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Abstract—The Zernike polynomials Zm
n (ρ, ϕ) are known in

optical physics, and they are used for the various diffractions
and aberrations problems of lenses. They are defined on a
circle, so that their representation decouples radial and axial
coordinates. It is know that the Zernike radial polynomials
Rm

n (ρ) are represented through Jacobi polynomials. This paper
deals with Chebyshev expansions for Jacobi polynomials. We have
developed the recursive evaluation for spectral coefficients used in
these expansions. These consequently provide a straightforward
interpretation of Fourier transform of Zernike polynomials.

I. INTRODUCTION

The conventional representation of Zernike radial
polynomials gives unsatisfactory results for large values
of degree n [3]. Some methods employ the recurrence
relations [6], the other [2] suggests an algorithm in the
form of discrete cosine transform which overcomes other
methods in terms of accuracy. Nevertheless, the final formula
represents an integral whose evaluation is performed using
uniform sampling of the integrand. The proposed Chebyshev
expansion of Jacobi polynomials Pα,β

n (x) results directly in
spectral coefficients of Rm

n (ρ) without need of using discrete
Fourier transform.

Jacobi polynomials Pα,β
n (x) are defined as [7]

Pα,β
n (x) =

1

2n

n∑
m=0

(
n+ α
m

) (
n+ β
n−m

)
×(x− 1)n−m(x+ 1)m

(1)

and they satisfy the self-adjoined differential equation

d

dx

[
(1− x)α+1(1 + x)β+1 d

dx
Pα,β
n (x)

]
+n (n+ 1 + α+ β)(1− x)α(1 + x)β Pα,β

n (x) = 0.

(2)

Later, we will use Jacobi polynomials for radial part Rm
n (ρ)

of the Zernike polynomials

Zm
n (ρ, ϕ) =

{
Rm

n (ρ) cosmϕ

Rm
n (ρ) sinmϕ,

(3)

Based on (2) we can derived for y(x) ≡ Pα,β
n (x) a standard

form of the Jacobi differential equation [7] as

(1− x2)y′′(x)− [(α+ β + 2)x+ α− β]y′(x)

+n(n+ 1 + α+ β)y(x) = 0.
(4)

In order to represent Jacobi polynomials through the Cheby-
shev expansions

Pα,β
n (x) =

n∑
ℓ=0

a(α,β)(ℓ)Tℓ(x). (5)

Pα,β
n (x) =

n∑
ℓ=0

b(α,β)(ℓ)Uℓ(x), (6)

where Tℓ(x), and Uℓ(x) are Chebyshev polynomials of the
first, and second kind, respectively, we have developed re-
cursive evaluation of the spectral coefficients a(α,β)(ℓ) and
b(α,β)(ℓ).

A. Recursive algorithm-I

Inserting in (4)

y(x) =
n∑

ℓ=0

a(α,β)(ℓ)Tℓ(x), (7)

after considerable algebra we obtain the three-point recursive
formulae which are concisely summarized in Table I.

The algorithm for the coefficients a(α,β)(ℓ) was used for
evaluating Jacobi polynomials (5). Two numerical results
for Jacobi polynomials P

(−0.15,0.75)
8 (x) and P

(17,0)
11 (x) are

summarized in Table II. Note, the second polynomial is closely
related to Zernike radial polynomial R17

39(ρ), that we introduce
later.

B. Recursive algorithm-II

Inserting in (4)

y(x) =
n∑

ℓ=0

b(α,β)(ℓ)Uℓ(x), (8)

we need to perform quite involved algebra to obtain the five-
point recursive formulae - Table III. The algorithm for the
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TABLE II
THE COEFFICIENTS a(−0.15,0.75)(ℓ) AND a(17,0)(ℓ) OF JACOBI

POLYNOMIALS.

ℓ a(−0.15,0.75)(ℓ) a(17,0)(ℓ)
0 0.382162212452087 2.796583266044617 e06
1 -0.688698483046875 5.318721431858063 e06
2 0.756058665304687 4.568044430351257 e06
3 -0.666385898718750 3.530190682125092 e06
4 0.729511893632812 2.438413190643311 e06
5 -0.614211136875000 1.489855783063889 e06
6 0.677729102812500 0.792833667308807 e06
7 -0.502127525250000 0.359071999025345 e06
8 0.578841452718750 0.133550766944885 e06
9 - 0.038451398126602 e06

10 - 0.007664178707123 e06
11 - 0.000799205801010 e06
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Fig. 1. Jacobi polynomial P
(−0.15,0.75)
8 (x) and its coefficients

a(−0.15,0.75)(ℓ) from equation (5).

coefficients b(α,β)(ℓ) was used for evaluating Jacobi poly-
nomials (6). Two numerical results for Jacobi polynomials
P

(−0.15,0.75)
8 (x) and P

(17,0)
11 (x) are summarized in Table IV.

II. ZERNIKE AND JACOBI POLYNOMIALS

The radial function Rm
n (ρ) (3) of a Zernike polynomial is

related to Jacobi polynomials Pα,β
n (x) [5] as

Rm
n (ρ) = (−1)kρmPm,0

k (1− 2 ρ2), (9)

where k = n−m
2 must be an integer. Now, we use the recursive

algorithm for evaluating the spectral coefficients a(α,β)(ℓ)

Pα,β
k (1− 2 ρ2) =

k∑
ℓ=0

a(α,β)(ℓ)Tℓ(1− 2 ρ2), (10)

TABLE IV
THE COEFFICIENTS b(−0.15,0.75)(ℓ) AND b(17,0)(ℓ) OF JACOBI

POLYNOMIALS.

ℓ b(−0.15,0.75)(ℓ) b(17,0)(ℓ)
0 0.004132879799744 0.512561050868988 e06
1 -0.011156292164062 0.894265374866486 e06
2 0.013273385835937 1.064815619853973 e06
3 -0.026087380921875 1.020167449530602 e06
4 0.025891395410156 0.822789761667252 e06
5 -0.056041805812500 0.565391892019272 e06
6 0.049443825046875 0.329641450181961 e06
7 -0.251063762625000 0.160310300449371 e06
8 0.289420726359375 0.062943294118881 e06
9 - 0.018826096162796 e06

10 - 0.003832089353561 e06
11 - 0.000399602900505 e06
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Fig. 2. Jacobi polynomial P
(−0.15,0.75)
8 (x) and its coefficients

b(−0.15,0.75)(ℓ) from equation (6).

and then for radial function we have

Rm
n (ρ) = (−1)k

k∑
ℓ=0

(−1)ℓa(m,0)(ℓ) ρm T2ℓ(ρ). (11)

We can also use the spectral coefficients b(α,β)(ℓ) to represent

Pα,β
k (1− 2 ρ2) =

k∑
ℓ=0

b(α,β)(ℓ)Uℓ(1− 2 ρ2). (12)

Chebyshev polynomials of the second kind satisfy the identity

Uℓ(1− 2 ρ2) = (−1)ℓUℓ(2 ρ
2 − 1) = (−1)ℓ

U2ℓ+1(ρ)

2ρ
, (13)

and then for radial function we have alternatively

Rm
n (ρ) = (−1)k

k∑
ℓ=0

(−1)ℓb(m,0)(ℓ) ρm−1 U2ℓ+1(ρ). (14)
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Using in (11) identity

ρm T2ℓ(ρ) = 2−m
m∑

µ=0

(
m
µ

)
T2ℓ+m−2µ(ρ), (15)

we can evaluate spectral representation c(m,0) of the radial
polynomial

Rm
n (ρ) = (−1)k

k∑
ℓ=0

(−1)ℓc(m,0)(ℓ)T2ℓ+m(ρ). (16)

Similarly, using identity

ρm−1 U2ℓ+1(ρ) = 2−(m−1)
m−1∑
µ=0

(
m− 1
µ

)
U2ℓ+m−2µ(ρ),

(17)
in (14), we obtain spectral representation d(m,0) of the radial
polynomial

Rm
n (ρ) = (−1)k

k∑
ℓ=0

(−1)ℓd(m,0)(ℓ)U2ℓ+m(ρ). (18)

As the first Jacobi polynomials are

P
(m,0)
0 (1− 2ρ2) = 1, (19)

P
(m,0)
1 (1− 2ρ2) = (m+ 1)− (m+ 2)ρ2, (20)

it is not difficult to make the crosscheck of radial polynomial
representations (9) either with (16), or (18). For illustration,
we present an explicit method for finding spectral coefficients
c(3,0)(ℓ) for Zernike radial polynomial R3

2k+3(ρ). Actually,

R3
2k+3(ρ) = (−1)k

k∑
ℓ=0

(−1)ℓa(3,0)(ℓ) ρ3 T2ℓ(ρ), (21)

then we substitute for

ρ3 T2ℓ(ρ) =
1

8
[T2ℓ−3(ρ) + 3T2ℓ−1(ρ) + 3T2ℓ+1(ρ)

+T2ℓ+3(ρ)] .
(22)

If we collect the coefficients a(3,0)(m) that correspond to
the same degree ℓ, we obtain a simple algorithm for spectral
coefficients c(3,0)(ℓ) for ℓ = 0 to k + 1

c(3,0)(ℓ) =
1

8

[
a(3,0)(ℓ− 1)− 3a(3,0)(ℓ) + 3a(3,0)(ℓ+ 1)

−a(3,0)(ℓ+ 2)
]
.

(23)

III. CONCLUSION

We have derived a robust evaluation of Zernike radial
polynomials which derives its numerical stability from eval-
uation of spectral coefficients a(α,β)(ℓ), b(α,β)(ℓ). Instead
of using discrete Fourier transform we have employed the
Chebyshev expansion for a solution of the differential equation
for Jacobi polynomials. Suggested method does not require
any transformation (DCT or DFT) to get a spectral coefficients
and therefore it is computationally efficient and numerically

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

                                                  → ρ

Fig. 3. Jacobi polynomial P
(3,0)
4 (1 − 2ρ2) according to eq.

(11) is closely related to Zernike radial polynomial R3
11(ρ).

Corresponding spectral coefficients are (−1)ℓa(3,0)(ℓ) =
[+6.234375, −11.375000, +9.187500, −5.625000, +2.578125].

stable. We have presented numerical calculation of Jacobi
polynomials P (−0.15,0.75)

8 (x), P (17,0)
11 (x), and P

(3,0)
4 (1−2ρ2).

Using these algorithms for Jacobi polynomials we could easily
evaluate corresponding Zernike radial polynomials - Figure 4
and 5. Our algorithms provide Zernike radial polynomials of
a considerable high degree n.

For computation of Zernike radial polynomials Janssen and
Dirksen [2] used a discrete Fourier (cosine) transform of
Chebyshev polynomial of the second kind

Rm
n (ρ) =

1

2π

∫ 2π

0

Un(ρ cos θ) cosmθ dθ. (24)

Equations (11) and (14) suggest that the spectral coefficients
a(α,β)(ℓ), b(α,β)(ℓ) can be an alternative representation of the
above integral (24).
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Fig. 4. Zernike radial polynomial R3
11(ρ) evaluated by cosine transform as

in [2] and corresponding evaluation using spectral representation of Jacobi
polynomial P (3,0)

4 (1− 2ρ2)
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Fig. 5. Zernike radial polynomial R17
39(ρ) evaluated by cosine transform as

in [2] and corresponding evaluation using spectral representation of Jacobi
polynomial P

(17,0)
11 (1 − 2ρ2). It is worth noting, that for higher degree n

the evaluation of Zernike radial polynomial through spectral representation is
free of disturbances for ρ → 1.
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TABLE I

RECURSIVE EVALUATION OF SPECTRAL COEFFICIENTS a(α,β)(ℓ) FOR A GENERAL JACOBI POLYNOMIAL Pα,β
n (x) =

n∑
ℓ=0

a(α,β)(ℓ)Tℓ(x).

given n, α, β
initial values

a(α,β)(n) = 2−(2n−1) Γ(2n+ α+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)

a(α,β)(n− 1) =
2 (α− β)n

α+ β + 2n
a(α,β)(n)

body
(for k = 0 to n− 2

a(α,β)(n− k − 2) =
2 (α− β) (n− k − 1)

(k + 2) (α+ β + 2n− k − 1)
a(α,β)(n− k − 1)

+
(2n− k) (α+ β + k + 1)

(k + 2) (α+ β + 2n− k − 1)
a(α,β)(n− k)

end)

a(α,β)(0) → a(α,β)(0)/2

TABLE III

RECURSIVE EVALUATION OF SPECTRAL COEFFICIENTS b(α,β)(ℓ) FOR A GENERAL JACOBI POLYNOMIAL Pα,β
n (x) =

n∑
ℓ=0

b(α,β)(ℓ)Uℓ(x)

given n, α, β
initial values

b(α,β)(n+ 1) = b(α,β)(n+ 2) = 0

b(α,β)(n) = 2−(2n) Γ(2n+ α+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)

b(α,β)(n− 1) =
2 (α− β)n

α+ β + 2n
b(α,β)(n)

body
(for k = −2 to n− 4

b(α,β)(n− k − 4) [n(n+ 2)− (n− k − 4)(n− k − 2) + (k + 4)(α+ β − 1)] =

+2 b(α,β)(n− k − 3) (n− k + 3)(α− β)

+ 2 b(α,β)(n− k − 2) [n(n+ 2)− (n− k − 2)(n− k) + (k + 1)(α+ β − 1)]

− 2 b(α,β)(n− k − 1) (n− k + 1)(α− β)

+ b(α,β)(n− k) [n(n+ 2)− (n− k)(n− k + 2) + (2n− k + 2)(α+ β − 1)]

end)
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