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Abstract—The goal of this paper is to investigate the existence
of solutions for a nonlinear Hadamard fractional differential
equations involving the Hadamard fractional derivative with
hybrid Hadamard integral boundary conditions. The existence
results are obtained by using the generalization of Darbo’s fixed
point theorem combined with the technique of measures of
noncompactness in the Banach algebras.

Index Terms—Integral boundary conditions, Measure of non-
compactness, Hadamard fractional derivative, upper semicontin-
uous function

I. INTRODUCTION

Differential equations with fractional-order have gained
considerable importance due to their application in many fields
of science and technology as the mathematical modeling of
systems and processes in the fields of physics, chemistry, biol-
ogy, economics, control theory, signal and image processing,
biophysics, blood flow phenomena, aerodynamics, fitting of
experimental data ( see [5], [7], [15], [18], [20], [23] and the
references therein). Recently, the fractional-order differential
equations with integral boundary value problems have attracted
a great deal of attention and interests.

Existence of solutions for fractional differential equations
has been investigated by many authors in various types. We
quote some techniques of nonlinear analysis used to establish
the uniqueness, existence and multiplicity of solutons for
this kind of differential equations with complicated boundary
value conditions, such as, Banach fixed point theorem, Leray-
Schauder nonlinear alternative, Krosnoselskii’s fixed point
theorem on cones and Legget-Williams fixed point and other
approaches [1], [2], [10], [11], [16]

In the works mentioned above, compactness and Lipschitz
condition are satisfied, if not these techniques cannot be used.
Hence, there have been many published papers, which are
devoted to the existence of solutions of nonlinear integral
equations by using the technique of a suitable measure of
noncompactness in Banach algebras. We refer the readers to
[4], [6], [17], [19], [21], [24] and references therein.

Motivated and inspired by the works mentioned above, we
are concerned with the existence of solutions for the following

nonlinear fractional differential hybrid equations with with
hybrid Hadamard integral boundary conditions

Dq

[
u (t)

f (t, u (t))

]
= g (t, u (t)) , 1 < t < e, 2 < q ≤ 3

(I.1)
subject to the boundary conditions

u (1) = 0,(
u (t)

f (t, u (t))

)′′∣∣∣∣∣
t=1

= 0,(
u (t)

f (t, u (t))

)∣∣∣∣
t=e

= λ (Ipu) (η)

(I.2)

where Dq is the Hadamard fractional derivative, Ip is
the Hadamard fractional integral of order p > 0, f ∈
C ([1, e]× R,R \ {0}) and g ∈ C ([1, e]× R,R).

The content of this paper is organised as follows. In Section
2, some required concepts are presented that will be used in
the sequel. In Section 3, we establish our main results by using
generalization of Darbos fixed point theorem combined with
the technique of measures of noncompactness in the Banach
algebras.

II. BASIC RESULTS

In this section, we give a collection of auxiliary facts which
will be needed further on (details can be found, e.g., in ). Let
C (I,R) be the Banach space of all continuous functions from
I into R with the norm

‖u‖∞ = sup {|u (t)| : t ∈ I }

We begin by defining Hadamard fractional integrals and
derivatives, and we introduce some properties that can be used
thereafter.

Definition II.1. [22] The Hadamard fractional integral of
order q ∈ R+ for a function f ∈ C [a, b], 0 ≤ a ≤ t ≤ b ≤ ∞,
is defined as

Iqf (t) =
1

Γ (q)

∫ t

a

(
log

t

s

)q−1

f (s)
ds

s
,
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where Γ (.) is the Gamma function and log (.) = loge (.) .

Definition II.2. [22] Let 0 < a < b < ∞ and δ = t ddt .
The Hadamard derivative of fractional order q ∈ R+ for a
function f ∈ Cn−1 ([a, b] ,R) is defined as

Dqf (t) = δn
(
In−q

)
(t)

=
1

Γ (n− q)

(
t
d

dt

)n ∫ t

a

(
log

t

s

)n−q−1
f (s)

s
ds,

where n − 1 < q ≤ n ∈ Z+, n = [q] + 1 denotes the integer
part of the real number q.

Lemma II.3. ( [22], Property 2.24) If a, α, β > 0, then(
Dq

(
log

t

a

)β−1
)

(t) =
Γ (β)

Γ (β − q)

(
log

t

a

)β−q−1

,

(
Iq
(

log
t

a

)β−1
)

(t) =
Γ (β)

Γ (β + q)

(
log

t

a

)β+q−1

.

Lemma II.4. ( [22]) Let q > 0 and u ∈ [1,∞) ∩ L1 [1,∞).
Then the solution of Hadamard fractional differential equation
Dαu (t) = 0 is given by

u (t) =
n∑
i=1

ci (log t)
q−i

,

and the following formula holds:

IqDqu (t) = u (t) +

n∑
i=1

ci (log t)
q−i

,

for some ci ∈ R, i = 1, 2, ..., n, where n = [q] + 1.

Next, we present some definitions and properties of the non-
compactness measure. Let E be a real Banach space with norm
‖.‖ and the zero element 0. We write B (u, r) to denote the
closed ball centered at u with radius r and especially, we write
Br in case of u = 0. If X is non-empty subset of E , then X
and ConvX denote the closure and the closed convex closure
of X , respectively. Moreover, let ME indicate the family of
all nonempty bounded subsets of E and let NE indicate its
subfamily of all relatively compact sets.

We use the following definition of the measure of noncom-
pactness given in [8].

Definition II.5. A mapping µ : ME → R+ is said to be a
measure of noncompactness in E if it satisfies the following
conditions:
1. The family kerµ = {X ∈ME : µ (X) = 0} is non-empty
and kerµ ∈ NE .
2. X ⊂ Y ⇒ µ (X) ≤ µ (Y ).
3. µ (X) = µ

(
X
)

= µ (ConvX)
4. µ (λX + (1− λ)Y ) ≤ λµ (X) + (1− λ)µ (Y ) for λ ∈
[0, 1].
5. If (Xn) is a sequence of closed sets from ME such that
Xn+1 ⊂ Xn (n = 1, 2, ...) and limn→∞ µ (Xn) = 0, then the
intersection set ∩∞n=1Xn is nonempty.

In the sequel, we assume that the space E has the structure of
Banach algebras. For given subsets X , Y of a Banach algebra
E let us denote

XY = {xy : x ∈ E, y ∈ E}

The following definition contains a useful concept [9]

Definition II.6. Let E be a Banach algebra. A measure of
non-compactness µ in E said to satisfy condition (m) if it
satisfies the following condition:

µ (XY ) ≤ ‖X‖µ (Y ) + ‖Y ‖µ (X) ,

for any X, Y ∈ME .

It is known that the family of all real-valued and continuous
functions defined on the interval. I = [1, e] is denoted by
C [1, e]. Also, C [1, e]) is a Banach space with the standard
norm

‖u‖∞ = sup {|u (t)| : t ∈ [1, e]} .

Obviously, space C (I) also has the structure of the Banach
Algebra.

Further, fix arbitrarily X ∈MC[1,e] and ε > 0. For u ∈ X
denote by ω (u, ε) the modulus of continuity of u, i.e.,

ω (u, ε) = sup {|u (t)− u (s)| : t, s ∈ [1, e] , |t− s| ≤ ε} .

Further, let us put

ω (X, ε) = sup {ω (u, ε) : u ∈ X}

and
ω0 (X) = lim

ε→0
ω (X, ε) .

Then, function ω0 is a measure of noncompactness in space
C [1, e] (see [8]).

Proposition II.1. [12], [14] The measure of noncompactness
ω0 on C [1, e] satisfies condition (m).

Theorem II.7. [13] Let C be a nonempty, bounded, closed
and convex subset of a Banach space E and let T : C −→ C
be a continuous mapping. Suppose that there exists k ∈ [0, 1)
such that

µ (TX) ≤ kµ (X) ,

for any non-empty subset X of C, where µ is a measure of
non-compactness in E. Then T has a fixed point in C.

The next result known as a generalization of Darbos fixed
point theorem will play a pivotal role in the development of
the results in this paper.

Theorem II.8. ( [3]) Let C be a nonempty, bounded, closed
and convex subset of a Banach space E and let T : C −→ C
be a continuous operator satisfying

µ (TX) ≤ ϕ (µ (X)) ,

for any non-empty subset X of C, where µ is a measure of non-
compactness in E and ϕ : R+ −→ R+ is a nondecreasing
function such that limn→+∞ ϕn (t) = 0 for each t ∈ R+,
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ϕn (t) denotes the n-iteration of ϕ. Then T has a fixed point
in C.

Moreover, in [3] the authors proved the following lemma
which will be useful in our considerations.

Lemma II.9. Let ϕ : R+ −→ R+ be a nondecreasing and
upper semicontinuous function. Then the following conditions
are equivalent:
(i) limn→+∞ ϕn (t) = 0, for any t ≥ 0,
(ii) ϕ (t) < t, for any t > 0.

By commodity, we will denote by A the class of functions
given by

A = {ϕ : R+ → R+ : ϕ is nondecreasing and

lim
n→+∞

ϕn (t) = 0, for any t ∈ R+

}
where ϕn (t) denotes the n-iteration of ϕ.

III. MAIN RESULT

In this section , we intend to state our main theoretical
findings on the existence results. For convenience we put

Ω = 1− λΓ (q − 1)

Γ (p+ q − 1)
(log η)

p+q−2
. (III.1)

Lemma III.1. Let h ∈ C ([1, e] ,R). The solution function u0

of the for the hybrid Hadamard equation

Dq

[
u (t)

f (t, u (t))

]
= h (t) , 1 < t < e, 2 < q ≤ 3 (III.2)

subject to the boundary conditions

u (1) = 0,(
u (t)

f (t, u (t))

)′′∣∣∣∣∣
t=1

= 0,(
u (t)

f (t, u (t))

)∣∣∣∣
t=e

= λ (Ipu) (η)

(III.3)

if and only if the function u0 is a solution for the following
Hadamard integral equation:

u (t) = f (t, u (t))

{
1

Γ (q)

∫ t

1

(
log

t

s

)q−1
g (s, u (s))

s
ds

+
(log t)

q−2

Ω

(
λ

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 h (s)

s
ds

− 1

Γ (q)

∫ e

1

(
log

e

s

)q−1 h (s)

s
ds

)}
.

(III.4)

Proof. Let u0 be a solution for hybrid equation (III.2) By
virtue of the lemma II.4, there exist constants c1, c2, c3 ∈ R
provided that

u0 (t) = f (t, u (t))

{
1

Γ (q)

∫ t

1

(
log

t

s

)q−1
h (s)

s
ds

+c1 (log t)
q−1

+ c2 (log t)
q−2

+ c3 (log t)
q−3
}
,

(III.5)

The conditions u (1) = 0,
(

u(t)
f(t,u(t))

)′′ ∣∣∣∣
t=1

= 0 imply that

c1 = c3 = 0. Taking the Hadamard fractional integral of order
p > 0 for (III.6) and using Lemmas ??- II.3, we get that

Ip
(

u (t)

f (t, u (t))

)
=

1

Γ (q + p)

∫ t

1

(
log

t

s

)p+q−1
h (s)

s
ds

+ c2
Γ (q − 1)

Γ (p+ q − 1)
(log t)

p+q−2
.

By using the Hadamard integral boundary condition(
u(t)

f(t,u(t))

)∣∣∣
t=e

= λ (Ipu) (η), we get

c2 =
1

Ω

(
λ

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 h (s)

s
ds

− 1

Γ (q)

∫ e

1

(
log

e

s

)q−1 h (s)

s
ds

)
where Ω is defined in (III.1).

By inserting the values ci for i = 1, 2, 3 in (III.6), we get

u0 (t) = f (t, u0 (t))

{
1

Γ (q)

∫ t

1

(
log

t

s

)q−1
g (s, u (s))

s
ds

+
(log t)

q−2

Ω

(
λ

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 h (s)

s
ds

− 1

Γ (q)

∫ e

1

(
log

e

s

)q−1 h (s)

s
ds

)}
.

This means that u0 is a solution for integral equation (III.4).
Conversely, one can easily see that u0 is a solution function
for the hybrid boundary value problem of fractional order
(III.2)(III.3) whenever u0 is a solution function for the frac-
tional integral equation (III.4).

Theorem III.2. Suppose that f ∈ C ([1, e]× R,R \ {0}) and
g ∈ C ([1, e]× R,R). Also, we have the following assump-
tions:
(A1) There exists an upper semi-continuous function ϕ :
R+ −→ R+ such that ϕ (t) < t for any t > 0, ϕ is
nondecreasing, and

|f (t, u)− f (t, v)| ≤ ϕ (|u− v|) , t [1, e] , u, v ∈ R,

(A2) There are a continuous nondecreasing function Ψ :
[0,∞) −→ [0,∞) and a continuous function ξ : [1, e] −→
R+ such that

|g (t, u)| ≤ ξ (t)Ψ (|u|) ,

(A3) There exists ρ > 0 such that

ρ ≥ [ϕ (ρ) + F0] ‖ξ‖Ψ (ρ)

Γ (q + 1)

{
1 +

1

|Ω|

(
λΓ (q + 1)

Γ (q + p+ 1)
+ 1

)}
,

and

‖ξ‖Ψ (ρ)

Γ (q + 1)

{
1 +

1

|Ω|

(
λΓ (q + 1)

Γ (q + p+ 1)
+ 1

)}
≤ 1,

where
F0 = sup {|f (t, 0)| : t ∈ [1, e]} .
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Then, the fractional hybrid BVP (I.1)(I.2) has at least one
solution in C [1, e].

Proof. In view of Lemma III.1, we define the operator T on
C [1, e] by

Tu (t) = f (t, u (t))

{
1

Γ (q)

∫ t

1

(
log

t

s

)q−1
g (s, u (s))

s
ds

+
(log t)

q−2

Ω

(
λ

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 g (s, u (s))

s
ds

− 1

Γ (q)

∫ e

1

(
log

e

s

)q−1 g (s, u (s))

s
ds

)}
.

(III.6)

Obviously, u ∈ C [1, e] as a solution for hybrid (1)-(2) satisfies
the operator equation Tu = u. Now, we define two operators
G and H on C [1, e] by

Gu (t) = f (t, u (t)) ,

and

Hu (t) =
1

Γ (q)

∫ t

1

(
log

t

s

)q−1
g (s, u (s))

s
ds

+
(log t)

q−2

Ω

(
λ

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 g (s, u (s))

s
ds

− 1

Γ (q)

∫ e

1

(
log

e

s

)q−1 g (s, u (s))

s
ds

)}
,

for t ∈ [1, e]. Then Tu = (Gu) . (Hu) for any u ∈ C [1, e].

We divide the rest of the proof into five steps.

Step 1. T applies C [1, e] into itself.

In order to show that Tu ∈ C [1, e], it is sufficient to show
that Gu,Hu ∈ C [1, e] for any u ∈ C [1, e]. The continuity of
G arise from the continuity of f . Next, we will prove that if
u ∈ C [1, e], then Gu ∈ C [1, e]. To do this, let t ∈ C [1, e] be
fixed and {tn} be a sequence in [1, e] such that tn −→ t as
n −→∞. Without loss of generality, we may assume tn > t.

Then,

Γ (q) |Hu (tn)−Hu (t)|

=

∣∣∣∣∣
(∫ tn

1

(
log

tn
s

)q−1
g (s, u (s))

s
ds−

∫ t

1

(
log

t

s

)q−1
g (s, u (s))

s
ds

)

+

(
(log tn)

q−2 − (log t)
q−2
)

Ω
×(

λΓ (q)

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 g (s, u (s))

s
ds

−
∫ e

1

(
log

e

s

)q−1 g (s, u (s))

s
ds

)∣∣∣∣
≤

(∫ tn

1

[(
log

tn
s

)q−1

−
(

log
t

s

)q−1
]
|g (s, u (s))| ds

s

+

∫ t

tn

(
log

t

s

)q−1

|g (s, u (s))| ds
s

)

+

(
(log tn)

q−2 − (log t)
q−2
)

Ω
×(

λΓ (q)

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1

|g (s, u (s))| ds
s

+

∫ e

1

(
log

e

s

)q−1

|g (s, u (s))| ds
s

)
.

(III.7)

In view of (A2), we obtain

|Hu (tn)−Hu (t)|

≤ ‖ξ‖Ψ (‖u‖)
Γ (q)

×{∫ tn

1

[(
log

tn
s

)q−1

−
(

log
t

s

)q−1
]
ds

s
+

∫ t

tn

(
log

t

s

)q−1
ds

s

+

(
(log tn)

q−2 − (log t)
q−2
)

Ω
×(

λΓ (q)

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 ds

s
+

∫ e

1

(
log

e

s

)q−1 ds

s

)}
.

(III.8)

Since the functions t 7−→ (log t)
q , t 7−→ (log t)

q−2 are
continuous on [1, e], we have

lim
n→+∞

‖ξ‖Ψ (‖u‖)
Γ (q + 1)

{(log tn)
q − (log t)

q

+

(
(log tn)

q−2 − (log t)
q−2
)

Ω

(
λΓ (q + 1)

Γ (q + p+ 1)
(log η)

q+p
+ 1

) = 0,

which yields

lim
n→+∞

|(Hu) (tn)− (Hu) (t)| = 0.

Then Hu is continuous at t. Therefore, Hu ∈ [1, e], for
all u ∈ C [1, e]. This proves that if u ∈ C [1, e], then
Tu ∈ C [1, e].
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Step 2. An estimate of ‖Tu‖ for u ∈ C [1, e].
Fix u ∈ C [1, e] and t ∈ [1, e] . By assumptions (A2) and
(A3), one can write

|(Tu) (t)| = |(Gu) (t)| |(Hu) (t)|

|f (t, u (t))|
Γ (q)

∣∣∣∣∣
{∫ t

1

(
log

t

s

)q−1
g (s, u (s))

s
ds

+
(log t)

q−2

|Ω|

(
λΓ (q)

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 g (s, u (s))

s
ds

−
∫ e

1

(
log

e

s

)q−1 g (s, u (s))

s
ds

)}∣∣∣∣
≤ |f (t, u (t))− f (t, 0) + f (t, 0)|

Γ (q)
×{∫ t

1

(
log

t

s

)q−1 |g (s, u (s))|
s

ds

+
(log t)

q−2

|Ω|

(
λΓ (q)

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 |g (s, u (s))|
s

ds

+

∫ e

1

(
log

e

s

)q−1 |g (s, u (s))|
s

ds

)}
≤ ϕ (|u (t)|) + F0

Γ (q + 1)
×{∫ t

1

(
log

t

s

)q−1
ξ (s)Ψ (|u (s)|)

s
ds

+
(log t)

q−2

|Ω|

{
λΓ (q)

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 ξ (s)Ψ (|u (s)|)
s

ds

+

∫ e

1

(
log

e

s

)q−1 ξ (s)Ψ (|u (s)|)
s

ds

}
≤ [ϕ (‖u‖) + F0] ‖ξ‖ (Ψ (‖u‖))

Γ (q + 1)
×{

1 +
1

|Ω|

(
λΓ (q + 1)

Γ (q + p+ 1)
+ 1

)}
.

Hence,

‖Tu‖ ≤ [ϕ (‖u‖) + F0] ‖ξ‖ (Ψ (‖u‖))
Γ (q + 1)

×{
1 +

1

|Ω|

(
λΓ (q + 1)

Γ (q + p+ 1)
+ 1

)} (III.9)

In view of assumption (A3), we deduce that operator T applies
Bρ into itself. In addition, from (III.9), it follows that

‖GBρ‖ ≤ ϕ (ρ) + F0,

and

‖HBρ‖ ≤
‖ξ‖ (Ψ (ρ))

Γ (q + 1)

{
1 +

1

|Ω|

(
λΓ (q + 1)

Γ (q + p+ 1)
+ 1

)}
.

Step 3. We show that G and H are continuous on the ball
Bρ.
First, we check that G is continuous on Bρ. To do this, we

fix ε > 0 and take u, v ∈ Bρ with ‖u− v‖ ≤ ε. Then, for
t ∈ [1, e],

|(Gu) (t)− (Gv) (t)| = |f (t, u (t))− f (t, v (t))|
≤ ϕ (|u (t)− v (t)|)
≤ ϕ (‖u− v‖)
≤ ‖u− v‖
≤ ε,

and, since ε tends to 0, we have checked that G is continuous
in Bρ.

Now, we prove that H is continuous in Bρ. To do this, we
fix ε > 0 and take u, v ∈ Bρ with ‖u− v‖ ≤ ε. Then, for
t ∈ [1, e],

|(Hu) (t)− (Hv) (t)|

=
1

Γ (q)

∫ t

1

(
log

t

s

)q−1 |g (s, u (s))− g (s, v (s))|
s

ds

+
(log t)

q−2

Ω
×(

λ

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 |g (s, u (s))− g (s, v (s))|
s

ds

− 1

Γ (q)

∫ e

1

(
log

e

s

)q−1 |g (s, u (s))− g (s, v (s))|
s

ds

)
≤ ωg (J, ε)

Γ (q + 1)

{
1 +

1

|Ω|

(
λΓ (q + 1)

Γ (q + p+ 1)
+ 1

)}
,

(III.10)

where

ωg (J, ε) = sup {|g (t, u)− g (t, v)| : t ∈ J : u, v ∈ [−ρ, ρ] ; |u− v| ≤ ε} .

Since g is uniformly continuous on the compact [1, e]×[−ρ, ρ],
we have ωg (J, ε) −→ 0 as ε −→ 0. Then, from (III.10), we
conclude that operator G is continuous on Bρ. As T = G.H ,
it follows that T is continuous on Bρ.

Step 4. . Estimate ω0 (GX) and ω0 (HX) for ∅ 6= X ⊂ Bρ.

First, we estimate ω0 (GX). Fix ε > 0, let u ∈ X and let
t1, t2 ∈ J with |t2 − t1| ≤ ε. Then

|(Gu) (t2)− (Gu) (t1)| = |f (t2, u (t2))− f (t1, u (t1))|
≤ |f (t2, u (t2))− f (t2, u (t1))|

+ |f (t2, u (t1))− f (t1, u (t1))|
≤ ϕ (|u (t2)− u (t1)|) + ω (f, ε)

≤ ϕ (ω (u, ε)) + ω (f, ε) ,

where

ω (f, ε) = sup {|f (t2, u)− f (t1, u)| : t1, t2 ∈ J,
|t2 − t1| ≤ ε, u ∈ [−ρ, ρ]} .

Therefore

ω (GX, ε) ≤ ϕ (ω (u, ε)) + ω (f, ε) . (III.11)
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Since f (t, u) is uniformly continuous on the compact J ×
[−ρ, ρ], ω (f, ε) −→ 0 when ε −→ 0. Then, from (III.11) we
get

ω0 (GX) ≤ ϕ (ω0 (X)) .

Next, we estimate ω0 (HX). Fix ε > 0, take u ∈ X and
t1, t2 ∈ J with |t2 − t1| ≤ ε. Without loss of generality, we
can suppose that t1 < t2. Then

|Hu (t2)−Hu (t1)|

≤ ‖ξ‖Ψ (‖u‖)
Γ (q)

{∫ t2

1

[(
log

t2
s

)q−1

−
(

log
t1
s

)q−1
]
ds

s

+

∫ t1

t2

(
log

t1
s

)q−1
ds

s

+

(
(log t2)

q−2 − (log t1)
q−2
)

|Ω|
×(

λΓ (q)

Γ (q + p)

∫ η

1

(
log

η

s

)p+q−1 ds

s

+

∫ e

1

(
log

e

s

)q−1 ds

s

)}
≤ ‖ξ‖Ψ (‖u‖)

Γ (q + 1)
{(log t2)

q − (log t1)
q

+

(
(log t2)

q−2 − (log t1)
q−2
)

|Ω|
×(

λΓ (q + 1)

Γ (q + p+ 1)
(log η)

q+p
+ 1

)}
.

Let l (t) = (log t)
q . Function l is continuously differentiable

on [1, e]. Hence, for all t1, t2 ∈ [1, e], without loss of
generality, let t1 < t2. Then there exist positive constants M1

such that∣∣∣∣ l (t2)− l (t1)

t2 − t1

∣∣∣∣ = |l (τ)| ≤M1, τ ∈ (t1, t2) . (III.12)

On the other hand , t 7−→ log t is 1-Lipschitz fuction on [1, e]
and 0 < q − 2 ≤ 1, then t 7−→ log t is a Holderian function
with exponent q − 2. That is∣∣∣(log t2)

q−2 − (log t1)
q−2
∣∣∣ ≤ |log t2 − log t1|q−2 ≤ |t2 − t1|q−2

,

(III.13)
for all t1, t2 ∈ J , with t2 < t1.
From (III.12) and (III.13), we deduce

|Hu (t2)−Hu (t1)|

≤ ‖ξ‖Ψ (‖u‖)
Γ (q + 1)

×{
M1ε+

εq−2

|Ω|

(
λΓ (q + 1)

Γ (q + p+ 1)
(log η)

q+p
+ 1

)}
,

this gives us ω0 (HX) = 0.

Step 5. Estimate ω0 (TX) for ∅ 6= X ⊂ Bρ.

From definition II.6, we have ω0 (XY ) ≤ ‖X‖ω0 (Y ) +
‖Y ‖ω0 (X) and by using the estimates obtained in Steps 2
and 4, we deduce

ω0 (TX) = ω0 (GX.HX) ≤ ‖GX‖ω0 (HX) + ‖HX‖ω0 (GX)

≤ ‖GBρ‖ω0 (HX) + ‖HBρ‖ω0 (GX)

≤ ‖ξ‖ (Ψ (ρ))

Γ (q + 1)

{
1 +

1

|Ω|

(
λΓ (q + 1)

Γ (q + p+ 1)
+ 1

)}
ϕ (ω0 (X))

(III.14)

In view of assumption (A3),
‖ξ‖(Ψ(‖u‖))

Γ(q+1)

{
1 + 1

|Ω|

(
λΓ(q+1)

Γ(q+p+1) + 1
)}

≤ 1, and from
(III.14), we conclude that

ω0 (TX) ≤ ϕ (ω0 (X)) .

Then by Theorem II.8, operator T has at least one fixed
point in Bρ. which is a solution of problem (I.1)-(I.2). This
completes the proof.

REFERENCES

[1] T. Abdeljawad., R.P Agarwal, E. Karapnar and P.S. Kumari, Solutions
of the Nonlinear Integral Equation and Fractional Differential Equation
Using the Technique of a Fixed Point with a Numerical Experiment in
Extended b-Metric Space. Symmetry (2019), 11, 686.

[2] H. AFSHARI, S. KALANTARI, E. KARAPINAR, Solution of fractional
of fractional differential equations via coupled fixed point. Electron. J.
Diff. Equ., Vol. 2015 (2015), No. 286, pp. 1-12.

[3] A. Aghajani, J. Banas, N. Sebzali, Some generalizations of Darbo fixed
point theorem and applications, Bull. Belg. Math. Soc. Simon Stevin,
20 (2013), 345-358.

[4] A. Aghajani, E. Pourhadi, and J. J. Trujillo, Application of measure of
noncompctness to a cauchy problem for fractional differential equations
in Banach spaces. Fract. Calc. Appl. Anal., Vol. 16, No 4 (2013), pp.
962977.

[5] M. Aydogan, D. Baleanu, A. Mousalou, and S. Rezapour, On high order
fractional integro-differential equations including the CaputoFabrizio
derivative. Bound. Value Probl. 2018, 90 (2018).

[6] Z. Baitiche and C. Derbazi, On the solvability of a fractional hybrid dif-
ferential equation of Hadamard type with Direchlet boundary conditions
in Banach algebras. Commun. Optim. Theory 2020 (2020), Article ID
9

[7] Baleanu, D., Aydogan, S.M., Mohammadi, H., Rezapour, S.: On mod-
elling of epidemic childhood diseases with the CaputoFabrizio derivative
by using the Laplace Adomian decomposition method. Alex. Eng. J.
(2020).

[8] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces,
Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker,
New York, 1980.

[9] J. Banas, L. Olszowy, On a class of measures of noncompactnes in
Banach algebras and their application to nonlinear integral equations,
Zeit. Anal. Anwend. 28 (2009) 475-498.

[10] Bouteraa, N., Benaicha, S., Djourdem, H., Positive solutions for nonlin-
ear fractional differential equation with nonlocal boundary conditions,
Universal Journal of Mathematics and Applications., 1 (1) (2018), 39–
45.

[11] Bouteraa, N., Benaicha, S., Existence of solutions for three-point bound-
ary value problem for nonlinear fractional differential equations, Bulletin
of the Transilvania University of Brasov, Series III: Mathematics,
Informatics, Physics., Vol 10(59), No. 1 2017.

[12] J. Caballero , M. A. Darwish, K. Sadarangani, Solvability of a fractional
hybrid initial value problem with supremum by using measures of
noncompactness in Banach algebras, Appl. Math. Comput. 224 (2013),
553-563.

[13] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend.
Sem. Mat. Univ. Padova 24 (1955), 84-92.

[14] M. A. Darwish, K. Sadarangani, Existence of solutions for hybrid
fractional pantograph equations, Appl. Anal. Discrete Math. 9(2015),
150-167.

  
Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 3, 2021

ISSN: 2769-2507 119



[15] L. Diethelm, l., Freed, K.,: On the solutions of nonlinear fractional
order differential equations used in the modelling of viscoplasticity. In:
Keil, F, Mackens, W, Voss, H, Werthers, J (eds.) Scientific Computing
in Chemical Engineering II - Computational Fluid Dynamics, Reaction
Engineering and Molecular Properties. Springer, Heidelberg., (1999).

[16] H. Djourdem, S. Benaicha, Triple positive solutions for a fractional
boundary value problem. Maltepe Journal of Mathematics, Volume 1,
Issue 2, 2019, 96–109.

[17] H. Djourdem and N. Bouteraa, Mild Solution for a Stochastic Partial
Differential Equation with Noise, WSEAS Transactions on Systems,
Volume 19, 2020, Art. 29, pp. 246-256

[18] Glockle, WG., Nonnenmacher, TF., A fractional calculus approach of
self-similar protein dynamics. Biophys. J., 68(1995), 46–53.

[19] M. Jleli, E. Karapinar, D. ORegan and B. Samet, Some generalizations of
Darbos theorem and applications to fractional integral equations, Fixed
Point Theory Appl. 2016 (2016), 11.

[20] He, J., Some applications of nonlinear fractional differential equations
and their approximations. Bull. Am. Soc. Inf. Sci. Technol., 15(1999),
86-90.

[21] E. T. Karimov, B. Lopez, K. Sadarangani, About the existence of solu-
tions for a hybrid nonlinear generalized fractional pantograph equation,
Fractional Differential Calculus 6 (2016), 95-110.

[22] A. A. Kilbas, H. M. Srivastava, J. J Trujillo, Theory and Applications
of Fractional Differential Equations, vol. 204 of North-Holland Mathe-
matics Sudies Elsevier Science B.V. Amsterdam the Netherlands, 2006.

[23] H. Mohammadi and S. Rezapour, Two existence results for nonlinear
fractional differential equations by using fixed point theory on ordered
gauge spaces. J. Adv. Math. Stud. 6(2), 154158 (2013.

[24] Ha. Mohammadi1, S. Rezapour, and S. Etemad, On a hybrid fractional
CaputoHadamard boundary value problem with hybrid Hadamard in-
tegral boundary value conditions. Adv Differ Equ 2020, 455 (2020).
https://doi.org/10.1186/s13662-020-02914-4.

  
Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 3, 2021

ISSN: 2769-2507 120




