time n logn (whereas the general setting 1|rj , qj |Cmax

is strongly NP-hard). Now we show that we arrive at an NP-
hard problem by allowing two distinct release times or tails;
i.e., the problem 1|{r1, r2}, {q1, q2}|Cmax is already NP-hard.
For the convenience, let us consider the version with due-dates
1|{r1, r2}, {d1, d2}|Lmax.

Theorem 6 1|{r1, r2}, {d1, d2}|Lmax is NP-hard.

Proof. We use the reduction from an NP-hard SUBSET SUM
problem for the feasibility version of 1|{r1, r2}, {d1, d2}|Lmax,
in which we wish to know if there exists a feasible schedule that
meets all job due-dates (i.e., in which all jobs are completed no
later than their due-dates). In SUBSET SUM problem we are
given a finite set of integer numbers C = {c1, c2, . . . , cn} and

an integer number B ≤
n∑
i=1

ci. 1 This decision problem gives

a “yes” answer iff there exists a subset of C which sums up to
B. Given an arbitrary instance of SUBSET SUM, we construct
our scheduling instance with n + 1 jobs with the total length of
n∑
ι=1

cι + 1 as follows.

We have n partition jobs J1, . . . , Jn released at time r1 = 0

with pJi = ci, rJi = 0 and dJi =
n∑
ι=1

cι + 1, for i = 1, . . . , n.

Besides these partition jobs, we have another separator job I , re-
leased at time r2 = B with pI = 1, rI = r2 and with the due-date
dI = B + 1. Note that this transformation creating an instance
of 1|{r1, r2}, {d1, d2}|Lmax is polynomial as the number of jobs
is bounded by the polynomial in n, and all magnitudes can be
represented in binary encoding in O(n) bits.

Now we prove that there exists a feasible schedule in which
all jobs meet their due-dates iff there exists a solution to our SUB-
SET SUM problem. In one direction, suppose there is a solution
to SUBSET SUM formed by the numbers in set C′ ⊆ C. Let
J ′ be the set of the corresponding partition jobs in our schedul-
ing instance. Then we construct a feasible schedule in which all
jobs meet their due-dates as follows. We first schedule the parti-
tion jobs from set J ′ in the interval [0, B] in a non-delay fashion
(using for instance, Jackson’s heuristic). Then we schedule the
separator job at time B completing it by its due-date B + 1 and
then the rest of the partition jobs starting from timeB+1 again in
a non-delay fashion by Jackson’s heuristic. Observe then that the

latest scheduled job will be completed exactly at time
n∑
ι=1

cι + n

and all the jobs will meet their due-dates. Therefore, there exists a
feasible schedule in which all jobs meet their due-dates whenever
SUBSET SUM has a solution.

In the other direction, suppose there exists a feasible schedule
S in which all jobs meet their due-dates. Then in that schedule,
the separator job mist be scheduled in the interval [B,B + 1),
whereas the latest scheduled partition job must be completed by

1In this section n stands exclusively for the number of elements in
SUBSET SUM; in the remained part, n denotes the number of jobs

IV. THE NP-HARDNESS RESULT

Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 4, 2022

ISSN: 2769-2507 12

time
n∑
ι=1

cι+1. But this may only be possible if the interval [0, B]

in schedule S is completely filled in by the partition jobs, i.e.,
there must be a corresponding subset J ′ of the partition jobs that
fill in completely the interval [0, B] in schedule S (if this interval
were not completely filled out in schedule S then the completion

time of the latest scheduled partition job would be
n∑
ι=1

cι+1 plus

the total length of the gap within the interval [0, B] and hence
that job would not meet its due-date). Now clearly, the process-
ing times of the jobs in set J ′ form the corresponding solution to
SUBSET SUM.

From here on, we study the version of our general problem in
which each job Ji (i = 1, . . . , n) is released either at the time r1
or at time r2. Notice that this version is NP-hard by Theorem 6.

From now on we deal with the sequence of jobs {Jij}|j =
1, . . . ,m) enumerated so that the first m jobs of the sequence are
ones released at time r1 and the next n−m jobs are ones released
at time r2 (m < n). We also let J1 and J2 stand for the set of
jobs released at the time r1 and r2, respectively.

Lemma 7 If
∑m

j=1
pij + r1 ≤ r2 then SJ is optimal.

Proof. Since
∑m

j=1
pij + r1 ≤ r2, J-algorithm in the first m

iterations will schedule all the jobs released at time r1. As the
jobs Jij , j = 1, ...,m) are released simultaneously at the time
r1, they are scheduled optimally by Lemma 3.

By the condition in the lemma, all jobs released at the time
r1 are completed by time r2, and hence all the jobs in set J2 are
available for scheduling at time r2. Then again J-algorithm will
schedule all these jobs optimally (Lemma 3).

Now clearly, by pasting together the two above partial sched-
ules, we obtain a complete optimal schedule (as if there arises a
gap between the two portions of that schedule then it is unavoid-
able).

Lemma 8 Let k < m be such that for the first k jobs with the
largest tails in schedule SJ the equality

∑k

l=1
pijl = r2 − r1

holds. Then SJ is optimal.

Proof. We distinguish the following two cases based on the fact
that for the first k jobs with the largest tails released at time r1,∑k

l=1
pijl = r2 − r1 is satisfied:

Case 1: k = m. In this case
∑m

l=1
pijl = r2 − r1 and by

Lemma 5, schedule SJ is optimal (with the equality being hold
for any tow neighboring jobs).

Case 2: k < m. Let SJ
′

be the J-schedule for the first k jobs.
Since all these jobs are released at the time r1, they are scheduled
optimally by Lemma 3. Further, since

∑k

l=1
pijl ≤ r2 − r1, the

earliest stating time of the jobs Jijk+1
, . . . , Jijm is r2. Hence by

time r2, all the remaining yet unscheduled n − k jobs become

simultaneously available. Let SJ
′′

be the J-schedule for these

jobs. Since all yet unscheduled jobs are available by time r2, SJ
′′

is optimal by Lemma 3.

Now let S be the J-schedule obtained joining the J-schedules

SJ
′

and SJ
′′

. Note that schedule S has no gap, hence it consists
of a single block. By our construction, there exists no emerging
job in schedule S, and it is optimal by Lemma 2.

Below we let Ji, i ≤ k, be the earliest arisen job from J1
during the construction of schedule SJ , such that tJi + pJi > r2,
and we let q

′
be the largest tail among the tails of the jobs released

at time r2.

Lemma 9 If qJi ≥ q
′
, then SJ is optimal.

Proof. As it is easily seen, because qJi ≥ q
′
, schedule SJ con-

tains no emerging job and hence is optimal by Lemma 2.

Lemma 10 If o(SJ) ∈ J1 then SJ is optimal.

Proof. For every job Ji ∈ J1 scheduled in SJ before o(SJ),
qi ≥ qo(SJ) (by J-algorithm). Likewise, for each job Jj ∈ J2

scheduled in SJ before job o(SJ), qJj ≥ qo(SJ), again by J-
algorithm. I.e., for any job Jk scheduled in SJ before job o(SJ),
qJk ≥ qo(SJ). Hence, SJ does not contain an emerging job and
is optimal by Lemma 2.

Lemma 11 If qJi < qJj and o(S`) ∈ J2 then Sl is optimal.

Proof. As qJi < qJj , then any job scheduled in S` in the range[
r2, co(S`)

]
is in J2. Also by Jackson’s algorithm any job Jk

scheduled before o(Sl) meets that qJk ≥ qo(S`). Therefore the
critical block does not contain any emerging job, then by Lemma
2, Sl is optimal.

In this paper, we have analyzed schedules obtained by Jackson’s
algorithm. This analysis leaded us to the explicit relationships
and polynomial solution of these particular cases of our general
problem and its spacial case with two job release time, that we
have shown to be NP-hard.

As to the directions for the future work, we believe that some
of the presented results might be extended for the multiprocessor
version of our problem with parallel identical processors.

[1] P. Bratley, M. Florian and P. Robillard. On sequencing with
earliest start times and due–dates with application to com-
puting bounds for (n/m/G/Fmax) problem. Naval Res. Logist.
Quart. 20, 57–67 (1973)

[2] W. Brinkkotter and P.Brucker. Solving open benchmark in-
stances for the job-shop problem by parallel head–tail adjust-
ments. J. of Scheduling 4, 53–64 (2001)

[3] J. Carlier. The one–machine sequencing problem. European
J. of Operations Research. 11, 42–47 (1982)

[4] J. Carlier and E. Pinson. An Algorithm for Solving Job Shop
Problem. Management Science, 35, 164-176 (1989)

V. STUDY OF THE RESTRICTED PROBLEM
WITH TWO JOB RELEASE TIMES

VI. CONCLUSION

REFERENCES

Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 4, 2022

ISSN: 2769-2507 13

[5] J. Carlier and E. Pinson. Jakson’s pseudo preemptive sched-
ule for the Pm/ri, qi/Cmax problem. Annals of Operations
Research 83, 41-58, 1998

[6] A. Condotta, S. Knust and N.V. Shakhlevich. Parallel batch
scheduling of equal-length jobs with release and due dates.
Journal of Scheduling, 13, 463-477 (2010)

[7] F. Della Croce and V. T’kindt. Improving the preemptive
bound for the single machine dynamic maximum lateness
problem. Operations Research Letters 38 589591 (2010)

[8] M.R. Garey and D.S. Johnson. Computers and Intractability:
A Guide to the Theory of NP–completeness. Freeman, San
Francisco, 1979.

[9] M.R. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan.
Scheduling unit–time tasks with arbitrary release times and
deadlines. SIAM J. Comput. 10, 256–269 (1981)

[10] A. Gharbi and M. Labidi. Jackson’s Semi-Preemptive
Scheduling on a Single Machine. Computers & Operations
Research 37, 2082-2088 (2010)

[11] R.L. Graham. E.L. Lawler, J.L. Lenstra, and A.H.G. Rin-
nooy Kan. Optimization and approximation in deterministic
sequencing and scheduling: a servey. Ann. Discrete Math. 5
287-326 (1979)

[12] L.A. Hall and D.B. Shmoys. Jackson’s rule for single-
machine scheduling: Making a good heuristic better, Math-
ematics of Operations Research 17 22–35 (1992)

[13] Hoogeveen J.A. Minimizing maximum promptness and
maximum lateness on a single machine. Math. Oper. Res 21,
100-114 (1995)

[14] J.R. Jackson. Schedulig a production line to minimize the
maximum tardiness. Manegement Scince Research Project,
University of California, Los Angeles, CA (1955)

[15] G. McMahon and M. Florian. On scheduling with ready
times and due dates to minimize maximum lateness. Oper-
ations Research 23, 475–482 (1975)

[16] M. Perregaard and J.Clausen. Parallel branch-and-bound
methods for the job-shop scheduling problem. Annals of Op-
erations Research 83, 137-160 (1998)

[17] C.N. Potts. Analysis of a heuristic for one machine sequenc-
ing with release dates and delivery times. Operations Re-
search 28, p.1436-1441 (1980)

[18] L. Schrage. Obtaining optimal solutions to resource
constrained network scheduling problems, unpublished
manuscript (march, 1971)

[19] B. Simons. Multiprocessor scheduling of unit-time jobs with
arbitrary release times and deadlines. SIAM J. Comput. 12,
294-299 (1983)

[20] B. Simons, M. Warmuth. A fast algorithm for multiproces-
sor scheduling of unit-length jobs. SIAM J. Comput. 18, 690-
710 (1989)

[21] N. Vakhania. A better algorithm for sequencing with release
and delivery times on identical processors. Journal of Algo-
rithms 48, p.273-293 (2003)

[22] N. Vakhania. Single-Machine Scheduling with Release
Times and Tails. Annals of Operations Research, 129, p.253-
271 (2004)

[23] N. Vakhania. “Scheduling jobs with release times preemp-
tively on a single machine to minimize the number of late
jobs”. Operations Research Letters 37, 405-410 (2009)

[24] N.Vakhania. Branch less, cut more and minimize the num-
ber of late equal-length jobs on identical machines. Theoreti-
cal Computer Science 465, 49–60 (2012)

[25] N.Vakhania. A study of single-machine scheduling problem
to maximize throughput. Journal of Scheduling Volume 16,
Issue 4, pp 395-403 (2013)

[26] N. Vakhania and E.Shchepin. Concurrent operations can
be parallelized in scheduling multiprocessor job shop, J.
Scheduling 5, 227-245 (2002)

[27] N. Vakhania, F. Werner. Minimizing maximum lateness of
jobs with naturally bounded job data on a single machine in
polynomial time. Theoretical Computer Science 501, p. 7281
(2013)

[28] N.Vakhania, D.Perez and L.Carballo. Theoretical Expec-
tation versus Practical Performance of Jackson’s Heuristic.
Mathematical Problems in Engineering Volume 2015, Article
ID 484671, 10 pages http://dx.doi.org/10.1155/2015/484671
(2015)

Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 4, 2022

ISSN: 2769-2507 14

