Zernike Polynomials and their Spectral Representation

Miroslav Vlcek
Department of Applied Mathematics
Faculty of Transportation Sciences
Czech Technical University
Prague, Czech Republic
Email: vlcek@fd.cvut.cz

Pavel Sovka
Department of Circuit Theory
Faculty of Electrical Engineering
Czech Technical University
Prague, Czech Republic
Email: sovka@fel.cvut.cz

Abstract

The Zernike polynomials $Z_{n}^{m}(\rho, \phi)$ are known in optical physics, and they are used for the various diffractions and aberrations problems of lenses. They are defined on a circle, so that their representation decouples radial and axial coordinates. It is know that the Zernike radial polynomials $R_{n}^{m}(\rho)$ are represented through Jacobi polynomials. This paper deals with Chebyshev expansions for Jacobi polynomials. We have developed the recursive evaluation for spectral coefficients used in these expansions. These consequently provide a straightforward interpretation of Fourier transform of Zernike polynomials.

I. Introduction

The conventional representation of Zernike radial polynomials gives unsatisfactory results for large values of degree n [3]. Some methods employ the recurrence relations [6], the other [2] suggests an algorithm in the form of discrete cosine transform which overcomes other methods in terms of accuracy. Nevertheless, the final formula represents an integral whose evaluation is performed using uniform sampling of the integrand. The proposed Chebyshev expansion of Jacobi polynomials $P_{n}^{\alpha, \beta}(x)$ results directly in spectral coefficients of $R_{n}^{m}(\rho)$ without need of using discrete Fourier transform.

Jacobi polynomials $P_{n}^{\alpha, \beta}(x)$ are defined as [7]

$$
\begin{align*}
P_{n}^{\alpha, \beta}(x)=\frac{1}{2^{n}} \sum_{m=0}^{n}\binom{n+\alpha}{m} & \binom{n+\beta}{n-m} \tag{1}\\
& \times(x-1)^{n-m}(x+1)^{m}
\end{align*}
$$

and they satisfy the self-adjoined differential equation

$$
\begin{align*}
& \frac{d}{d x}\left[(1-x)^{\alpha+1}(1+x)^{\beta+1} \frac{d}{d x} P_{n}^{\alpha, \beta}(x)\right] \tag{2}\\
& \quad+n(n+1+\alpha+\beta)(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{\alpha, \beta}(x)=0 .
\end{align*}
$$

Later, we will use Jacobi polynomials for radial part $R_{n}^{m}(\rho)$ of the Zernike polynomials

$$
Z_{n}^{m}(\rho, \phi)=\left\{\begin{array}{l}
R_{n}^{m}(\rho) \cos m \phi \tag{3}\\
R_{n}^{m}(\rho) \sin m \phi
\end{array}\right.
$$

Based on (2) we can derived for $y(x) \equiv P_{n}^{\alpha, \beta}(x)$ a standard form of the Jacobi differential equation [7] as

$$
\begin{align*}
& \left(1-x^{2}\right) y^{\prime \prime}(x)-[(\alpha+\beta+2) x+\alpha-\beta] y^{\prime}(x) \\
& +n(n+1+\alpha+\beta) y(x)=0 \tag{4}
\end{align*}
$$

In order to represent Jacobi polynomials through the Chebyshev expansions

$$
\begin{align*}
P_{n}^{\alpha, \beta}(x) & =\sum_{\ell=0}^{n} a^{(\alpha, \beta)}(\ell) T_{\ell}(x) . \tag{5}\\
P_{n}^{\alpha, \beta}(x) & =\sum_{\ell=0}^{n} b^{(\alpha, \beta)}(\ell) U_{\ell}(x), \tag{6}
\end{align*}
$$

where $T_{\ell}(x)$, and $U_{\ell}(x)$ are Chebyshev polynomials of the first, and second kind, respectively, we have developed recursive evaluation of the spectral coefficients $a^{(\alpha, \beta)}(\ell)$ and $b^{(\alpha, \beta)}(\ell)$.

A. Recursive algorithm-I

Inserting in (4)

$$
\begin{equation*}
y(x)=\sum_{\ell=0}^{n} a^{(\alpha, \beta)}(\ell) T_{\ell}(x) \tag{7}
\end{equation*}
$$

after considerable algebra we obtain the three-point recursive formulae which are concisely summarized in Table I.

The algorithm for the coefficients $a^{(\alpha, \beta)}(\ell)$ was used for evaluating Jacobi polynomials (5). Two numerical results for Jacobi polynomials $P_{8}^{(-0.15,0.75)}(x)$ and $P_{11}^{(17,0)}(x)$ are summarized in Table II. Note, the second polynomial is closely related to Zernike radial polynomial $R_{39}^{17}(\rho)$, that we introduce later.

B. Recursive algorithm-II

Inserting in (4)

$$
\begin{equation*}
y(x)=\sum_{\ell=0}^{n} b^{(\alpha, \beta)}(\ell) U_{\ell}(x) \tag{8}
\end{equation*}
$$

we need to perform quite involved algebra to obtain the fivepoint recursive formulae - Table III. The algorithm for the

TABLE II
THE COEFFICIENTS $a^{(-0.15,0.75)}(\ell)$ AND $a^{(17,0)}(\ell)$ OF JACOBI POLYNOMIALS.

ℓ	$a^{(-0.15,0.75)}(\ell)$	$a^{(17,0)}(\ell)$
0	0.382162212452087	2.796583266044617 e 06
1	-0.688698483046875	5.318721431858063 e 06
2	0.756058665304687	4.568044430351257 e 06
3	-0.666385898718750	3.530190682125092 e 06
4	0.729511893632812	2.438413190643311 e 06
5	-0.614211136875000	1.489855783063889 e 06
6	0.677729102812500	0.792833667308807 e 06
7	-0.502127525250000	0.359071999025345 e 06
8	0.578841452718750	0.133550766944885 e 06
9	-	0.038451398126602 e 06
10	-	0.007664178707123 e 06
11	-	0.000799205801010 e 06

Fig. 1. Jacobi polynomial $P_{8}^{(-0.15,0.75)}(x)$ and its coefficients $a^{(-0.15,0.75)}(\ell)$ from equation (5).
coefficients $b^{(\alpha, \beta)}(\ell)$ was used for evaluating Jacobi polynomials (6). Two numerical results for Jacobi polynomials $P_{8}^{(-0.15,0.75)}(x)$ and $P_{11}^{(17,0)}(x)$ are summarized in Table IV.

II. ZERNIKE AND JACOBI POLYNOMIALS

The radial function $R_{n}^{m}(\rho)$ (3) of a Zernike polynomial is related to Jacobi polynomials $P_{n}^{\alpha, \beta}(x)$ [5] as

$$
\begin{equation*}
R_{n}^{m}(\rho)=(-1)^{k} \rho^{m} P_{k}^{m, 0}\left(1-2 \rho^{2}\right) \tag{9}
\end{equation*}
$$

where $k=\frac{n-m}{2}$ must be an integer. Now, we use the recursive algorithm for evaluating the spectral coefficients $a^{(\alpha, \beta)}(\ell)$

$$
\begin{equation*}
P_{k}^{\alpha, \beta}\left(1-2 \rho^{2}\right)=\sum_{\ell=0}^{k} a^{(\alpha, \beta)}(\ell) T_{\ell}\left(1-2 \rho^{2}\right) \tag{10}
\end{equation*}
$$

TABLE IV
THE COEFFICIENTS $b^{(-0.15,0.75)}(\ell)$ AND $b^{(17,0)}(\ell)$ OF JACOBI POLYNOMIALS.

ℓ	$b^{(-0.15,0.75)}(\ell)$	$b^{(17,0)}(\ell)$
0	0.004132879799744	0.512561050868988 e 06
1	-0.011156292164062	0.894265374866486 e 06
2	0.013273385835937	1.064815619853973 e 06
3	-0.026087380921875	1.020167449530602 e 06
4	0.025891395410156	0.822789761667252 e 06
5	-0.056041805812500	0.565391892019272 e 06
6	0.049443825046875	0.329641450181961 e 06
7	-0.251063762625000	0.160310300449371 e 06
8	0.289420726359375	0.062943294118881 e 06
9	-	0.018826096162796 e 06
10	-	0.003832089353561 e 06
11	-	0.000399602900505 e 06

Fig. 2. Jacobi polynomial $P_{8}^{(-0.15,0.75)}(x)$ and its coefficients $b^{(-0.15,0.75)}(\ell)$ from equation (6).
and then for radial function we have

$$
\begin{equation*}
R_{n}^{m}(\rho)=(-1)^{k} \sum_{\ell=0}^{k}(-1)^{\ell} a^{(m, 0)}(\ell) \rho^{m} T_{2 \ell}(\rho) \tag{11}
\end{equation*}
$$

We can also use the spectral coefficients $b^{(\alpha, \beta)}(\ell)$ to represent

$$
\begin{equation*}
P_{k}^{\alpha, \beta}\left(1-2 \rho^{2}\right)=\sum_{\ell=0}^{k} b^{(\alpha, \beta)}(\ell) U_{\ell}\left(1-2 \rho^{2}\right) \tag{12}
\end{equation*}
$$

Chebyshev polynomials of the second kind satisfy the identity

$$
\begin{equation*}
U_{\ell}\left(1-2 \rho^{2}\right)=(-1)^{\ell} U_{\ell}\left(2 \rho^{2}-1\right)=(-1)^{\ell} \frac{U_{2 \ell+1}(\rho)}{2 \rho} \tag{13}
\end{equation*}
$$

and then for radial function we have alternatively

$$
\begin{equation*}
R_{n}^{m}(\rho)=(-1)^{k} \sum_{\ell=0}^{k}(-1)^{\ell} b^{(m, 0)}(\ell) \rho^{m-1} U_{2 \ell+1}(\rho) \tag{14}
\end{equation*}
$$

Using in (11) identity

$$
\begin{equation*}
\rho^{m} T_{2 \ell}(\rho)=2^{-m} \sum_{\mu=0}^{m}\binom{m}{\mu} T_{2 \ell+m-2 \mu}(\rho) \tag{15}
\end{equation*}
$$

we can evaluate spectral representation $c^{(m, 0)}$ of the radial polynomial

$$
\begin{equation*}
R_{n}^{m}(\rho)=(-1)^{k} \sum_{\ell=0}^{k}(-1)^{\ell} c^{(m, 0)}(\ell) T_{2 \ell+m}(\rho) \tag{16}
\end{equation*}
$$

Similarly, using identity

$$
\begin{equation*}
\rho^{m-1} U_{2 \ell+1}(\rho)=2^{-(m-1)} \sum_{\mu=0}^{m-1}\binom{m-1}{\mu} U_{2 \ell+m-2 \mu}(\rho) \tag{17}
\end{equation*}
$$

in (14), we obtain spectral representation $d^{(m, 0)}$ of the radial polynomial

$$
\begin{equation*}
R_{n}^{m}(\rho)=(-1)^{k} \sum_{\ell=0}^{k}(-1)^{\ell} d^{(m, 0)}(\ell) U_{2 \ell+m}(\rho) \tag{18}
\end{equation*}
$$

As the first Jacobi polynomials are

$$
\begin{align*}
& P_{0}^{(m, 0)}\left(1-2 \rho^{2}\right)=1 \tag{19}\\
& P_{1}^{(m, 0)}\left(1-2 \rho^{2}\right)=(m+1)-(m+2) \rho^{2} \tag{20}
\end{align*}
$$

it is not difficult to make the crosscheck of radial polynomial representations (9) either with (16), or (18). For illustration, we present an explicit method for finding spectral coefficients $c^{(3,0)}(\ell)$ for Zernike radial polynomial $R_{2 k+3}^{3}(\rho)$. Actually,

$$
\begin{equation*}
R_{2 k+3}^{3}(\rho)=(-1)^{k} \sum_{\ell=0}^{k}(-1)^{\ell} a^{(3,0)}(\ell) \rho^{3} T_{2 \ell}(\rho) \tag{21}
\end{equation*}
$$

then we substitute for

$$
\begin{align*}
\rho^{3} T_{2 \ell}(\rho)=\frac{1}{8}\left[T_{2 \ell-3}(\rho)+3 T_{2 \ell-1}(\rho)\right. & +3 T_{2 \ell+1}(\rho) \tag{22}\\
& \left.+T_{2 \ell+3}(\rho)\right]
\end{align*}
$$

If we collect the coefficients $a^{(3,0)}(m)$ that correspond to the same degree ℓ, we obtain a simple algorithm for spectral coefficients $c^{(3,0)}(\ell)$ for $\ell=0$ to $k+1$

$$
\begin{align*}
& c^{(3,0)}(\ell)=\frac{1}{8}\left[a^{(3,0)}(\ell-1)-3 a^{(3,0)}(\ell)\right.+3 a^{(3,0)}(\ell+1) \\
&\left.-a^{(3,0)}(\ell+2)\right] \tag{23}
\end{align*}
$$

III. CONCLUSION

We have derived a robust evaluation of Zernike radial polynomials which derives its numerical stability from evaluation of spectral coefficients $a^{(\alpha, \beta)}(\ell), b^{(\alpha, \beta)}(\ell)$. Instead of using discrete Fourier transform we have employed the Chebyshev expansion for a solution of the differential equation for Jacobi polynomials. Suggested method does not require any transformation (DCT or DFT) to get a spectral coefficients and therefore it is computationally efficient and numerically

Fig. 3. Jacobi polynomial $P_{4}^{(3,0)}\left(1-2 \rho^{2}\right)$ according to eq. (11) is closely related to Zernike radial polynomial $R_{11}^{3}(\rho)$. Corresponding spectral coefficients are $(-1)^{\ell} a^{(3,0)}(\ell)=$ $[+6.234375,-11.375000,+9.187500,-5.625000,+2.578125]$.
stable. We have presented numerical calculation of Jacobi polynomials $P_{8}^{(-0.15,0.75)}(x), P_{11}^{(17,0)}(x)$, and $P_{4}^{(3,0)}\left(1-2 \rho^{2}\right)$. Using these algorithms for Jacobi polynomials we could easily evaluate corresponding Zernike radial polynomials - Figure 4 and 5. Our algorithms provide Zernike radial polynomials of a considerable high degree n.

For computation of Zernike radial polynomials Janssen and Dirksen [2] used a discrete Fourier (cosine) transform of Chebyshev polynomial of the second kind

$$
\begin{equation*}
R_{n}^{m}(\rho)=\frac{1}{2 \pi} \int_{0}^{2 \pi} U_{n}(\rho \cos \theta) \cos m \theta d \theta \tag{24}
\end{equation*}
$$

Equations (11) and (14) suggest that the spectral coefficients $a^{(\alpha, \beta)}(\ell), b^{(\alpha, \beta)}(\ell)$ can be an alternative representation of the above integral (24).

ACKNOWLEDGMENT

The authors wish to thank the Grant Agency of the Czech Republic for supporting this research through project GAP102/11/1795: Novel selective transforms for nonstationary signal processing.

References

[1] T. A. Brummelaar, The Contribution of High Order Zernike Modes to Wavefront Tilt, Optics Communications, 115(1995), pp. 417-424.
[2] A. J. E. M. Janssen, P. Dirksen, Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform, Journal of the European Optical Society - Rapid publications, Vol. 2 (2007), 115 (1995), pp. 417-424.
[3] B. Lewis, J. H. Burge, Fitting High-Order Zernike Polynomials to Finite Data Interferometry XVI: Techniques and Analysis, Proc. of SPIE, vol. 8493, 2012
[4] R. W. Gray et al., An analytic expression for the field dependence of Zernike polynomials in rotationally symmetric optical systems, Optics Express, Vol. 20, No. 15, Jul 2012, pp. 16436-16449
[5] A. Wunsche, Generalized Zernike or disc polynomials, Journal of Computational and Applied Mathematics, 174 (2005), pp. 135163
[6] B. H. Shakibaei, R. Pramesran, Recursive fromula to compute Zernike radial polynomials, Optics Letters, Vol. 38, No. 14, Jul 2013, pp. 24872489
[7] M. Abramowitz and I. Stegun I., Handbook of Mathematical Functions, Dover Publications, New York Inc., 1972.

Fig. 4. Zernike radial polynomial $R_{11}^{3}(\rho)$ evaluated by cosine transform as in [2] and corresponding evaluation using spectral representation of Jacobi polynomial $P_{4}^{(3,0)}\left(1-2 \rho^{2}\right)$

Fig. 5. Zernike radial polynomial $R_{39}^{17}(\rho)$ evaluated by cosine transform as in [2] and corresponding evaluation using spectral representation of Jacobi polynomial $P_{11}^{(17,0)}\left(1-2 \rho^{2}\right)$. It is worth noting, that for higher degree n the evaluation of Zernike radial polynomial through spectral representation is free of disturbances for $\rho \rightarrow 1$.

TABLE I
RECURSIVE EVALUATION OF SPECTRAL COEFFICIENTS $a^{(\alpha, \beta)}(\ell)$ FOR A GENERAL JACOBI POLYNOMIAL $P_{n}^{\alpha, \beta}(x)=\sum_{\ell=0}^{n} a^{(\alpha, \beta)}(\ell) T_{\ell}(x)$.
given $\quad n, \alpha, \beta$
initial values

$$
a^{(\alpha, \beta)}(n)=2^{-(2 n-1)} \frac{\Gamma(2 n+\alpha+\beta+1)}{\Gamma(n+1) \Gamma(n+\alpha+\beta+1)}
$$

body

$$
a^{(\alpha, \beta)}(n-1)=\frac{2(\alpha-\beta) n}{\alpha+\beta+2 n} a^{(\alpha, \beta)}(n)
$$

$k=0$ to $n-2$

$$
\begin{aligned}
a^{(\alpha, \beta)}(n-k-2) & =\frac{2(\alpha-\beta)(n-k-1)}{(k+2)(\alpha+\beta+2 n-k-1)} a^{(\alpha, \beta)}(n-k-1) \\
& +\frac{(2 n-k)(\alpha+\beta+k+1)}{(k+2)(\alpha+\beta+2 n-k-1)} a^{(\alpha, \beta)}(n-k)
\end{aligned}
$$

end)

$$
a^{(\alpha, \beta)}(0) \rightarrow a^{(\alpha, \beta)}(0) / 2
$$

TABLE III
RECURSIVE EVALUATION OF SPECTRAL COEFFICIENTS $b^{(\alpha, \beta)}(\ell)$ FOR A GENERAL JACOBI POLYNOMIAL $P_{n}^{\alpha, \beta}(x)=\sum_{\ell=0}^{n} b^{(\alpha, \beta)}(\ell) U_{\ell}(x)$
given
n, α, β
initial values
$b^{(\alpha, \beta)}(n+1)=b^{(\alpha, \beta)}(n+2)=0$
$b^{(\alpha, \beta)}(n)=2^{-(2 n)} \frac{\Gamma(2 n+\alpha+\beta+1)}{\Gamma(n+1) \Gamma(n+\alpha+\beta+1)}$
$b^{(\alpha, \beta)}(n-1)=\frac{2(\alpha-\beta) n}{\alpha+\beta+2 n} b^{(\alpha, \beta)}(n)$
body
(for $\quad k=-2$ to $n-4$
$b^{(\alpha, \beta)}(n-k-4)[n(n+2)-(n-k-4)(n-k-2)+(k+4)(\alpha+\beta-1)]=$
$+2 b^{(\alpha, \beta)}(n-k-3)(n-k+3)(\alpha-\beta)$
$+2 b^{(\alpha, \beta)}(n-k-2)[n(n+2)-(n-k-2)(n-k)+(k+1)(\alpha+\beta-1)]$
$-2 b^{(\alpha, \beta)}(n-k-1)(n-k+1)(\alpha-\beta)$
$+b^{(\alpha, \beta)}(n-k)[n(n+2)-(n-k)(n-k+2)+(2 n-k+2)(\alpha+\beta-1)]$
end)

