
 

 

 
Abstract—The objective of this study is to analyze and 

compare classical time series and deep learning models for energy 

load prediction. Energy predictions are important for 

management and sustainable systems. After analyzing the 

climacteric factors impact on energy load (a case study in 

Albania) we considered classical and deep learning models to 

perform forecasts. We have used hourly and daily time series for 

a period of three years. In total respectively 26,280 hours and 

1095 days. Average temperature is considered as external 

variable in both statistical and deep learning models. The 

dynamic evolution of hourly (daily) load is correlated with hourly 

(daily) average temperature. The performance of the proposed 

models is analyzed and evaluated based on accuracy 

measurements (MSE, RMSE, MAPE, AIC, BIC etc.) and 

graphics results of statistical tests. In-sample and out-of-sample 

accuracy is evaluated. The models show competitive performance 

to some recent works in the field of short-and medium-term 

energy load forecasts. This work may be used by stakeholders to 

optimize their activities and obtain accurate forecasts of energy 

system behavior.  

 

Keywords— time series, forecasting, electric energy 

consumption, deep learning.  

I. INTRODUCTION 
The Mediterranean basin is one of the key points of energy 

efficiency production and use. Every country's energy 
consumption is specially affected by its economic and industry 
development, climatic conditions and its energy production 
sources. Numerous and diverse sources of energy have 
undergone significant evolution in the last 30 years. There has 
been a decline in coal use and a significant increase in natural 
gas use. Although climate change has affected this region over 
the last decades again the Mediterranean basin is an area 
which benefits from a mild climate with mild and warm 
winters and sunny summers. This climate offers the region a 
great potential for energy production from renewable energy 
[1]. Albania is a country in which the energy produced by 
hydropower plants occupies almost 90% of the energy 
produced in the country. Given that this energy produced relies 
on the availability of water in large reservoirs of cascades 
located mainly in the northern part of the country, or the 
intensity of the flow of rivers that supply these cascades, 
 

 

precipitation and snowmelt. High summer temperatures and 
droughts are limiting production by hydropower plants. 
What is noticed in recent years in the Mediterranean region 
and in Albania is also the fact that based on the above factors 
the utilization rate of hydropower plants has decreased. This 
decline has been followed by an increase in interest in solar 
energy which is mainly influenced by surface solar radiation 
whose variations depend mainly on the atmospheric 
composition (aerosols, water vapor) and clouds [2], [3]. 
An increase in solar radiation has been observed in Europe [4] 
and especially for the Mediterranean basin these solar sources 
are seen with special interest as one of the areas with medium 
to high solar radiation on the continent [5]. Exactly at the 
beginning of winter in 2021, the region was involved in an 
energy crisis and not only. Experts emphasize the importance 
of a safe and sufficient energy, especially when the energy 
sources are not numerous and diverse. In this context, they 
suggest the addition of new and clean energy sources, in the 
same time they highlight to focus on the importance of optimal 
management of existing resources. Climate change associated 
with drought can reduce power generation and result in less 
electricity produced by the hydro power plants. Significant 
changes in production and consumption have been observed 
which have influenced government policies to provide optimal 
and long-term solutions. Many European countries are part of 
the energy crisis and have already had wide-ranging impacts 
on their economy and environment.  

There is a lot of work done regarding prediction in different 
areas. In their work [6] have presented most of the challenges 
the prediction field has faced with during 25 years of 
forecasting. More than one decade ago they pointed out the 
necessity of computational ability for the high complexity 
amount of data to become the power of prediction in many 
areas. The relationship between energy consumption and 
economic growth was analyzed in a considerable number of 
countries in Europe by [7]. They indicate that attention is 
required to the relation between the efficiency use of resources 
and climate change in consequence the global warming. 
Researchers are provided with a systematic literature review of 
a considerable number of articles on energy demand modeling. 
Reference [8] reviewed and offered a classification of different 
techniques used in energy demand.  There is also a lot of work 
done especially in machine learning (ML) techniques which 
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rely on historic data and are extensively used to short-term 
forecasting [9]. Classical statistical techniques on energy 
prediction are often used as a benchmark for many techniques 
but in many cases depending on the nature of the data used and 
exogenous variables these techniques perform comparable 
with engineering-based models or ML models [2], [3].  

Given the high ability of deep learning techniques to deal 
with the change of power generation and load there are many 
neural network structures which have been utilized to obtain 
short term load predictions [10]. The study undertaken by [11] 
presents a forecasting model for hourly load consumption 
considering external variables unitizing convolutional neural 
networks (CNNs) to extract the features of variables used. 
They also show in their study their ability to deal with short-
term and long-term memories. ANNs (Artificial Neural 
Networks) are used by [12] for Greek interconnected power 
system. They point out that the accuracy of the ANNs’ 
prediction depends on the quality and availability of the 
training data. An analysis of the accuracy of ML and statistical 
techniques for Albanian energy sector is done by [2]. In their 
work they consider the energy production by hydropower’s 
which is the main source of production in the country. They 
came in the conclusion that neural networks have handle with 
seasonal patterns of monthly energy produced by HPP and 
provide accurate forecasts in short-term. Reference [13] 
proposed a short-term load forecasting method for hourly data 
using long short-term memory (LSTM) algorithm as an 
algorithm which have shown to deal with regularity of 
historical data. They use encoded external factors to predict 
the load in the next half an hour and showed accurate results. 

In their work [14] present forecasting methodology for daily 
electricity demand using weather ensemble predictions. They 
show that weather ensemble predictions can improve the 
accuracy of electricity demand forecasts. When forecasting 
energy demand, it's often a good practice to use temperature as 
an exogenous variable. Reference [3] present a methodology 
of ensemble models to predict energy production by 
hydropower relying in exogenous variables such as 
temperature, precipitation, water inflow. The show accurate 
results of combining statistical and machine learning models 
for monthly data.  

Depending on many factors when dealing with energy data 
studies have shown that in special circumstances such as: 
geographical position, climate conditions , variables taken into 
considerations, seasonality patterns and frequency of data 
there are not consensus on the “best” model used in the energy 
situations. Going through the results of [15], they show the 
efficiency of STL decomposition (Seasonal-Trend 
decomposition using LOESS) when used as a pre-processing 
step in statistical models. Another study which shows the 
efficiency of statistical time series models is the one proposed 
by [16] which is a simple procedure combining time series 
models dealing with multi seasonality. In reference [17] the 
authors offer a new approach for forecasting time series with 
complex seasonal.  

Although there is plenty of material, research and 
competitions about recommended models for forecasting in 
different fields [18] there is still discussion of the conditions 
under which different methods perform best.  

A. Data 

In our study we use hourly time series of energy load for a 
period of three years (2016-2018) in total there are 26,280 
hours and 1095 days. Together with energy load we have 
considered also the average temperature (hourly and daily).  

In this material we have used the terms described below: 
Hour: The time of day for which the variables are 

expressed. The time is expressed as an integer with values 
ranging from 0 to 23 

Load: The aggregated energy load (consumption) observed 
each hour (measured in Mwh). 

Temperature: The hourly average value (in Celsius) of the 
temperature of the day. 

When dealing with hourly time series data there are a few 
models that one can try. Since hourly time series contain 
multiple seasonal patterns (daily, weekly, and yearly); in your 
case it contains all these seasonality’s because it contains 3 
years of hourly data. Many time series exhibit complex 
seasonal patterns.  

 
Fig. 1 Hourly energy load (unit MWh) 

 
In Fig. 1 is shown the hourly energy load for a period of 

three years. What is clearly observed is the fact that the time 
series has multi seasonality patterns. After an accurate 
investigation of each year we observe a high load at the 
beginning of the year which corresponds to the winter season 
and accompanied by a noticeable decrease during the spring 
season. Further an upward trend for the period of summer 
which in the Mediterranean climate is accompanied by high 
temperatures, and with a marked decline during the autumn. 
Patterns are distinct from year to year due to the extreme 
temperatures and weather situations during the winter months 
mainly in the entire Mediterranean region and especially in 
Albania for that year. This behavior can be observed in Fig.2, 
Fig.3 and Fig.4. 
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Fig. 2 Hourly energy load (2016) 

         

 
Fig. 3 Hourly energy load (2017) 

 

 
Fig. 4 Hourly energy load (2018) 

The hourly average temperature (measured in Celsius 
degree) for the period under consideration is shown in Fig.5. 
The Mediterranean climate would certainly not be absent in 
the seasonal behavior of the average temperature. High 
temperatures are observed during the summer months (up to 
42 degrees Celsius) and low temperatures during the winter 
months (up to -7 degrees Celsius).  

 
Fig. 5 Hourly average temperature (Celsius degree) 

These extreme values are especially noticeable during 2016, 
and there is a decrease in values for both high and low 
temperatures for 2017 and further for 2018 which is also 
confirmed by world indicators related to climate change and 
global warming. Fig.6 shows the different levels of daytime 
peak energy demand by month. The situation is displayed for 
three years in separate and we may notice a flattened pattern 
from May to September and a clear three peaks for other 
months. The lower peak in energy demand is observed from 
midnight to 5am and then a rapid increase of the demand from 
5am to 8am, then a steady situation which culminates with the 
evening hour 8pm and then a decrease again to the lowest 
levels of the day. Especially for January and December the 
morning “jump” load is more distinctive and very fast in levels 
from 20000 Mwh to 35000 Mwh. It is also observed a slightly 
increase of energy load levels from 2016 to 2018. 

 

Sep Oct Nov Dec

May Jun Jul Aug

Jan Feb Mar Apr

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

20000

30000

40000

20000

30000

40000

20000

30000

40000

Hour

E
n
e
rg

y
 L

o
a
d
 (

M
w

H
)

2016 2017 2018

 
Fig. 6 Twenty-four-hour load by month (MWh) 

 
The twenty-four-hour load helps us to investigate the levels 

of daytime and peak loads which depends also on the solar 
penetration conditions and variations.  
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Fig. 7 Twenty-four-hour load by month (MWh) 

 
The Mediterranean climate of Albania show a correlation of 

energy demand and average temperature. This can be easily 
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observed also by 24 hour evolution of these variables faced by 
month as shown in Fig.6 and Fig.7. In both variables we 
observe presence of seasonality and one high peak for the 
average temperature which obviously is reached in midday and 
high average temperature levels for the summer and low levels 
for winter. No noticeable differences of levels from 2016 to 
2018.  

A correlation analysis of energy load and climacteric factors 
such as temperature is important. Pearson correlation 
coefficient is a measure of linear correlation between two sets 

of data. It is defined as: 
X Y

cov( , ) XY

X Y
 

  and takes values 

from -1 to 1. A value close to -1 or 1 indicates a significant 
(negative or positive) relationship between X and Y.  

This correlation analysis between load and temperature is 
illustrated graphically in Fig.8. The interesting part which is 
observed is the fact that aggregated energy load displays a 
significant correlation with the average temperature (by hour) 
when observed by month. We notice a significant positive 
correlation between these two variables especially for the 
summer season (it varies from 0.64 up to 0.72).Another pattern 
we clearly observe is the density plot which corresponds to 
daily and night hours of the day. These findings may be used 
to focus on the research of seasonal power load prediction in 
order to satisfy and optimize power supply and demand. In this 
study we have not taken into consideration the seasonal 
modeling by hour or month which can be further studied. 
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Fig. 8 Density plot and correlation of energy load (consumption) and 

average temperature by month  
 

Fig.9 shows the correlation of energy load (consumption) 
and average temperature faced by year and also colored by 
month. It is clear that the same behavior is observed for each 
year taken into observation. What makes different the spread 
are the registered values of the average hourly temperature 
which clearly display a compression in the amplitude for the 
last year 2018. The scatterplot of hourly energy load and 
average temperature shows two clusters which correspond to 
daily and night hours. The behavior is almost the same apart 
the shift of the daily cluster above the night cluster. This 
shift corresponds also to the higher differences in 
temperature which suggest the need of electricity due to 
heating or cooling in respect also to the month or season.
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Fig. 9 Correlation of energy consumption and average temperature faced by year (hourly observations) 
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II. METHODOLOGY 

A. Data preprocessing  

The data was organized in  training and testing dataset 
respectively (80% and 20%). The testing dataset was used for 
validation which corresponds to the forecast horizon. Some 
machine learning methods face difficulties when dealing with 
missing observations, but this was not our case. The daily 
energy load was the aggregated load of 24 hours and the 
average temperature was the average calculated for 24 hour of 
that corresponding day. Given the complexity of the data and 
the luck of other external variables which can handle and 
better explain multi seasonal patterns of energy load we 
switched to daily aggregated time series of energy load and 
daily average temperature. Based on the above analysis of the 
data and the literature review we have proposed some of the 
models which can deal with the multi seasonality pattern of the 
energy load and which can handle exogenous variables. In our 
case we have tried the average daily temperature as external 
variable in some of our models.  
 

 
Fig. 10  Daily energy load ((aggregated energy load MW/day)) 

 

B.  Statistical Techniques  

First we focused our attention on statistical forecasting 
models such as: Naïve, moving average, ARIMA, Exponential 
Smoothing and Seasonal Naïve. In many situations is shown 
that STL is a successful try on decomposing the time series 
into their seasonal, trend, and remainder components. After 
that STL can be used for modeling purposes. In this study we 
have used the Hyndman-Khaldakar algorithm for performing 
STL and ARIMA models [19], [20], [21]. In reference of [23] 
the STL decomposition shows good performance when used in 
statistical methods and time series with monthly seasonalities 
but was not performing well in machine learning methods. The 
choice of the best algorithm depends on the nature of the data 
and the frequency as well. In precence of seasonality patterns 
and trend ARIMA and exponential smoothing methods are the 
ones which can perform good in prediction. In their work [20] 
present a complete modeling framewrok for time series 
exponential smoothing models.  

The autoregressive integrated moving average 
(ARIMA(p,d,q)) processes are a combination of 
autoregressive (AR(p), where p-the degree of autoregressive 

model) and moving average (MA(q), where q- degree of 
moving average model) processes and d is the degree of 
differences [22]. For implementation of ARIMA models in R 
we have used forecast package in R which combines unit root 
tests, minimization of the AICc and MLE to obtain the 
ARIMA parameters and coefficient estimates [21]. There are 
many models which use STL (Seasonal and Trend 
decomposition using Loess- a method for estimating nonlinear 
relationships.) to understand seasonal data and fit appropriate 
models [24]. 
 

C.   Deep Learning Techniques 

 
Machine learning techniques and deep learning are 

attracting more and more attention from researchers of many 
fields. Especially in the forecasting field these methods have 
passed through many competitions such as the M Competitions 
[25], [26], [27].  Artificial neural networks are forecasting 
methods that are based on simple mathematical models of the 
brain. They allow complex nonlinear relationships between the 
response variable and its predictors. There are many studies of 
using deep learning methods in energy prediction and 
reviewed by [28]. In their study [29] present a neural network 
approach for short-term energy load prediction paying 
attention to seasons and using temperature as an external 
variable. They achieved reliable results for hour ahead load 
prediction. In reference to the work presented by [30] they 
agreed on the weakness of NNs when dealing with seasonality. 
Many researches suggest removing seasonality before 
modeling, to achieve better predictions. Testing were made by 
[31] on this topic and they showed that for clear seasonality 
patterns RNNs are adequate but when this is not the case then 
a deseasonalisation technique should be used. 

  
In this study we have considered Recurrent Neural Nets 

(RNNs). The scheme of how this network performs is shown 
in Fig.11.  

 
Fig.11 RNN Architecture 

 
Here, x’s in yellow are predictor variables, h’s in green are 

hidden layers, and y’s in blue are predicted values.  
Recurrent Neural Nets are essentially a bunch of neural nets 

stacked on top of each other. The output of the model at 
h1 feeds into the next model at h2 as shown. The goal of the 
learning process is to find the best weight 
matrices U, V and W that give the best prediction of y^(t), 
starting from the input x(t), of the real value y(t). 
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Neural Network AutoRegression (NNAR) models are 
developed on the principle of using lagged observations as 
inputs to a neural network. They are feed-forward networks 
with one hidden layer. These models perform good with 
seasonal data, where it adds as input the last observed values 
from the same season. In general the model NNAR(p, k) uses p 

lagged inputs and k nodes in the single hidden layer. Seasonal 
NNAR(p, P, k): with k-neurons in the hidden layer. and input 

1, 2 2( ,..., , , , )t t t p t m t m t Pmy y y y y y      . NNAR(p, P, 0)m model is 
equivalent to an  ARIMA(p, 0, 0)(P,0,0)m  model but without  
stationarity restrictions. More generally, an 
NNAR(p,P,k)m model has inputs : 

1, 2 2( ,..., , , , )t t t p t m t m t Pmy y y y y y      and k neurons in the hidden 
layer. If the values of p and P are not specified, they are 
selected automatically [21]. For seasonal time series, the 
default values of P is 1 and p is chosen from the optimal linear 
model fitted to the data after seasonally adjusted. If k is not 
specified then it is set to k=(p+P+1)/2 (which is rounded to 
the nearest integer). 
 

D. Evaluation metrics 

The performance of the models presented in this study were 
evaluated in terms of a number of metrics. The selection of the 
most accurate model is made by analyzing and comparing 
error measurements and information criteria for in-sample and 
out-of-sample data. As well as extending personal judgment to 
the advantages offered by each model based in the nature of 
the data. The metrics used to assess and compare the various 
methods are : 

1
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In many research studies there are many arguments of using 

different accuracy measurements of the model. This depends 
of course on the nature of the data and their complexity. In 
reference of [32] MASE offers a straightforward indication on 

the relative model performance compared with the naïve 
benchmark. It is a scale-independent measure where a value 
less than one indicates that the performance of the model is 
better than the naïve benchmark on average. And a value 
greater than one indicates the opposite. What is important is 
the fact that this critical value should not conclude the 
performance of the model but further analysis are suggested.  

III. ANALYSIS OF RESULT 
This section provides a comprehensive analysis of the 

results obtained from the modeling process. Results in terms of 
all error metrics used to evaluate the performance of the 
models are shown in Table 1. The abbreviations used to denote 
the “top model” selected from the work done in this study are 
respectively: ‘Snaive’- seasonal naïve method, ‘STL+ARIMA’- 
STL decomposition with ARIMA errors, ’Hybrid’- ensemble 
model with combination of statistical and deep learning 
models , ‘NNAR’- Neural network with autoregression, 
‘NNAR-Xreg’- neural network with autoregression and average 
temperature as external variable.  

In Table 1, the best model based on the error is indicated in 
boldface respectively for training and testing dataset.  
Analyzing the values of error metrics for each model we 
observe that for the training dataset STL+ARIMA seem to 
perform better than seasonal naïve. On other hand, NNAR 
with daily average temperature as regressor seem to perform 
better than NNAR without regressors. The difference between 
NNAR and NNAR-Xreg is not significant. In this situation we 
may suggest adding other exogenous variables (such as 
humidity) to explain daily energy load.   Overall for training 
dataset the neural network with average temperature as 
external variable is significantly better compared to other 
statistical models.  

The MASE value for all proposed models is lower than 1 
which suggest that all the models perform better than the naïve 
benchmark on average. The situation changes apparently for 
the testing data where we have approximately seven months of 
observations (20% of the three years taken into consideration). 
Investigating the lowest value of error measurements in this 
part STL+ARIMA shows significantly better performance 
compared to the other models. MASE is higher than 1 but 
close to this value. Comparing the MASE value of 
STL+ARIMA for the training data and testing data we may 
gain confidence that this model outperforms the other models. 
Again between NNAR and NNAR with exogenous variable the 
first has a slightly difference in error values.  

For a better understanding and comparison of the error 
metrics for training and testing data we plotted the 
performance displayed  in Fig. 12.
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TABLE I. 

MODEL PERFORMANCE ERROR METRICS FOR TRAINING AND TESTING DATASET 

  Train Test 

Model ME RMSE MAE MPE MAPE MASE ME RMSE MAE MPE MAPE MASE 

Snaive 1134 2105 1671 5.67 8.28 1.00 -6255 6255 6255 -35.36 35 3.74 

STL+ARIMA 6.98 401 298 0.00 1.57 0.18 -260 3185 2405 -2.58 12 1.44 

Hybrid 277 646 501 1.36 2.49 0.30 -17959 18008 17959 -2561 2561 10.74 
NNAR  1.16 201 138 -0.02 0.70 0.08 -18048 18132 18048 -2577 2577 10.80 
NNAR-Xreg 0.93 160 115 -0.01 0.60 0.07 -18529 18620 18529 -2645 2645 11.09 
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Fig. 12  Model performance error metrics for training and testing dataset 

 
In the left side of Fig.12 are displayed the metrics for the 

training data and right the metrics for testing data. It is clear 
that the NNAR with external variable outperformed the 
traditional univariate methods in training dataset and it is 
comparative to the hybrid model. The hybrid model was 
obtained as a combination with equal weights of four models: 
nnetar, stlm, tbats and snaive [33].  
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Fig. 13  Energy load forecast from NNAR with daily average 
temperature as regressor (aggregated energy load MW/day) 

 
In Fig. 13 is displayed the daily energy load prediction 

obtained from a neural network model where daily average 
temperature is used as an external variable.   

As we mentioned above these models perform good with 
seasonal data, where the last observed values from the same 
season are added as input. For energy load the model has k=12 
neurons in the hidden layer and use 

1, 2 2( ,..., , , , )t t t p t m t m t Pmy y y y y y       observations as input 
where p=22,P=1 and m=365 daily seasonality.  

Fig. 14 shows the energy load point forecast and  confidence 
intervals (80% and 95%) from STL+ARIMA model. 
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Fig. 14 Energy load forecast from STL+ARIMA model with no-

regressor (aggregated energy load MW/day) 

IV. CONCLUSIONS  
Energy supply and demand plays an important role in the 

economy of a country and the region. Predictions are 
important for energy management and sustainable systems.  
The motivation for this study was to address some of the key 
issues with related to the ability of predicting energy load 
using statistical and deep learning models. The work presented 
here can be used as a reference from researchers and 
practitioners working in the energy field and especially in the 
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Balkan region.  
We showed that due to the high complexity of the hourly 

data and multiple seasonalities it was easy as a start of our 
analysis to work with daily data. We performed many 
statistical and machine learning models which are capable of 
handling seasonality in time series. In our work we took into 
consideration a decomposition method which would give 
better performance of the modeling process. The models were 
evaluated on error metrics and comparative view of in sample 
and out of sample dataset. NNAR architecture was able to 
outperform  the statistical techniques for in sample data in 
terms of  all error metrics used at the performance evaluation 
phase but STL decomposition with ARIMA error was the best 
model when evaluated to the testing data. The proposed 
models can be used as a short term or medium term prediction 
models for energy load. Other exogenous variables can give a 
better effect to the models.   
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