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Abstract: The exponential growth of the internet and contemporary communications users have established 
safety as a fundamental design feature for encrypted transmission. The Enhanced Cryptography Standard is 
perhaps the most widely used cryptography information security algorithm standard that has been authorized by 
NIST. This paper proposes a high-throughput design for the AES Algorithm with huge key sizes. AES would 
be a block cipher that ensures data security by using key lengths of 128,192 and 256-bits. The design concept 
focuses on a 256-bit key size classification algorithm since a big key size is required to ensure excellent 
security. Additionally, simultaneous key expansion & encryption/decryption processes would be pipelined to 
maximize speed. Parallelization of a key expansion module's sub-processes would be used to reduce the critical 
chain latency. The S-box comprising sub-byte & inverse sub-byte operations has been developed with 
compound field arithmetic operations to reduce time and area further. The work Increased throughput by 50%, 
area reduced by 34.32 %, and latency by 20% compared to the old approach with modified nikhilam sutra. 
Additionally, integrated AES encryption/decryption is planned and implemented on the FPGA Zed board 
utilizing Verilog HDL in Xilinx Vivado.  
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1 Introduction 
The need to document every meaningful occurrence 
in one's everyday life became one of the key 
motives. Messages from uninvited persons should 
be treated with caution. Encryption has become one 
of the security components used to safeguard data 
accessible to the public. Cryptography is a technique 
of communication security in which data 
representations are transformed from one 
configuration to the other to cover up and safeguard 
them [1], [5], [6], [7], [8], [9], [10]. 

Cryptography's value continues to expand in 
lockstep well with the volume of sensitive data 
exchanged across open networks. The more data 
delivered in a format understandable by a personal 
computer, the more exposed we become too 
automated espionage. Cryptography is critical in 
both resistant and certifiable applications. 

On January 2, 1997, the National Institute of 
Standards and Technology (NIST) accepted 
suggestions for innovative Advanced Encryption 
Standard (AES) computations. The goal was to  
 
 
 
 
 

supersede the older Data Cryptography Standard, 
published in November 1976 in response to the 
disclosure of DES's vulnerability, [10]. Rijndael was 
selected and called the AES Measurement on 
November 26, 2001, following two rounds of 
evaluation. The Rijndael would be a block cypher 
that operates on a set string of bits. Joan Daemen & 
Vincent Rijmen, two of the company's Belgian 
founders, inspired the name. AES would be used in 
several sectors, such as database servers, ATMs, 
mobile networking, and optical video recorders. 
AES is a cryptographic algorithm used in both 
hardware and software components. On either hand, 
implementation is better suited to high-speed real-
world applications, [11]. 

 

 
 

Fig. 1: The fundamental concept of the AES 
algorithm. 
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AES has 3 different round procedures. A specific 
input block, typically 128 bits in size, is required, as 
is a comparable yield of the same size. The 
conversion process necessitates adding a second 
kind of information, which is the key. The cypher 
determines the key length, and AES supports three 
alternative key sizes: 128, 192, and 256 bits. Each of 
the three primary sizes has been determined to be 
acceptable for Federal Government various 
applications from classified to top secret. TABLE I 
summarizes the round count for three separate AES 
implementations. Nevertheless, the final round key 
for each iteration is 128 bits. The first-round key is 
initialized by entering 128 bits of text into the first-
round key, [12],[13], [19]. The key generation 
function multiplies the value of the input key to 
create a round key per round. The AES method is 
based on a single 4x4 byte cluster known as a state. 
The status changes four times during encryption: 
Add Round Key, Substitution Byte (sub-byte), Shift 
Row, and MixColumn (a combination of these four 

 
Table 1. In AES, the width of the round key and the 

number of iterations 
Cipher Key 

size 
Number of 

Rounds (Nr) 
Round Key 

size 
256bits 14 128bits 
192bits 12 128bits 
128bits 10 128bits 

 
Operations are referred to as a round); and for 

decryption, the state undergoes four changes: Add 
Round Key, converse sub-byte, transposed Shift 
rows, and Inverse Mix column. The AddRoundKey 
technique combines a bitwise XOR operation upon 
that current state and the Key Expansion Function’s 
Round Key. Encryption or decryption may be 
performed in our integrated architecture by 
changing the multiplexer option to 0 or 1. 

There are two ways to do sub-byte substitutions: 
I via a ROM table and (ii) through CFA. 
Substitution is the costliest and most time-
consuming mode of operation. As a result, hardware 
optimization in VLSI implementation would be 
crucial for reducing the AES architecture's area and 
power consumption. The ROM-based method 
consumes a huge memory space and introduces 
substantial latency due to ROM access time. As a 
consequence, composite field arithmetic facilitates 
S-box completion. Cryptography's practical usage 
for encryption is contingent upon properly 
managing cryptographic keys. Greater is considered 
to be superior. Because they can, and because it is 
available, top-secret military applications may 
demand a key length of 256 bits. Consequently, this 

research emphasizes the need to provide strong 
protection on a large key scale. 

The remainder of this paper is organized as 
follows: The AES method and composite field 
arithmetic needed to implement the S-box was 
discussed in Section II. Section III details the S-
modified box's structure. Sections IV&V contain the 
findings of the FPGA achievement, as well as 
comparisons to other new S-box techniques. Section 
VI concluded. 
 
 
2 Integrated Encryption/Decryption 

Architecture 
Figure 1 illustrates the Efficient 
Encryption/Decryption Recommended AES round 
model interactively. The design of each module is 
discussed in detail in the following sections, as are 
the approaches for maximizing throughput. Every 
byte therein state sequence is replaced by another 
byte acquired using a multiplicative inverse using 
GF (28) and a sub-byte translation using an affine 
transformation.  
 

 

 
 

Fig. 2: Hybrid Encryption/Decryption Round 
Topology with Sub-pipelines 

 
The inverse affine transformation is usually 
performed in the same way that its opponent, the 
Inverse Sub-Byte transformation, has been 
performed. 

 

 
 

Fig. 3: Block diagram for determining the S-
Multiplicative box's inverse. 
 

 

Isomorphic and inverse isomorphic mapping 
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The reverse multiplicative approach is obtained by 
decomposing the much more complicated GF (28) 
into the lower order fields GF (21), GF (22), and GF 
((22)2). This would be done by the use of the 
irreducible polynomials listed below: 

GF (22) →GF (2):  x2+x+1 
GF ((22)2)) →GF (22): x2+x+φ                            (2,1) 

GF (((22)2)2) →GF ((22)2): x2+x+λ 
The multiplicative inverse formula could be 

clearly associated with a variable that really is GF 
dependent within structural fields (28). The part 
must always be isomorphic ally related to its own 
composite field descriptions. Likewise, every result 
must always be determined by its hybrid field 
following the multiplicative inverse. -1 may be 
represented mathematically as an eight-by-eight 
matrix. Let q become the vector from GF (28) and 
explain the isomorphic and inverse relations. As δ*q 
and δ-1*q. 
 

 
 

Multiplication of every input byte to an 
isomorphic from the most important to the least 
significant bit and the multiplicative inverse outputs 
to a reverse isomorphic provides the expression 
which may be logically realized as: 

 

 
Fig. 4: Logical Implementation of δ*q. 

 
Squaring: 

The very first nibble from the output of the 
isomorphic algorithm is square into itself. The 
following operations have been involved: 

 Assume k = q2, in which GF (24) k and q are 
elements which can be expressed in Boolean as {k3, 
k2, k1, k0} and {q3, q2, q1, q0}. 

k = kHx+kL= (qHx+qL)2                                     (2.2) 
The above expression is in the form of (a+b)2 and 

thus can be expanded as a2+2ab+b2. 
∴  k = qH

2x2+qHxqL+qHxqL+qL
2 = qH

2x2+qL
2 

x2 can be reduced by an irreducible polynomial 
x2+x+ 𝜑, that yields 

k = qH
2(x+ 𝜑 ) + qL

2             qH
2x+ ( qL

2+ qH
2𝜑)  

kH= (q3x+q2)2            kH=q3x2+q2 

which is in the form of  bx+c. The last term has 
now been reduced to GF (22). Further decomposing 
kH and kL to GF (2) yields: 

The irreducible polynomial may be used to 
decrease this. x2+x+1 
Similarly  kL=  

From the above equations, we obtain 
K3=q3 
K2=q2⊕q3 
K1= q2⊕q1 
K0= q3⊕q1 ⊕q0 

From the above equations, the logical 
implementation for squaring is 

 

 
Fig. 5: In GF, there is a logical structure for 
squaring (24). 

 
Multiplication of a nibble with constant λ: 

Assume k=q λ, k and λ= {1100} are components in 
GF (24).  

k= (q3, q2, q1, q0) (1100). The first 2 bits are 
considered as qH and lower 2-bits are considered as 
qL. 

∴k=qHλHx2+qLλHx (λL is cancelled as its value is 
00) 

Above expression can be reduced by substituting 
x2=x+ 𝜑 

k= qHλH (x+ 𝜑) + qLλHx 
By separating the higher and lower terms, we get  
kH= q3x2+( q3+ q2) x+q2+q1x2+(q1+q0) x+ q0 

Substituting x2=x+1, gives 
kH= q3(x+1) +( q3+ q2) x+q2+q1(x+1) +(q1+q0) x+ 

q0 

similarly  
k3x+k2= (q2+q0) x+(q3+ q2+ q1+ q0)  
and for the lower terms 
k1x+k0= (q3) x+ q2 
∴ k3= q2⊕q0, k2= q3⊕q2⊕q1 ⊕q0, k1=q3 , k0=q2 
This can be implemented as  
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Fig. 6: Multiplication using Constants Logic 
Representation. 
 
GF(24) Multiplication 

Assume k=qw, q and w are components in 
GF(24). 

k=(q3q2q1q0)(w3w2w1w0)=(qHx+qL)(wHx+wL). 
By expanding the equation and substituting 

x2=x+ 𝜑, we get 
k=(qHwH) ( x+ 𝜑)+( qH wL+ qLwH)x+qL wL 

This can be logically implemented as in figure 7, 
and the multiplication in GF(22) can be implemented 
as in figure7. 

 

 
Fig. 7: Logical implementation of multiplication in 
GF (24). 

 

 
Fig. 8: Completion of multiplication in GF in a 
logical manner (2). 
 

Multiplication with constant 𝝋 

Assume k=q 𝜑,  q and 𝜑={10} are components 
in GF(22). 

k= (q1x+q0)(10) =q1x2+q0x 
By replacing x2=x+1, we can get k1=q1⊕q0, 

k0=q0that can be logically implemented as 
 

 
Fig. 9: Multiplication Logical Implementation as φ. 

 
The multiplicative inverse in GF(24)   

Inverse for the independent bits [1], [2], [3], [4], 
[5] can be performed as follows: 

q3
-1 =q3 ⊕q3q2q1 ⊕q3q0 ⊕q2 

q2
-1 =q3q2q1 ⊕q3q2q0 ⊕q3q0 ⊕q2 ⊕q1q2 

q1
-1 =q3 ⊕q3q2q1 ⊕q3q0 ⊕q2 ⊕q2q0 ⊕q1 

q0
-1 = q3q2q1 ⊕q3q2q0 ⊕q3q1 ⊕q3q1q0 ⊕q3q0 

⊕q3q0q0 ⊕q3q0 ⊕q2 ⊕q2q1 ⊕q2q1q0 ⊕q1 ⊕q0 

Equations can be logically implementable as 
 

 
Fig. 10: Logical implementation for the 
multiplicative inverse. 

 
Each output byte of the multiplicative inverse is 

multiplied by an affine transformation, and in 
inverse sub-byte transformation, every input byte is 
multiplied by an inverse affine transformation. 
 
 
3 Shift Row and Inverse 

Transformation of Shift row  
The 128-bit display of the s-box is laid out in a 4x4 
matrix. The rows are moved to the left by x number 
of bytes when x is the row number. This is not a 
really good decision. 

The first row has indeed been relocated 0 places 
to the left. The second row has indeed been shifted 
to the left by one position. The third row has already 
been shifted to the left by two places. The fourth 
row was being pushed to the left by three spaces. 

 

 
Fig. 11:  Shift Row Transformation. 

 
Inverse shift rows take the output byte of the 

inverse sub-byte as reference. Each row of the state 
is circularly moved to the right, based on the row 
index, in this process. Following are the steps: 

The 0 positions had been shifted to the right in 
the first row. The second row has also been 
relocated one space to the right. The third row has 
indeed been moved to the right by two spaces. The 
fourth row is being pushed to the right by three 
spaces. 
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Fig. 12: Inverse Shift Row Transformation. 

 
 

4 Transformation of Mixed Columns 

and Inverse Mixed Columns  
Within Mix Columns and Inverse Mix Columns 
transformations, every column byte becomes 
transformed to the correct value, a function among 
all four bytes across the column. Every 
transformation involves multiplying every byte of 
the output shifting rows or reverse shift rows by a 
predetermined matrix, which would then be sorted 
as a state, [19]. 
 
 
5 Vedic Multiplier 
The Vedic multiplier's work focuses on Vedic 
multiplication equations (Sutras). Several Vedic 
sutras have traditionally is often used to multiply 2 
decimal integers. This paper extends the same 
concepts to the binary system to develop a very 
good solution for digital electronics [12], [13]. This 
paper provides an overview and application of the 
notion of high-speed multiplier designs. The 
multiplier concept has been extensively researched 
in the Nikhilam and U T sutras. 
 
Nikhilam Sutra 

Furthermore, Nikhilam Sutra signifies 'all nine and 
the final ten.' Even though it is valid across all 
multiplication situations when the numbers are the 
same, it's much more efficient. Because it regulates 
the addition of a huge number to execute a 
multiplication operation out of its neighboring base, 
the beginning number is more straightforward, and 
the multiplication difficulty is lower than in Figure 
2. Using the multiplication of two decimal integers 
(96 * 93), we will first explain this Sutra, in which 
the selected base is 100, which would be more 
robust and more extensive than the two. Figure 13 
depicts the Nikhilam sutra. 

 

 
Fig. 13: Illustration of Nikhilam Sutra. 

 
Proposed Modified Nikhilam Multiplier 

Multiplication is crucial among the several 
operations employed in creating the AES algorithm 
since it requires more resources to function 
correctly. The multiplier's efficiency is dependent 
mainly on the adders used in the design to calculate 
the final number. A new multiplication unit based 
on the KSA and Nikhilam Vedic sutra multipliers is 
suggested to address earlier shortcomings. This 
multiplication offers the benefits of using less 
power, less latency, and taking up less space. 

 

 
Fig. 14: Modified Nikhilam Vedic multiplier.  

 
The Nikhilam Vedic multiplier is applied to two 

binary integers. The CSA has been substituted with 
a KSA high-speed adder in this manner. This 
method allows for successful implementation by 
multiplying one bit by another, calculating the 
partial product total, and providing output [14], [15]. 
Figure 5 depicts the block design for the proposed 
Vedic multiplier, which employs the KSA adder 
instead of the RCA or CLA. KSA has more 
incredible benefits than CSA since it permits high-
speed processing and lowers propagation delays. As 
a result, utilizing KSA [15], the result of the 
Nikhilam multiplier may be achieved in less time. 
[16], [17], [18]. 

The proposed Nikhilam multiplier is 
implemented by replacing the existing conventional 
multiplier. 
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6   Results 
 

 
Fig. 15: Simulation Result for Encryption. 

 

 
Fig. 16: Simulation Result for Decryption. 

 
For a ‘00112233445566778899aabbccddeeff’ 

(128-bit in hexadecimal) and 256-bit key’ 
000102030405060708090a0b0c0d0e0f10111213 
141516 1718191a1b1c1d1e1f’, enc- dec as 1,rst as 0 
and clock inputs the encrypted data of 128-bit 
‘ea2b7ca516745bfeafc49904b496089’ is generated. 

By selecting the multiplexer selector as 1, the 
encrypted data ‘ea2b7ca516749bf eafc 499 
04b496089’ with256-bitkey 
000102030405060708090a0b0c0d0e0f10111213 
141516 1718191a1b1c1d1e1f’data is decrypted 
back to ‘001122334455667788 99 abb ccddeeff’. 

From table 2, it is evident that the proposed 
method showed better improvement in terms of 
area, latency and throughput. Some relevant studies 
can be found in [19], [20], [21], [22]. 

Table 2. Performance Comparison 

Paramet
ers 

Existing 
with the 
conventi

onal 
multiplie

r 

Prop
osed  
one 

% 
Improvem

ent 

Throug
hput  

(Gbps) 
23 35 50 

Slices 3289 2120 34 
Latency 0.5 0.41 20 

7 Conclusion 
Internal pipelining for the composite sector S-box is 
utilized to construct an improved encryption-
decryption architecture for the Advanced Encryption 
Protocol algorithm. This pipelining enabled the 
processing of state array columns simultaneously 
and S-box communication between the main round 
unit and the expansion key unit. Furthermore, this 
design is employed with on-the-fly production of 
all-round keys, which minimizes the need for an 
ample space to retain all of the keys while also 
cancelling the extra delay caused by pre-calculation 
and storage for all-round keys. The new design 
outperformed earlier s-box systems in terms of 
throughput. The usage of 256-key size offers the 
highest degree of security, which is employed in 
top-secret military applications. Compared to the old 
technique, we improved throughput by 50%, slices 
by 34%, and latency by 20%. The design is created 
using the Xilinx Vivado tool and implemented on 
the Xilinx FPGA Zynq board. 
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