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Abstract—This paper describes a novel image registration in
mosaic framework based on a new type of local invariant feature.
Our features are located using Gabor-based features detector
which gives spatial distribution of features. We sample a feature
descriptor using a newly proposed Relational Gabor Features
that adapts relational features onto Gabor magnitude using vary-
ing patch sizes obtained during features detection. We tested our
proposed features for mosaicing underwater image sequences at
ten meters depth taken in Redang Island, Terengganu, Malaysia.
Based on the experimental results, the proposed method has
produced in highly effective image registration method to obtain
a coherent underwater image mosaic.

Keywords—local invariant features, image registration, under-
water image

I. INTRODUCTION

A rapid development in underwater robotics [1], [2], [3],
[4] makes survey and inspection of deep water available
to the science communities e.g., archaeologists, geologists,
biologists, among others. Consequently, underwater images
are becoming an important tool for studying and acquiring
knowledge about the seabed [5], [6], [7]. Object measurement,
monitoring and exploration are among the tasks which can be
performed using underwater images.

In general, an underwater image is of type video which
narrowly limit the photographic view of underwater environ-
ment due to significant attenuation of visible light thus leads to
lack of image contrast. Therefore, the video processing such as
mosaicing is necessary to observe an underwater environment
over the wide range. This technique could provide a complete
representation of static scenes for a versatile visualization,
accessing and analyzing information. The beneficial use of
these information is for guiding environmental decisionmakers
to maintain compliance with relevant statutes, regulations, and
executive orders [8].

In principles, an image mosaicing operation is accomplished
through two main steps. The first one is image registration that
perform spatial alignment of the images and the second one is
image blending that composite two images to form the mosaic.
In image registration, the operation is normally solved using
feature-based method [9], [10] based on the following steps:
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1) Detect local feature points in each image.

2) Extract information at each of the detected feature
points.

3) Match the points between two images.

Many of the mosaic algorithms used Harris corner de-
tector [11] to find salient features that correspond between
images [12], [13]. The successful of Harris corner detector
depends on how the photographer overlapped his shots, and
whether there are enough unique and corner-like features in
the overlap. In this paper, we propose an alternative method to
obtain a spatially diverse set of feature points not necessarily
at the corners. Our method is based on Gabor wavelets where
a set of local feature points are detected using a non-maximum
suppression at every scales of multiorientation response maps.
These feature points are then described using the relation
with their neighborhoods on the normalized response map
generated from the summation of different scales and different
orientations divided by the total number of overall response
maps. The proposed descriptor is called Relational Gabor
features is an alternative to all formerly proposed schemes
such as SIFT [14], SURF [15] and MOPs [16], that have
considerably greater invariance to image scaling and rotation
and robust under change in illumination and 3D camera view-
point. Although the performance of the proposed scheme is not
measured statistically in this paper but mosaicing underwater
images is likely to fail if the feature-based method used is
not powerful enough for image registration. This is due to
the characteristics of the underwater images that often present
difficult challenges for processing.

The rest of this paper is organized as follows: Section II
is devoted to detail the proposed method to perform image
registration process. Then, the next section present the rest
of mosaic algorithms used in this work. Some results are
presented in Section IV and finally we conclude our work
in Section V.

II. RELATIONAL GABOR FEATURES

In this section, we begin by describing the proposed feature
points detector and next establish the proposed local features
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descriptor of Relational Gabor Features (RGF). Our proposed
features detector and descriptor are based on Gabor wavelets.
For detail explanation of this wavelet, one can refer to [17].

A. Gabor-based Feature Points Detector

A set of Gabor wavelets ¥, ,, of different scale and ori-
entation is convolved with an image I(z) to estimate the
magnitude of local frequencies of that approximate scales and
orientations. It is defined by:

§(z 1,0) = W(z f,0) « I(2) (D

The common method for reducing the computational cost
for the above operation is to perform the convolution in
Fourier space. This way, the operation is done based on simple
element-wise multiplication with linear time complexity:

E(z; £,0) = FTHF (U (= £,0)) F(1(2))} 2)

where F denotes the fast Fourier transform and F~! is its
inverse.

It is important to design a detector that can cope with scaling
problem when the point itself lacks information to describe an
image. In other words, the detector must have support regions
or patches that can be modeled using a scale-space approach.
The proposed detector can also be implemented to localize
multi-scale regions. The task for detecting multi-scale regions
of the proposed method is by generating a series of response
maps at every scale and the scale index of each point is known
directly while detecting its location. To do this, all the response
images in each scale are added together to produce a response
map éu(z7 fu) that represents an individual scale-space. Thus,
Vu=0,...,U—1,

V-1 ) .
bz ) = Zom VG Ju ) K1), 3

Then, a set of interest points for all scales is obtained by
applying non-maximum suppression at all response maps. To
do this, the response maps éu, Yu =1,...,U are dilated by
performing a grey scale morphological dilation as expressed
in the following equation:

[éu @ b)(z) = max {éu(ac —s,y—1t)} € [e1,62] (@)
(s,t)eb

s

where b is the structuring element with the size 2r+1 and 7 is
the radii of region considered in non-maximum suppression.
The value r is set according to the scale size. The greater the
scale size, the smaller r value will be set. This is to ensure that
the smaller scale size does not dominate the overall interest
points. Local maxima is extracted by finding the points that
match the dilated image with values in the range [e1, €2]. The
threshold value, €2 must be greater than threshold value,
and must be assigned in the interval {0; 1] whereas £; must be
assigned in the interval [0, 1}. For every set of interest points
extracted at every scale, the location of points are stored in
keypoints list together with their scale index. The process of
computing the proposed multi-scale detector is illustrated in
Fig. 1.
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B. Local Relational Gabor Descriptor

Once a set of feature points is obtained, the next step is to
associate features across images. In order to automate features
association, we propose a Relational Gabor descriptor that
encodes information at each feature point by applying the
relational function to the magnitude value difference of the
pixels lying on the specific distance and phase to the reference
point. The proposed descriptor is motivated from the use of
relational kernels introduced in [18].

The relational kernels are based on the Local Binary Pat-
tern (LBP) texture features [19] which threshold the relation
between a center pixel and the pixels in its neighborhood into
a binary pattern (0 and 1). Applying this to all pixels in a
circular neighborhood of the center pixel, a binary pattern is
obtained which is then transformed into a unique number as
follows:

n—1
LBP =Y s(v; — v.)2' (5)
=0
where
1, x>0
s(@) = { 0, w<0, ©

where v; and v, are the grayvalues at a neighboring pixel
and the center pixel, respectively. The number of the pixels in
the circular neighborhood is denoted by n. Since the signed
difference (v; —v,) is considered, the effect of grayscale shifts
is totally eliminated. Invariants against scaling of the grayscale
is achieved by the s operator as the sign of the difference is
mapped to O or 1.

It is obvious that the discontinuity of the LBP operator (the
s function) makes these features sensitive to noise. A small
disturbance in the image may cause a big deviation of the
feature. To overcome this problem, Schael[18] has introduced
an operator which extends the step function in Eq. 6 to a ramp
function giving values in the range of [0, 1]:

1, r < —€
rel(z) = ¢ 52, —e<x<Eg, 7
0, e<ux,

where ¢ is a threshold parameter. This way, the features are
much more robust against noise. However, to set € parameter is
a non-trivial process. Therefore, we extend a ramp function to
a log-sigmoid function for simplicity and to avoid the manual
trial and error of what ¢ parameter that is to be set. Our
relational features is defined as:

rel(z) !

1+ exp(—x)

As opposed to LBP, relational features use two circular
neighborhoods. Let (z, y) be the coordinate of the central pixel
in two-dimension, taking into consideration the phase shift, ¢,
the coordinate of (z1,%1) and (z2,y2) are given by:

(r1,91) = @ + 71 cos(0),y + 71 8in(0), )

®)

and

(x2,y2) = 4+ rocos(0 4+ ¢),y + rosin(f + ¢). (10)
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From the equation defined in Eq. (9), r1 is set based on
the scale index obtained during the feature points detection
process and 7o in Eq. 12 is equal to 2ry. The 6 value is
given by j.27/n, Vj = 1,...,n where n is a number of
neighborhood points.

Using Eq. 2, we can obtain final Gabor magnitude which
we denote as f as the sum from a series of response maps at
all scales and orientations.

Zg:_ol 1‘;/:_01 u,’u(z§fua91;) *I(Z)

UxV (i

¢ =

Next, we define our proposed Relational Gabor features,
RG based on relational function defined in Eq. 8 calculated
on a keypoint (x,y) of the magnitude image & as center. The
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(b) log-sigmoid function

Graphs of ramp function and log-sigmoid function.

function is given by:

\ N

S rel(E(@a, o) — &1, )

n

RG = (12)

The result of the above equation is a single value represent-
ing information of one local point. This kind of feature is not
distinctive enough as one point might have the same value to
the other points. More features are needed to describe one local
point. By using a set of varying ¢ values and concatenating
them into one form producing a set of RG features vector. To
do this we systematically set different values of ¢ as follows:

k(01— 00)

o = , Vk=0,...,m—1. (13)

m

where m is the total number of ¢ we used. Then, the function
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RG with m-tuple can be rewritten as:

oy rel(0;, 61)

n

Rg'rn:{ 0§9j<2ﬂ',90§¢k:<91

szo,...,m—1}. (14)

The process is illustrated in Fig. 3. As shown in the
figure, red node is a keypoint or pixel under consideration
which acts as center of the circles. Green nodes and blue
nodes are neighborhoods of the first circle and second circle,
respectively. The distance for green nodes from the center node
are shown with green lines whereas the distance for blue nodes
from the center node are shown by blue lines. The feature is
formed by integrating all values from the difference between
value of the blue node and value of the green node at each
0 that put into the rel function. Bilinear interpolation is used
for points not lying exactly on image grid. By setting different
values of ¢, we can yield a feature vector of length m. Finally,
we sort the features into an ascending order to obtain rotational
invariance features.

III. FEATURES MATCHING

For matching the proposed features descriptor across im-
ages, we calculate the squared Euclidean distance, D between
two feature vectors. The elements of the first features vector
and the second features vector are represented by the notation
x = (z1,29,...,2,) and y = (y1,¥2,---,Yn), respectively
where n is the dimensionality of the feature space.

n
D(x,y) = > (x;i — )

i=1

(15)

Next, we look for the strongest matches from one image into
the other. For this process, we follow Lowe’s method [20] of
thresholding the ratio of the best match score to its second best
match score. For our implementation, features whose ratios are
higher than 0.5 are rejected.

From Fig. 4, some features in the left image are likely
to match incorrect correspondences in the right image due
to similar image structure they shared. These features are
called outliers and need to be removed. We use RANdom
SAmple Consensus (RANSAC [21]) to reject outliers that
are basically identified as the points that do not follow the
dominant image motion estimated by RANSAC. Once we
obtain a set of distinctive features or inliers, the next step is
to robustly fit homography where a projective transformation
is estimated from at least four point correspondences [22].
However, more point correspondences will generate more
accurate homography. Using the estimated homography that
is computed from the inliers, we can composite the images to
form a mosaic.

IV. APPLICATION ON UNDERWATER IMAGES

Now that all the steps and relevant details of the mosaicing
operation have been described, some of the mosaics created
for underwater panoramic will be presented. We have tested
our method using large-area underwater image sequences of
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TABLE I
NUMBER OF INITIAL CORRESPONDENCES AND INLIERS.

Mosaic Initial Inliers Initial Inliers

Images Correspondences Image(a)- Correspondences Image(c)-
Image(a)-Image(b) Image(b) Image(c)-Image(b) Image(b)

Set 1 168 146 88 47

Set 2 64 40 54 30

10 meters depth that were acquired during the experiments
in Redang Island, Terengganu, Malaysia in 2011 by marine
scientist from Institute of Oceanography (INOS)!.

Two sets of image sequences were used for demonstrating
the applicability of the proposed features. The results are
presented in Fig. 6. In Table I, we show the number of initial
correspondences detected by the proposed features and the
number of inliers. It should be noted that, the proposed features
retained more than 50% of the number of correspondences
among all overlapping image pairs from the initial correspon-
dences thus provides a highly effective alignment during image
registration process. Obtaining a correct alignment is important
to ensure that the quality of mosaic result is at the highest level
possible.

V. CONCLUSION

In this paper, we have presented a new type of local
invariant features, which we call Relational Gabor features.
The proposed features utilized a Gabor wavelet technique for
locating feature points, and relational features were extracted
on a magnitude of Gabor response using a log-sigmoid func-
tion. These features allow us to recover the spatial alignment
between two images by performing image registration process
using a method such as RANSAC.

The proposed features have been tested for underwater video
images mosaicing, covering large area and results have been
presented visually to illustrate its performance. Our results
show that the features can be matched not necessarily between
adjacent frames. Features in the first frame for example can be
matched with the features in the sixth frame as long as some
parts of objects in the first image can still be seen in the second
one regardless of geometrical transformations happened to the
objects.

Based on the demonstration made for the application of
underwater images mosaicing, it can be observed that the
mosaic images can greatly simplify subsequent processing for
underwater image classification. This will be our future work
to investigate the usefulness of the proposed features for this
process since it is well-known that local invariant features
can be generalized for other applications. In addition, we
will perform a more detailed, quantitative analysis of feature
matching performance.

'INOS is a Malaysian 7th Higher Institution Center of Excellent (HiCoE)
in Marine Science.
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neighbohood are slightly moved at anti-clockwise direction.
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(a) Set of underwater images for mosaicing.

(b) Final mosaic from (a).

(d) Final mosaic from (c).

Fig. 6. Mosaicing of underwater images.
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