
 

 
 

Nomenclature 

𝑷𝒏𝒏  bus admittance matrix of the AC power system  

Ii and Vi  net current and voltage at the ith bus  

𝑽𝑼𝑽𝑵𝑼  voltage vectors for PMU and non-PMU buses, 

𝑷𝑼 𝑷𝑵𝑼  bus admittance sub-matrices for various PMU and 

non-PMU buses 

 𝑰𝒏  net current vector. 

x ,y real vectors 

𝒘𝒊𝒋 weights associated with the bad data detection 

𝒃𝒊 , 𝝑𝑰    affine relationship between the mean-variance. 
I  Imaginary Value 
R    Real value 
𝒐𝒋  output of convolutional layer  

𝜸𝒋𝜷𝒋 optional parameters for convolutional layer 

∈ used for numerical stability 

W represents the layer weights 

𝑾𝑱 represents the norm of weights for the output channel 

∗ denotes the convolution 

Power system security is greatly improved by accurately 

analyzing the current operating status in real-time. A power grid 
is a network of interconnected power lines that transmit energy 
from generators to users. Power networks may cover whole 
nations or regions and come in a range of sizes. Because of the 
growing need for energy, power distribution networks must be 
transformed into networks that combine diverse kinds of energy 
generation as well as distribution. Loads and generators 
connected to the grid both have an impact on power 
performance. Due to their speed, synchronism, and precision, 
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phasor measurement units (PMUs) have become a fundamental 
mechanism utilized in pervasive electronics to accomplish state 
perception [1]. A phasor measuring unit (PMU) is a tool utilized 
within a power grid that determines both the magnitude and 
phase angle of such an electrical phasor element (like voltage 
or current) utilizing a shared time source for timing. PMUs may 
also supply real-time phasor time data for important power 
system applications including corrective action schemes, 
oscillation detection, and condition estimates [2-6]. 

 Numerous academics have examined the false data 
issue in PMU assessments out from the viewpoints of cyber 
assault and signal processing flaws, and have proposed several 
solutions. However, it is also stated that in spite of repeated 
information assaults, both computation cost or temporal 
difficulty of a filter would rise, rendering it inappropriate for 
real-time use. PMU data is sensitive to a variety of variables 
due to the complexity of the components [7]. A jitter in a global 
positioning system (GPS) signal, for example, might produce 
phase angle variation. It's also conceivable that PMU data will 
surge as a result of interference or a data transmission error. 
PMU data suffer from varying degrees of data quality concerns 
as a result of these issues. According to the California 
Independent System Operator's (ISO)  Five-Year Plan, around 
10% to 17% of PMU data in US has issues [8]. PMUs are 
utilized in Energy Management Systems to improve the state 
estimation functionality (EMS). The simulation model starts by 
collecting completely viewable assessment data from the 
system, i.e. necessary qualities of voltages and currents in the 
system are detected and given to the State Estimator to compute 
the fundamental values of the overall network. PMU 
measurements are commonly distorted as a result of (a) 
deliberate data corruption by a cyber-assault or (b) inadvertent 
data corruption over the digital data processing, storage, and 
retrieval stage [9–11]. Data quality concerns make the system 
less visible, impair the effectiveness of state estimates and 
parameter identification using PMUs, and potentially 
jeopardize power system safety and stability. PMU poor data 
detection has become a significant issue, and it is vital for 
increasing data quality and guaranteeing correct state 
perception. 

Several approaches for detecting bad data in power systems 
have been presented. The singularity of the impedance matrix 
and the sparsity of the error vector are exploited in [12] to 
propose a new technique for detecting measurement errors in 
DC power flow. It makes use of the power system's structure to 
correctly compute measurement errors. A poor data detection 
technique based on state estimate is given in [13]. By 
identifying angle biases and current scaling errors, the phasor-
measurement-based state estimator enhances data consistency. 
[14] introduces a time-series prediction model with a Kalman 
filter and smoothing method for cleaning poor data. [15] 
provides a technique for detecting incorrect data in real-time 
that uses an unscented Kalman filter in combination with a state 
estimation algorithm. Various academics had concentrated on 
developing reduced and highly secure connections for such 
purposes. Nevertheless, because of constraints in legacy 
technology used in many power stations, bad data detection is 

typically only offered at the central level. A linear weighted 
least square-based state estimation method may detect incorrect 
data from defective current transformers, according to [16]. 

To identify fake data in PMU measurements, most false data 
detection algorithms need SCADA measurements. 
Furthermore, current research indicates that PMU 
measurements are not completely safe against cyber assaults 
[17–19]. An attacker manipulates the measurements of the 
PMU as well as the adjacent SCADA meters (RTUs) in the case 
of an FDIA on the PMU measurements such that corrupt values 
pass the measurement residual-based checks [20] at the energy 
control centre and the attack is disguised [21-22]. As a result, 
standard techniques for detecting, identifying, and correcting 
incorrect data are ineffective in detecting purposeful misleading 
data in PMU measurements. 

In the case of accidental data corruption, the inherent high 
noise level in SCADA measurements, low sample rate, and lack 
of time-stamping render SCADA measurements unsuitable for 
faulty data detection in sparsely located PMU measurements. 
Apart from cyber assaults, accidental FDI can occur owing to 
defective current or potential transformers, noise in the 
communication channel, GPS jamming, and other factors [23-
25]. As a result, an alternate method for detecting both 
deliberate and inadvertent misleading data in PMU 
measurements has to be developed. 

The Contribution of this paper includes, 
 a deep complex neural network to handle complex 

values include both voltage magnitude as well as 
phase angle as a whole. 

 Rather than using batch normalization, weight 
normalization has already been added as a result of 
the merging between repeated timestamps for 
monitoring voltage magnitude and phase angle, 
which may significantly enhance the model's 
training performance. 

 A deep complex network has been utilized with the 
conjunction of a topology processor and AC state 
estimator, topology processors detect substantial 
information about the network topology to 
recognize faulty data caused by topology change 
caused by disruptions. 

 
The content of the paper is organized as follows: section 1 

represents the introduction; section 2 presents the related work; 
the novel solutions are presented in section 3; the 
implementation results and its comparison are provided in 
section 4; finally, section 5 concludes the paper. 

Amutha, et al [26] aimed at detecting abnormalities in 
streaming PMU multivariate information in smart grid by 
taking into account all attributes utilizing the Density 
Estimation Technique depending on Gaussian Mixture Theory. 
The suggested architecture has been evaluated in both offline as 
well as online forms of data streams, but also the research 
findings show that the suggested technique performs 

2. Literature Survey 
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competently in identification. This methodology has a lower 
false positive as well as false-negative rate, it may be used for 
real-time anomaly monitoring. The suggested model is 
additionally validated for streaming data scenarios by being 
evaluated to current research in respect of the accuracy, recall, 
and F1 score. 

Zhou, et al [27]  Utilizing online learning and a multivariate 
data-drift detection technique, a unique device-level deep 
learning-based data-driven strategy for anomaly detection, 
localization, and classification over streaming PMU data is 
proposed. Dynamic data Change Driven Learning (DCDL) but 
also Continuity Driven Learning (CDL) are presented as well 
as contrasted as PMUNET variations. The DCDL technique 
surpasses the CDL as well as similar standard approaches. Thus 
the suggested methodology in this paper efficiently detects the 
data anomalies. 

Rehan, et al [28] An efficient attack strategy has been 
proposed to detect the false data injected into the power system. 
Using linear regression the false data is injected into the power 
system,also it is used by FDI to create any assault which could 
overcome BDD but also SVM-based defence technologies. 
Monitoring intelligent grid assaults allows us to ensure that 
command choices in the control room are predicated upon 
trustworthy assessments and that deceptive information is 
eliminated resulting in computing complexity. 

Yang, et al [29] A data-driven PMU poor data identification 
technique based on spectral clustering utilizing single PMU 
data is presented to improve PMU data quality. The topology 
and characteristics of the system are not required by the 
suggested approach. First, utilizing the slope characteristic of 
each data, a data identification technique based on a decision 
tree is presented to identify event data from bad data. Then, 
using spectral clustering, a technique for detecting faulty data 
is devised. This approach can detect faulty data with a minor 
variation by evaluating the weighted relationships among all the 
data. 

Jovicic, et al [30] A linear approach is provided for state 
estimate of power systems that are monitored using both 
conventional and synchrophasor measurements, including bad 
data detection. Both forms of data are processed at the same 
time, with states approximated in rectangular coordinates. The 
linear weighted least square approach is used to create the 
suggested estimator. The network is represented in terms of 
voltages and currents in the rectangular form to permit the 
generation of linear measurement functions, and pseudo-
measurements are employed to simulate traditional 
measurements. Furthermore, to detect faulty data, the biggest 
normalized residual test is utilized. 

In [26] difficulty in handling bad data .[27] detects data 
anomalies.[28] analyzes about the computing complexity . The 
paper [29] detect the faulty data with some minor variation 
only. To detect faulty data , the bigget normalized residual test 
is used which is complex [30]. To overcome the above 
mentioned issues a robust methodology is proposed which is 
explained in the upcoming section. 

PMUs are used to measure the phasor quantity in the grid 
system. Because of the glitch or ripple, it produces false or bad 
data at the output.These anomaly may reduce the accuracy of 
the of the system and leads to performance degradation . Dual 
identical models were used for analyzing the real and imaginary 
data PMU independently which increases the difficulty in 
computational process  also the phase angle variations may 
cause false data occurrence. Similarly, poor data owing to 
topology changes have not been adequately detected using 
simply the AC state estimator. As a result, a Robust Bad Data 
Technique was designed which uses a deep complex neural 
network to process complex numbers with both voltage 
magnitude and phase angle overall. Weight normalization has 
been integrated into the deep complex neural network owing to 
the fusion of recurrent timestamps for monitoring voltage, 
magnitude and phase angle, which may further enhance model 
training efficiency. With the help of prior data measured of 
smaller complexity, the proposed deep complex neural network 
recognizes false information in PMU assessments.As a result, 
the suggested deep complex network has been used in 
conjunction with a topology processor and an AC state 
estimator, with the topology processor recognizing substantial 
changes in the network topology to achieve incorrect data 
identification owing to topology variation caused by 
disturbances. Bad data in the multiple PMU power grid 
networks may be rectified correctly using the proposed 
methodology. The Data neural Network consists of the hidden 
layer which may perform the exactly needed function of the 
proposed so that the required output can be obtained without 
any fault. The Robust bad data detection technique with its 
concept which is incorporated in it has been clearly shown 
below in figure 1.  
 

 
Figure 1:   Robust bad data detection Technique overview 

 

The Bad data deviates from the normal data. After evaluating 
a substantial portion of data obtained, it was discovered that the 
majority of the bad data occurs on its own and that the amount 
of adjacent bad data seems to be no over than three. It is also 
mentioned that the exceptions are all separated not even in 
order. As an example, consider the magnitude. This may be 
used for calculating amplitude, frequency, and rate of change in 
frequency, where magnitude includes voltage as well as current 
magnitude. The schematic representation of Multiple Bad data 
occurrences is shown in figure 2 

3. Bad Data Detection Using  
Deep Complex Network 

3.1 Bad Data Occurrence 
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(a) 

 
(b) 

 
(c) 

                  Figure 2: A diagram of (a) 1 Bad data (b) 2 Bad data and 
(c) 3 Bad data 
 

The bad data occurs in the input data itself due to the 
occurrence of many inteferences such as glitch etc.The bad data 
may includes normal data, irregularity data with higher 
magnitude and irregularity data with lower magnitude.These 
bad datas are differentiated by different colours.The blue colour 
signifies normal data. The yellow colour signifies the 
irregularity data with a higher magnitude and the orange colour 
represents the irregularity data with a lower amplitude. The 
number of contiguous bad data maybe 1 or 2 or 3 as represented 
in figure 2. This is how the bad data initially occur in the source 
system.  

For n bus, AC power structure, the nodal expression 
processed utilizing Ohm’s Law is as follows  
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……… (1) 

where Ii and Vi were the net current and voltage at the ith 
bus, respectively. Pn×n denotes the bus admittance matrix of 
the AC power system having (i,j) th element being Pij. If there 
are m PMUs mounted in the system. Here equation 1 can be 
written as 

[𝑰] = [𝑷𝑼 𝑷𝑵𝑼] [ 𝑉𝑈

𝑉𝑁𝑈]…………… (2) 

    Here 𝑽𝑼m×1 and 𝑽𝑵𝑼 (n m)×1 represents the voltage 
vectors for PMU and non-PMU buses, correspondingly. The 
admittances between the various PMU as well as non-PMU 
buses were characterized by the associated bus admittance sub-
matrices PU n×m and 𝑷𝑵𝑼n×(nm). I n×1 is the net current 
vector. Then formula 2 can be rewritten as   

                       𝑃𝑈𝑉𝑈 + 𝑃𝑁𝑈𝑉𝑁𝑈 − 𝐼 = 0……………….. (3) 
If (𝑃𝑁𝑈𝑉𝑁𝑈 − 𝐼) can be substituted by M and also 𝜎 which 

is the mean and variance vector correspondingly. 
                  

𝑃𝑈𝑉𝑈 + 𝑀 ±  𝜎 = 0…………………. (4) 
  

Although equation 4 depicts a non-linear network, this 
simply offers a linear input connection between the voltages of 
the PMU buses. Those must be stressed since the basic link 
between M and 𝜎 in equation 4 is unknown. The deterministic 
optimization method for determining M and 𝜎 in equation 2 is 
to utilize the historical real-time/dynamic SE results from the 
corresponding mean and variance vectors of 𝑃𝑁𝑈𝑉𝑁𝑈and I.  

 A PMU provides the phasor quantity such as the voltage 
magnitude and the associated phase angle of the voltage To deal 
with the complex voltages the deep complex neural networks 
along with the AC system model has been incorporated.  Each 
deep complex neural network model is trained in a way so that 
it can linearly express the ith PMU bus voltage measurement in 
terms of other (m - 1) PMU  bus voltage measurements. 

The relationship with the AC system model with the bad data 
detection is given using the expression, 

                       𝑉𝑖=− [∑ 𝑃𝑖𝑗
𝑚
𝑗=1
𝑗≠𝑖

𝑉𝑗 + 𝑀𝑖 ± 𝜎𝐼] 𝑌𝑖𝑖
−1………….. (5) 

Hence the above-mentioned equation has been replaced by 
the weight terms and the affine relationship between the 
variance were given as, 
 

                       ∑ 𝑤𝑖𝑗
𝑚
𝑗=1
𝑗≠𝑖

𝑉𝑗 + 𝑏𝑖 ± 𝜗𝐼    ∀𝑖 = 1… …… 𝑚… (6) 

Where  𝑤𝑖𝑗 are the weights associated with the bad data 
detection 𝑏𝑖 and  𝜗𝐼    were the affine relationship between the 
mean-variance. 

 Normally, the system gets complicated due to the utilization 
of 2m number of systems from the number of PMUs. Hence in 
this proposed model we are utilizing m models from PMUs in 
deep neural network through the mathematical concept called 
the convolution of complex numbers for both Real as well as 
imaginary numbers. Hence the complexity has been reduced. 

Every Complex number has both the real part as well as the 
imaginary part. Here the convolution of the complex filter 
matrix along with the complex vector is performed where  

      C=A+iB…………………………..    (7) 
And the complex vector is given as h= x+iy. In this A and B 

are the Real matrices and x and y are the real vectors. The 
convolution operator is always distributive  
 

     𝐶 ∗ h =(A * x – B * y) + i (B * x + A * y)……….  ( 8) 
 

Rewriting the convolution terms employing Matrix as 
follows, 
 

                               [
𝑅 (𝐶 ∗ ℎ)
𝐼 (𝐶 ∗ ℎ)

] = [
𝐴 −𝐵
𝐵 𝐴

] ∗ [
𝑥
𝑦]…….   (9) 

Here R means the Real value represents the Value of the 

 

  1st 2nd 3rd 
 t 

3.2 Model of an AC System 

3.3 Function of  Deep Neural Networks 
with State Estimator
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Voltage Magnitude and then the I, the Imaginary Value 
represents the Phase angle value in the above-mentioned 
equation. 

By using this convolution form in the deep neural networks, 
providing the Voltage magnitude and the phase angle in the 
single system provides the output efficiently. Hence the 
complexity gets reduced due to the availability of a single 
system in the proposed methodology. The Bad data Occurrence 
may happen at any time so the detection of Bad data process is 
time-dependent. It has to be detected in a periodical manner.  
The Batch Normalization approach towards speeding neural 
network training by normalizing its signal density for every 
level. But in this proposed system we are concern about the 
periodicity in the detection of bad data that is not achieved by 
the BN so we are utilizing the Weight normalization method. 
The WN is an alternative for BN. It utilizes implicit 
normalization, that leads inside the standard of both the 
outcome having nearly identical to the current standard of the 
source. Weights, for instance, should be normalized and 
multiplied by a learnt scaling parameter for the convolutional 
layer: 

     𝑜𝑗 = 𝛾𝑗 

𝑊𝑗∗𝑥

‖𝑊𝐽‖ 𝐹 +∈
+ 𝛽𝑗               ………………. (10) 

where  𝑜𝑗  represents the output, 𝛾𝑗𝛽𝑗 were the optional 
parameters, ∈ used for numerical stability, W represents the 
layer weights, 𝑊𝐽 represents the norm of weights for the output 
channel and  ∗ denotes the convolution. The flow chart explains 
the entire proposed system as follows, 

Weight normalization has been used in the proposed 
methodology due to the fusion of recurrent timestamps for 
measuring voltage magnitude and phase angle. We have 
overcome the disadvantage by using weight normalization. The 
Flow chart for the entire Bad data processing for the novel 
technique is given below. 

  
 Figure 3: Flow Chart for bad data detection process  
  

The Deep complex neural network produces the output of the 
predicted output for the voltage magnitude and the phase as 
𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  .The phasor quantities measured by the PMU were 
given as  𝑉𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 . Bad data can also be identified using the 
topology processor. It detects the bad data that occurred due to 

the variations in the topology. Numerous measurements shown 
whenever an according to with of a PMU bus is adjusted by 
efficiency%, the influence of this measurement on the forecast 
of  PMU bus voltage utilizing generates a prediction error that 
is consistently smaller than efficiency %. As a result, when the 
predicted bus voltage 𝑉𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  is compared to its 
corresponding observed equivalent 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  the greatest 
difference between the anticipated and measured bus voltages 
is seen. 

An AC power distributor along with the Topology processor 
was incorporated for the betterment of the system. Thus by 
introducing the novel ideology of a Deep complex neural 
network, the topology processor incorporated with an AC 
estimator enhances the system by reducing the Disadvantages 
like complexity and increases efficiency. Thus the proposed 
approach increases the efficiency, accuracy, decreases the 
complexity. the bad data detection capability and detection 
range or the rate of bad data detection have been increased. The 
running time of the operation also decreased in the increase in 
performance of the proposed system. 

The upcoming section explains the results obtained by 
MATLAB simulation and also the performance parameters 
were compared and analyzed. 

This section provides a description of various 
implementation results and the performance analysis of our 
proposed model and also the comparison section to ensure 
enhancement of our proposed system. 

This work has been implemented and the simulation of the 
system was then done using MATLAB with the following 
system specification and the simulation results are discussed 
below, 

 Platform : MATLAB 
 OS     : Windows 8 
 Processor:  Intel Core i5 
 RAM    : 8GB RAM 
The following diagram depicts the design of the proposed 

system. The Simulated design depicts the process carried over. 
Initially the voltage of three-phase 𝑉𝑎𝑏𝑐 , where the three phases 
are denoted as a,b,c respectively along with the phasor 
quantities like the magnitude of the voltage and also the phase 
of the voltage was obtained per unit (PU). Here the Phasor 
Measurement Unit (PMU) designed is based on phase locked 
loop-based positive –sequence.  A PLL is a closed-loop system 
with a control mechanism to reduce any phase error that may 
occur.  

Then the Deep Complex Neural System incorporated with 
the topology processor and the SE (State Estimator) performs 
the required function to produce the required results. Finally, 
the Bad data has been detected from the outputs obtained.  

Source i/p 

           (Pmu o/p) 

           (DCNN o/p) 

State Estimator and 

Topology  processor 

 No bad data 

            Bad data detected 

PMU o/p =DCNN o/p 

4. Results and Discussions 

4.1 Experimental Setup 
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Figure 4: Simulated design for bad data detection 

 
The Simulated design depicts the process carried over. 

Initially the voltage of three-phase 𝑉𝑎𝑏𝑐 , where the three phases 
are denoted as a,b,c respectively along with the phasor 
quantities like the magnitude of the voltage and also the phase 
of the voltage was obtained per unit (PU). Here the Phasor 
Measurement Unit (PMU)  designed is based on Phase Locked 
Loop-based positive –sequence which is a closed-loop system 
with a control mechanism to reduce any phase error that occurs. 
Then the Deep Complex Neural System incorporated with the 
topology processor and the SE (State Estimator) performs the 
required function to produce the required results. Finally, the 
Bad data has been detected from the outputs obtained.  The next 
diagram deals with the intrinsic functioning that happens in the 
proposed system.  
 

 
Figure 5: Simulated Design of Source 

 
Figure 5 shows the internal functioning of the source. From 

the source, only the three-phase voltage along with the phasor 
quantity such as the voltage magnitude, phasor angle in degrees 
and also the frequency in hertz can be derived. 

 
  Figure 6: Internal Function of Deep Complex 
Neural Network  
  

 The output from the PMU, the voltage magnitude and the 
phase were given to the DCNN. As we already know that the 

DCNN consists of a hidden layer and they perform some 
functions so that the output is obtained from the other side as 
y2 depicted in figure 6. 
 

 
    

Figure 7: Output of Three Phase voltage 
 

Three-phase voltage 𝑉𝑎𝑏𝑐 is initially received from the source 
input power grid. So finally the output obtained is also three-
phase voltage.The output voltage obtained is maximum at time 
sequence 1s to 1.5s . The graph shows the final output  𝑉𝑎𝑏𝑐 .The 
three phases are differentiated by various colours in figure 7.  

 
 

Figure 8: Simulated Output of Magnitude 
 
The graphical representation in figure 8 has been drawn 

concerning time in seconds. This depicts both the active and the 
reactive magnitude sequence, where active represents the used 
magnitude reactive represents the unused magnitude. The 
active magnitude range reaches a maximum of 2.25 V and 
constant throughout the graph figure 8. 
 

 
 

Figure 9: Simulated out of phase sequence in bad data detection  
 

Graph in figure 9 depicts the simulated output of the phase 
/angle in degree obtained finally. Here also both the reactive, as 
well as the nonreactive angles, are shown in different colours. 
In figure 9 range of the phase sequence for both reactive and 
nonreactive angles reaches the maximum 180 . 
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Figure 10: Simulated output of Frequency in bad data detection 

 
Graph figure 10 depicts the simulated output of the frequency 

in hertz. Here both the reactive, as well as nonreactive 
frequencies were differentiated for the evaluation purpose. In 
our proposed system , Weight normalization have being 
incorporated into to the deeply complex neural network as a 
result of the integration of recurrent timestamps for monitoring 
voltage, magnitude, and phase angle, which improve model 
training efficiency even more.Thus the simulated output 
obtained shows better performance due to the AC state 
estimator and the Deep complex neural network in the proposed 
methodology .  

The comparative analysis provides better performance 
parameters when compared to the existing methods such as 
SVR, BP Neural Network, Spectral Clustering (SC), Ensemble 
Method(EM) and Density-Based Clustering (DBSCAN) [29]. 

In the following analysis, the parameters such as the 
Accuracy in percentage, Bad data Detection capability, Bad 
Data Detection range in terms of the deviation of phase angle, 
Running time in terms of time window as well as the data points 
were compared and the comparison graphs are given in the 
corresponding order. 

 
Figure 11: Accuracy Comparision 

 
The Novel proposed technique using a Deep Complex neural 

network provides higher performance when compared to the 
previously existing techniques such as Decision Tree, SVM, BP 
Neural Technique has been highlighted in figure 11 
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The Comparision of the detection capability of the bad data 
occurrence by the existing method with the proposed system is 
systematically represented utilizing Graphical manner in figure 
12 

 
 Figure 12: Comparison of Bad data detection Capability 

 
Considering the maximum ratio of detection capability is 20 

%. This graph shows that when the bad data detection ratio is 
higher than 11% the DBSCAN cannot detect completely. When 
the ratio reaches above 12% EM cannot detect the bad data. 
when it reaches above 15% also the spectral clustering won't 
detect it completely. But the proposed system shows betterment 
by detecting the bad data that occurred above the ratio level of 
about 18 %. Thus our novel approach produces better results in 
the detection capability. 

The next parameter analysed for the comparison is the 
detection range according to the deviation angle. The bad data 
also occurs due to the phase angle deviation based on the phase 
angle deviation the bad data detection range is observed. Here 
considering the maximum deviation phase angle is 5. The 
graphical representation of the detection range in terms of 
deviation phase angle is given below.  

 
Figure 12: Comparison of detection range 

 

The DBSCAN will not detect any bad data when the below 
deviation angle of 5. EM will not detect any bad data when the 
deviation angle ranges below 1. The spectral clustering method 
will not detect any bad data when the deviation angle ranges 

4.2 Comparative Analysis 
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below 0.8. In our proposed system, the bad data can be detected 
from 0.2 deviations of phase angle to the maximum of 5 . Hence 
it is again proved that our proposed system shows more 
improvement than the old methodologies. 

 The next parameter compared is the Running time. The 
running time is calculated in seconds. Hence we are using 
Weight normalization the parameter called the running time is 
reduced for our proposed system. This is compared for both the 
time window as well as the data points. The graphical 
representation of the running time in terms of the time window 
and the data points were compared and analyzed in figure 13.  
A decrease in running time increases the efficiency of the 
system. 
 

 
Figure 13: Comparison of Running time with Time windows 

 
Based on the time windows the data points are calculated. So 

for time window 1, the data points appeared 50. For Time 
window 2 the data points given are 100. Thus increase in the 
time window increases the Datapoint. The Running time of the 
system in the old existing techniques such as the EM, SC, DB  
were much higher for the data points analyzed. The same data 
points, as well as the time windows, are analyzed for our 
proposed system of Novel bad detection techniques. The 
Running time of the system is lower when compared. 

The running time for the EM technique is about 0.05 seconds. 
Running time for DB is 0.029 seconds and for SC technique is 
about 0.028 seconds. But the proposed system produces a lesser 
running time of 0.024 seconds which is comparatively lesser 
than the previously existing technique. The graphical 
representation of running time for both the time window and the 
data points were shown as a graphical representation in figure 
13 and 14. 
 

 
Figure 14: Comparison of Running time  along with Datapoints 

 

 Thus the simulated output for the robust Bad data
 detection technique was explained along with the functional
 diagram of the source and Deep complex neural network. Also,
 

the simulated analysis and the output for the voltage of three-
phase (Vabc), Magnitude sequence of the voltage ( |u| ), Phase 
angle of the voltage, Frequency in Hertz were derived. 

Then the comparative analysis of the various parameters is 
also analyzed and depicted in the corresponding figures. 

The Proposed Power Data Quality improvement through 
PMU Bad Data Detection Based on Deep Complex Network 
approach was tested effectively and its superiority over other 
models was determined. The current strategy provides better 
accuracy of 99.5% over other existing models. Also, the 
complexity of the basic system has been reduced by introducing 
the Deep complex neural network also the detection of bad data 
due to the phase angle deviation is also achieved by the novel 
approach. Lesser training time is also achieved by using weight 
normalization. It also shows betterment by detecting the bad 
data that occurred above the ratio level of about 18 % of 20% . 
The running time for the execution of 200 data points is reduced 
to 0.023 s. The bad data can be detected from 0.2 deviations of 
phase angle to the maximum of 5. Due to the implemented 
Novel approaches, the efficiency of our system increased with 
higher data detection rate when compared with the other 
existing systems.  
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