
Fig. 1: Scanning Geometry Overview

Abstract- This paper describes one approach
to use convolutional neural networks to detect
wake vortices generated by aircraft based on
scanning Doppler LIDAR measurements.
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I. A Problem of Wake Vortex Detection

WAKE vortices generated by heavy aircraft may
present a significant hazard for other aircraft, es-

pecially of a lighter category ([1]). To counter this haz-
ard, aircraft operations in a densely occupied airspace re-
quire application of some additional separation distance,
leading to reduced capacity. Although there is a num-
ber of modelling methods ([9], [10]) to predict vortex
behaviour, strength and decay, direct detection bears a
significant challenge.

Scanning Doppler LIDARs ([4], [7], [8]) are the one
means to directly measure these wake vortices. A neural
network approach to LIDAR-based real-time detection
of wake vortex presence on glide slope is a task of this
study.

II. Data acquisition with LIDAR

Neural network require a significant amount of data
to perform training and validation. We use a compre-
hensive data set acquired by several LIDARs deployed in
major airports. These airports exercise a representative
traffic mix with more than 50% heavy and super-heavy
aircraft.

Generally a LIDAR is installed in an immediate vicin-
ity of a runway, with a nominal lateral offset of 300 me-
ters off a center line and a nominal downwind offset of
900 meters off a threshold.

Scanning geometry takes into account a known man-
ner of vortex behaviour. An induced turbulence is gener-
ated at aircraft’s altitude, evolves into a distinct vortex

Fig. 2: Scanning Plane

structure several seconds later and then decays, gradu-
ally moving towards the ground.

LIDAR scans in a vertical plan orthogonal to an ex-
tended runway center line. Scanning elevation angles are
generally set from zero (horizontal) (further designated
as ϕmin) to 30 degrees high (ϕmax). This configuration
ensures capturing a glide slope intersection point, as well
as the most of vortex presence area.

LIDAR digital output, named the “raw data”, can be
represented as a set of scans. Each scan corresponds to
a single pass of LIDAR scanner’s reciprocating motion
from the lowest elevation angle to the highest, or vice
versa. At the each elevation angle (i.e along a scanning
ray), LIDAR senses a projection of a wind speed (v) to
a scan line at a set of distances. Scanning distances are
determined by LIDAR capabilities and current geometry,
with minimal distance (rmin) generally set to 100 meters,
and maximum (rmax) set to 600 meters.

Thus, a LIDAR scan can be represented in discrete
polar coordinates as follows:

S = {v(ϕi, rj)},
ϕmin ≤ ϕi ≤ ϕmax,

rmin ≤ rj ≤ rmax,

i = 1..K, j = 1..M.

(1)

Numbers of measurements in a single scan N = KM
is determined by scan’s angular (0.5◦) and range (3 m)
resolution, and timing constrains. A typical scan con-
tains 10000 measurement points.

III. Vortex Detection Algorithms

In this study we want to estimate a number of vortices
present and their location using a single LIDAR scan. As
a vortex is a dynamic 3D object, a LIDAR can capture
only a limited amount of vortex information. As one scan
is fast enough, we assume that a single scan represents a
single section of a vortex volume by a scanning plane. A
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Fig. 3: Wind Speed Field for Vortex Sections

nature of a vortex is such that the major part of a wind
speed vector projects to the scan plane.

Existing ad hoc algorithms ([2], [3]) are based on di-
rect analysis of vi,j value behaviour. Specifically, high
gradient values of v, together with change of sign (i.e.
direction) along the adjacent ray, constitute the presents
of a vortex. This approach has both advantages and dis-
advantages.

As a main advantage, these algorithms can be used
to derive quantitative characteristics of a vortex: coordi-
nates and circulation strength. However, these methods
work under two assumptions: firstly, a vortex has a delin-
eated circular structure, and, secondly, radial wind speed
distribution has a particular shape.

The last assumption is not precisely correct near a
ground plane, when its interference with a vortex cre-
ates secondary vortex structures, hence overall vortex
geometry deviates from a circular shape.

To address this problem, we follow an alternative ap-
proach which is less sensitive to a priori vortex structure.

IV. LIDAR Scans as Images

For a human, the primary tool to assess a vortex pres-
ence on a LIDAR scan is to examine scan’s 2D color
rendering — a conventional digital image. As modern
convolutional neural networks (CNN) reach human abil-
ity in image recognition, in our study we try to leverage
these capabilities for wake vortex detection. As with all
neural networks, there are several basic steps required:

� Acquire a data set, split into training, test and val-
idation subsets.

� Label the training set and the test set.

� Train the network.

� Run inference over a validation set and assess the
performance.

A. Scan Conversion

First, we need to define a deterministic way to trans-
form a LIDAR scan to an image. As a reference grid we
choose a rectangular area in a scan plane. CNNs require
a fixed image resolution.

Fig. 4: Elementary Image Cell

We assume the following scan parameters and a linear
resolution of 1 meter:

ϕmin = 0◦, ϕmax = 30◦,

rmin = 100, rmax = 600,

δ = 1.

(2)

We choose our linear resolution to be several times
higher than a nominal physical resolution. Hence, hori-
zontal resolution in pixels is given by:

W = (rmax − rmin) /δ = 500.

Minimal vertical resolution calculates as

H = (rmax − rmin) sin(ϕmax) = 250.

So we use the following cartesian grid:

(xp, yq), p = 1..W, q = 1..H.

Next, we extrapolate a single LIDAR-measured value
vi,j to an elementary scan element, a “cell”. A cell is
formed by adjacent rays and consequent measurement
distances as depicted on Figure A.

The cell is defined by four grid points (xi,jl , yi,jl ), l =
1..4. Assuming that ϕj is a current scan ray elevation,
di is a current measurement distance, ∆ϕ is an angle
between the rays, we derive these points:

xi,j1 = di cosϕj −∆ϕ,

xi,j2 = di cosϕj + ∆ϕ,

xi,j3 = di+1 cosϕj + ∆ϕ,

xi,j4 = di+1 cosϕj −∆ϕ,

yi,j1 = xi,j1 tanϕj −∆ϕ,

yi,j2 = xi,j2 tanϕj + ∆ϕ,

yi,j3 = xi,j3 tanϕj + ∆ϕ,

yi,j4 = xi,j4 tanϕj −∆ϕ.

(3)

Then scanning plane coordinates are transformed to
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the image coordinates as following:

Hmin = rmin cos(ϕmax),

Hmax = rmax,

Vmin = rmin sin(ϕmin),

Vmax = rmax sin(ϕmax),

p =
W (x−Hmin)

Hmax −Hmin
,

q =
H(y − Vmin)

Vmax − Vmin
.

(4)

Futher, we denote this transform as (p, q) = T (x, y).
All grid points in the cell are set to the value corre-

sponding to the current measurement vi,j . We need to
convert the measurement, a single real value, to a color
triplet. The most common RGB color model is fit this
purpose. General approach would be to use a standard
graphics library. However, this process may or may not
be deterministic, and not always well-documented. To
address this problem, we apply four steps:

� Remove influence of the ambient wind by substruct-
ing an average wind speed value V .

� Truncate wind speed values by a reasonable maxi-
mum, for which we choose vmax = 30m/s.

� Apply a linear transform of a wind speed range
to a visual light wavelength range in nanometers
(λmin = 380, λmax = 750), which is naturally con-
verted into a color.

� Apply a transform based on a formula presented in
[12]: (R,G,B) = C(λ).

To remove the ambient wind and truncate, we apply:

V =
1

N

K∑
i=1

M∑
i=1

vi,j ,

v = max
{ v
V
, vmax

}
.

(5)

Then the range is transformed as:

v̂i,j =
vi,j + vmax

2vmax
,

λi,j = λmin + v̂i,j (λmax − λmin) .

(6)

The final color applied to a cell corresponding to vi,j
equals

(Ri,j , Gi,j , Bi,j) = C(λi,j).
Applying there values to all pixels within a polygon

T (xi,jl , yi,jl ), l = 1..4 for all cells i = 1..K, j = 1..M , we
acquire a final image, denoted as a tensor

I =

 (R1,1, G1,1, B1,1) . . . (R1,H , G1,H , B1,H)
. . . . . . . . .

(RW,1, GW,1, BW,1) . . . (RW,H , GW,H , BW,H)

 ,
(7)

where p = 1..W, q = 1..H.
An example is given by Figure 5.

Fig. 5: An example of LIDAR Scan Rendering

V. Training and Test Images Generation

Our initial data set contains LIDAR scan with a va-
riety of noise, background disturbance and scanning act-
ifacts, and the most common measurements do not con-
tain any vortices at all. On the other hand, to train a
neural net, we require an extensive set of images with co-
ordinates of a vortex are labeled appropriately. As there
exist a significant number of vortex shapes and sizes,
a manual selection was disregarded in the scope of this
paper as too time-consuming. Also, in an absence of a
robust ad hoc detection algorithm, automated labelling
is also problematic.

To address these concerns, we apply the following pro-
cedures:

� LIDAR measurements modelling.

� Ambient conditions measurements labelling.

� Image blending.

A. Modelling
To avoid extensive manual vortex detection and la-

belling, we use a model described in [5], [6] to generate
a comprehensive set of modelled LIDAR measurements
for certain vortex parameters.

Modelling is two-phased. First, we model the vor-
tex as a 3D wind speed field, and then a LIDAR mea-
surement model used to convert this field into a set of
measurements which simulate a real scan defined by (1).

In order in acquire a representative vortex collection,
each of the vortex parameters is varied in a predefined
range by a predefined step value or chosen from a list,
yielding a set of parameter’s values. Combined, these
sets form a cartesian product, and for each element a
LIDAR scan is modelled.

The following parameters are used:

� Aircraft type. Values: Boeing B767, B777, B787,
Airbus A380, A350, A340, A330, A319, A320. Num-
ber of elements C1 = 9.

� Scan delay from scanning plane intersection time.
Values: 10, 12, 15 seconds. C2 = 3.

� Vortex generation height. Values: 75 meters, 60
meters. C3 = 2.

� Ambient wind speed. Minimum −2m/s. Maximum
4m/s. C4 = 7.
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Fig. 6: Modelled LIDAR Scan Rendering

Fig. 7: Ambient Conditions LIDAR Scan Rendering

� Wind direction. Minimum 0◦. Maximum 0.3◦.
C5 = 8.

Thus, we generate Cg =
∏5

i=1 Ci = 3024 different
vortex models. Each model is rendered as an image using
the same procedure as described in Section A.

Using a notation defined by (7), this image set is de-
fined as Igen,g, g = 1..Cg.

An example generated vortex image is presented on
Figure 6.

In addition to the scan data, our model yields two
pairs of vortex coordinates (X1, Y1), (X2, Y2) in a scan
plane, and vortex radii R1, R2.

B. Ambient Conditions Scans
As one can see from the above example, although

the model can simulate a vortex itself, a generated im-
age lacks adequate representation of ambient wind con-
ditions. Instead of using a corresponding model, this
study adopts a different approach. We select a set of
LIDAR scans which do not contain any vortices. These
scans were taken in diverse conditions, reflecting various
wind environments. This selection is performed manu-
ally with a help of a labelling tool. Somewhat arbitrarily
we choose Ca = 50 different scans.

An example of a selected scan Iamb,g, g = 1..Ca, is
presented on Figure 7.

C. Image Blending
Finally, we generate a set of images suitable to be

used as neural network inputs.
First, a basic background image Iback is generated as

follows:

Ibackp,q = C(0), ∀p = 1..W, ∀q = 1..H

.

Fig. 8: Blending Mask

Second, for every generated image Igen,g, g =
1..Cg we randomly select an ambient condition image
Iamb,a∗

, a∗ ∈ {1, . . . , Ca} and generate the final images
using the following blending procedure.

Third, a blending mask is derived from the set of
vortex coordinates, in such a way so the target image
contains both generated vortex and ambient conditions.
The weight of a generated information is higher when a
distance is lower.

In image grid coordinates, vortex coordinates on g-th
generated image calculate as:

(P g
1 , Q

g
1) = T (Xg

1 , Y
g
1 ) ,

(P g
2 , Q

g
2) = T (Xg

2 , Y
g
2 ) .

(8)

Assuming DM is a Manhattan distance function

DM (p, q, p0, q0) = |p− p0|+ |q − q0|,

a mask calculates as a sum of the first vortex mask

Mg,1
p,q = max {0, 1− 0.01DM (p, q, P g

1 , Q
g
1)},

and the second vortex mask

Mg,2
p,q = max {0, 1− 0.01DM (p, q, P g

2 , Q
g
2)},

so the final mask equals

Mg =Mg,1 +Mg,2. (9)

An example of a blending mask is shown on Figure 8.

As the last step of input data preparation, for g =
1..Cg we generate a set of training input images as

Iinput,g =MIgen,g + (1−M)Iamb,a∗
+ Iback.

An example of an input image is shown on Figure 9.

Additionally, each input image is augmented with la-
belling data in PASCAL VOC XML format. Labelling
data contain vortex positions in image grid coordinates.
A simple rectangular label is used for each of two vor-
tices. To contruct these labels, we use vortex radii R1,2

yielded by the modelling procedure. Two label rectan-

gles
(
p1,2min, q

1,2
min, p

1,2
max, q

1,2
max

)
are defined by:
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Fig. 9: Blended Scan Rendering

Fig. 10: Rectangular Labels for the Vortices

X1,2
min = X1,2 −R1,2,

X1,2
max = X1,2 +R1,2,

Y 1,2
min = Y 1,2 −R1,2,

Y 1,2
max = Y 1,2 +R1,2,(

p1,2min, q
1,2
min

)
= T

(
X1,2

min, Y
1,2
min

)
,(

p1,2max, q
1,2
max

)
= T

(
X1,2

max, Y
1,2
max

)
.

(10)

An example of label rectangles is shown on Figure 10.

VI. Neural-Network Based Detection
Models

There are multiple image recognition architectures
[11] readily available to train on compatible data set. For
this study, we use a well-known Faster R-CNN method
and Inception V2 architecture, pre-trained on the COCO
data set.

Neural network training use a procedure described in
[13]:

� Tensorflow library is configured to use GPU accel-
eration.

� Blended images data and labelling data are con-
verted to TensorFlow data records.

� Training parameters are set:

– Number if classes: 1 (’Vortex’);

– Number of steps: 200000;

– Training data set: 80% of samples (0.8Cg);

– Testing data set: 20% of samples.

Fig. 11: The Vortices Detected on a Scan

� Training sequence is launched.

� A target trained model is exported.

A. Detection Results
To validate our network, we apply an inference pro-

cedure based on the exported model to real LIDAR
scans. The model outputs an estimate of detected vortex
bounding box coordinates. Then we overlay these coor-
dinates on a scan render to visualized detection results.
A detection example is presented on Figure 11.

VII. Future Research

This study uses a straighforward approach to detect
vortices based to translation of a scan to an image. There
are several ways to develop this approach further:

� More Wake Models: there are multiple emerging ob-
ject detection models and neural network architec-
tures. A study is required to assess whether these
are more efficient to detect vortices.

� Polar Coordinates Detection: a LIDAR scan is
naturally described in polar coordinates. How-
ever, a conventional CNN uses cartesian coordi-
nates. There are models which address this. One
can investigate whether these are applicable to vor-
tex detection.

� Dynamic Approach: A vortex is a dynamic 4D ob-
ject. In this study, we analyse a vortex section in
isolation based on a single LIDAR scan. Consider-
ing several adjacent sections in a single model may
enhance detection quality.
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